10 Introduction

Flow Network

- directed graph $G = (V, E)$; edge capacities $c(e)$
- two special nodes: source s; target t
- no edges entering s or leaving t
- at least for now: no parallel edges
10 Introduction

Flow Network

- directed graph $G = (V, E)$; edge capacities $c(e)$
- two special nodes: source s; target t;
 - no edges entering s or leaving t;
 - at least for now: no parallel edges;
10 Introduction

Flow Network

- directed graph $G = (V, E)$; edge capacities $c(e)$
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;
10 Introduction

Flow Network

- directed graph $G = (V, E)$; edge capacities $c(e)$
- two special nodes: source s; target t
- no edges entering s or leaving t
- at least for now: no parallel edges;
Cuts

Definition 1
An \((s, t)\)-cut in the graph \(G\) is given by a set \(A \subset V\) with \(s \in A\) and \(t \in V \setminus A\).
Cuts

Definition 1
An \((s, t)\)-cut in the graph \(G\) is given by a set \(A \subset V\) with \(s \in A\) and \(t \in V \setminus A\).

Definition 2
The capacity of a cut \(A\) is defined as

\[
\text{cap}(A, V \setminus A) := \sum_{e \in \text{out}(A)} c(e),
\]

where \(\text{out}(A)\) denotes the set of edges of the form \(A \times V \setminus A\) (i.e. edges leaving \(A\)).
Cuts

Definition 1
An \((s, t)\)-cut in the graph \(G\) is given by a set \(A \subset V\) with \(s \in A\) and \(t \in V \setminus A\).

Definition 2
The capacity of a cut \(A\) is defined as

\[
\text{cap}(A, V \setminus A) := \sum_{e \in \text{out}(A)} c(e),
\]

where \(\text{out}(A)\) denotes the set of edges of the form \(A \times V \setminus A\) (i.e. edges leaving \(A\)).

Minimum Cut Problem: Find an \((s, t)\)-cut with minimum capacity.
The capacity of the cut is $\text{cap}(A, V \setminus A) = 28$.
Definition 4
An \((s, t)\)-flow is a function \(f : E \rightarrow \mathbb{R}^+\) that satisfies

1. For each edge \(e\)
 \[
 0 \leq f(e) \leq c(e) .
 \]
 (capacity constraints)

2. For each \(v \in V \setminus \{s, t\}\)
 \[
 \sum_{e \in \text{out}(v)} f(e) = \sum_{e \in \text{into}(v)} f(e) .
 \]
 (flow conservation constraints)
Definition 4

An \((s, t)\)-flow is a function \(f : E \rightarrow \mathbb{R}^+\) that satisfies

1. For each edge \(e\)

 \[0 \leq f(e) \leq c(e)\]

 (capacity constraints)

2. For each \(v \in V \setminus \{s, t\}\)

 \[\sum_{e \in \text{out}(v)} f(e) = \sum_{e \in \text{into}(v)} f(e)\]

 (flow conservation constraints)
Definition 5
The value of an \((s,t)\)-flow \(f\) is defined as

\[
\text{val}(f) = \sum_{e \in \text{out}(s)} f(e).
\]

Maximum Flow Problem: Find an \((s,t)\)-flow with maximum value.
Definition 5

The value of an \((s, t)\)-flow \(f\) is defined as

\[
\text{val}(f) = \sum_{e \in \text{out}(s)} f(e).
\]

Maximum Flow Problem: Find an \((s, t)\)-flow with maximum value.
The value of the flow is $\text{val}(f) = 24$.
Lemma 7 (Flow value lemma)

Let f be a flow, and let $A \subseteq V$ be an (s, t)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,

$$\text{val}(f) = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{into}(A)} f(e).$$
Proof.

$$\text{val}(f)$$
Proof.

$$\text{val}(f) = \sum_{e \in \text{out}(s)} f(e)$$
Proof.

\[
\text{val}(f) = \sum_{e \in \text{out}(s)} f(e)
\]

\[
= \sum_{e \in \text{out}(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in \text{out}(v)} f(e) - \sum_{e \in \text{in}(v)} f(e) \right)
\]

The last equality holds since every edge with both end-points in \(A\) contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering \(A\).
Proof.

\[
\text{val}(f) = \sum_{e \in \text{out}(s)} f(e) = \sum_{e \in \text{out}(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in \text{out}(v)} f(e) - \sum_{e \in \text{in}(v)} f(e) \right) = 0
\]

The last equality holds since every edge with both end-points in \(A\) contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering \(A\).
Proof.

\[\text{val}(f) = \sum_{e \in \text{out}(s)} f(e) \]

\[= \sum_{e \in \text{out}(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in \text{out}(v)} f(e) - \sum_{e \in \text{in}(v)} f(e) \right) \]

\[= \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{into}(A)} f(e) \]

The last equality holds since every edge with both end-points in \(A \) contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering \(A \).
Proof.

\[
\text{val}(f) = \sum_{e \in \text{out}(s)} f(e) \\
= \sum_{e \in \text{out}(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in \text{out}(v)} f(e) - \sum_{e \in \text{in}(v)} f(e) \right) \\
= \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{into}(A)} f(e)
\]

The last equality holds since every edge with both end-points in \(A \) contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn’t cancel out are edges leaving or entering \(A \).

\(\square \)
Example 8
Corollary 9

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$\text{val}(f) = \text{cap}(A, V \setminus A).$$

Then f is a maximum flow.
Corollary 9

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$\text{val}(f) = \text{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Proof.
Corollary 9

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$\text{val}(f) = \text{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Proof.
Suppose that there is a flow f' with larger value. Then
Corollary 9

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$\text{val}(f) = \text{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

$$\text{cap}(A, V \setminus A) < \text{val}(f')$$
Corollary 9

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$\text{val}(f) = \text{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

$$\text{cap}(A, V \setminus A) < \text{val}(f')$$

$$= \sum_{e \in \text{out}(A)} f'(e) - \sum_{e \in \text{into}(A)} f'(e)$$
Corollary 9

Let \(f \) be an \((s, t)\) -flow and let \(A \) be an \((s, t)\) -cut, such that

\[
\text{val}(f) = \text{cap}(A, V \setminus A).
\]

Then \(f \) is a maximum flow.

Proof.

Suppose that there is a flow \(f' \) with larger value. Then

\[
\text{cap}(A, V \setminus A) < \text{val}(f')
\]

\[
= \sum_{e \in \text{out}(A)} f'(e) - \sum_{e \in \text{into}(A)} f'(e)
\]

\[
\leq \sum_{e \in \text{out}(A)} f'(e)
\]
Corollary 9

Let \(f \) be an \((s, t)\)-flow and let \(A \) be an \((s, t)\)-cut, such that

\[
\text{val}(f) = \text{cap}(A, V \setminus A).
\]

Then \(f \) is a maximum flow.

Proof.
Suppose that there is a flow \(f' \) with larger value. Then

\[
\text{cap}(A, V \setminus A) < \text{val}(f')
\]

\[
= \sum_{e \in \text{out}(A)} f'(e) - \sum_{e \in \text{into}(A)} f'(e)
\]

\[
\leq \sum_{e \in \text{out}(A)} f'(e)
\]

\[
\leq \text{cap}(A, V \setminus A)
\]

□