Given an **undirected, capacitated graph** $G = (V, E, c)$ find a partition of V into two non-empty sets $S, V \setminus S$ s.t. the capacity of edges between both sets is minimized.
15 Global Mincut

We can solve this problem using standard maxflow/mincut.

- Construct a directed graph $G' = (V, E')$ that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.
- Fix an arbitrary node $s \in V$ as source. Compute a minimum s-t cut for all possible choices $t \in V, t \neq s$. \(^{(\text{Time: } O(n^4))}\)
- Let $(S, V \setminus S)$ be a minimum global mincut. The above algorithm will output a cut of capacity $\text{cap}(S, V \setminus S)$ whenever $|\{s, t\} \cap S| = 1$.
Edge Contractions

▷ Given a graph $G = (V, E)$ and an edge $e = \{u, v\}$.
▷ The graph G/e is obtained by “identifying” u and v to form a new node.
▷ Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 1

▷ Edge-contractions do no decrease the size of the mincut.
Edge Contractions

We can perform an edge-contraction in time $O(n)$.
Randomized Mincut Algorithm

Algorithm 23 KargerMincut($G = (V, E, c)$)

1. for $i = 1 \rightarrow n - 2$
2. choose $e \in E$ randomly with probability $c(e)/c(E)$
3. $G \leftarrow G/e$
4. return only cut in G

- Let G_t denote the graph after the $(n - t)$-th iteration, when t nodes are left.
- Note that the final graph G_2 only contains a single edge.
- The cut in G_2 corresponds to a cut in the original graph G with the same capacity.
- What is the probability that this algorithm returns a mincut?
Example: Randomized Mincut Algorithm

Animation only available in the lecture version of the slides.
Analysis

What is the probability that a given mincut \(A \) is still possible after round \(i \)?

- It is still possible to obtain cut \(A \) in the end if so far no edge in \((A, V \setminus A)\) has been contracted.
Analysis

What is the probability that we select an edge from A in iteration i?

- Let $\min = \text{cap}(A, V \setminus A)$ denote the capacity of a mincut.
- Let $\text{cap}(v)$ be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- Clearly, $\text{cap}(v) \geq \min$.
- Summing $\text{cap}(v)$ over all edges gives

$$2c(E) = 2 \sum_{e \in E} c(e) = \sum_{v \in V} \text{cap}(v) \geq (n - i + 1) \cdot \min$$

- Hence, the probability of choosing an edge from the cut is at most

$$\frac{\min \cdot c(E)}{2c(E)} \leq \frac{\min}{2} \cdot \frac{1}{n - i + 1}$$

$n - i + 1$ is the number of nodes in graph $G_{n-i+1} = (V_{n-i+1}, E_{n-i+1})$, the graph at the start of iteration i.
Analysis

The probability that we do not choose an edge from the cut in iteration i is

$$1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1}.$$

The probability that the cut is alive after iteration $n-t$ (after which t nodes are left) is

$$\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \frac{t(t-1)}{n(n-1)}.$$

Choosing $t = 2$ gives that with probability $1/\binom{n}{2}$ the algorithm computes a mincut.
Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c \ln n} \leq \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c \ln n} \leq n^{-c},$$

where we used $1 - x \leq e^{-x}$.

Theorem 2

*The randomized mincut algorithm computes an optimal cut with high probability. The total running time is $O(n^4 \log n)$.***
Improved Algorithm

Algorithm 24 RecursiveMincut \((G = (V, E, c))\)

1: for \(i = 1 \rightarrow n - n/\sqrt{2}\) do
2: choose \(e \in E\) randomly with probability \(c(e)/c(E)\)
3: \(G \leftarrow G/e\)
4: if \(|V| = 2\) return cut-value;
5: \(cuta \leftarrow \text{RecursiveMincut}(G)\);
6: \(cutb \leftarrow \text{RecursiveMincut}(G)\);
7: return min\{cuta, cutb\}

Running time:

- \(T(n) = 2T(\frac{n}{\sqrt{2}}) + \mathcal{O}(n^2)\)
- This gives \(T(n) = \mathcal{O}(n^2 \log n)\).

Note that the above implementation only works for very special values of \(n\).
The probability of contracting an edge from the mincut during one iteration through the for-loop is only

\[
\frac{t(t - 1)}{n(n - 1)} \leq \frac{t^2}{n^2} = \frac{1}{2},
\]

as \(t = \frac{n}{\sqrt{2}} \).
The probability of contracting an edge of the mincut during these iterations is only $\frac{1}{2}$.

We can estimate the success probability by using the following game on the recursion tree. Delete every edge with probability $\frac{1}{2}$. If in the end you have a path from the root to at least one leaf node you are successful.
Probability of Success

Let for an edge e in the recursion tree, $h(e)$ denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of e to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn’t been deleted.

Lemma 3

The probability that an edge e is alive is at least $\frac{1}{h(e)+1}$.
Probability of Success

Proof.

▶ An edge e with $h(e) = 1$ is alive if and only if it is not deleted. Hence, it is alive with probability at least $\frac{1}{2}$.

▶ Let p_d be the probability that an edge e with $h(e) = d$ is alive. For $d > 1$ this happens for edge $e = \{c, p\}$ if it is not deleted and if one of the child-edges connecting to c is alive.

▶ This happens with probability

$$p_d = \frac{1}{2} \left(2p_{d-1} - p_{d-1}^2 \right)$$

$$= p_{d-1} - \frac{p_{d-1}^2}{2}$$

$x - x^2/2$ is monotonically increasing for $x \in [0, 1]$

$$\geq \frac{1}{d} - \frac{1}{2d^2} \geq \frac{1}{d} - \frac{1}{d(d + 1)} = \frac{1}{d + 1}.$$
Lemma 4

One run of the algorithm can be performed in time $\Theta(n^2 \log n)$ and has a success probability of $\Omega(\frac{1}{\log n})$.

Doing $\Theta(\log^2 n)$ runs gives that the algorithm succeeds with high probability. The total running time is $\Theta(n^2 \log^3 n)$.