How to find an augmenting path?

Construct an alternating tree.

![Diagram of an alternating tree with even and odd nodes marked]

Case 4:
y is already contained in T as an even vertex

The cycle $w \rightarrow y \rightarrow x \rightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). The path $u-w$ is called the stem of the blossom.

Flowers and Blossoms

Definition 1

A flower in a graph $G = (V,E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that $r = w$ (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Properties:

1. A stem spans $2\ell + 1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
2. A blossom spans $2k + 1$ nodes and contains k matched edges for some integer $k \geq 1$. The matched edges match all nodes of the blossom except the base.
3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).
Flowers and Blossoms

Properties:

1. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.

2. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G' = G/B$, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.

- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.

- Nodes that are connected in G to at least one node in B become connected to b in G'.
Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and w the base. Let graph $G' = G/B$ with pseudonode b. Let M' be the matching in the contracted graph.

Lemma 2
If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

Correctness

Proof.
If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem
- Next suppose that the stem is non-empty.
Correctness

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- If $k = w$ then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Correctness

Proof.

Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w = r$.

The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Correctness

Lemma 3

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom. P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

$(b, j) \circ P_2$ is an augmenting path in the contracted network.
Correctness

Illustration for Case 1:

Case 2: non-empty stem

Let P_3 be an alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+, since M and M_+ have the same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+.

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+. It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

Algorithm 23

Search $(r, found)$

1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
2: $found \leftarrow false$
3: unlabel all nodes;
4: give an even label to r and initialize $list \leftarrow \{r\}$
5: while $list \neq \emptyset$ do
6: delete a node i from $list$
7: examine $(i, found)$
8: if $found = true$ then return

Search for an augmenting path starting at r.

Algorithm 24

Examine $(i, found)$

1: for all $j \in \bar{A}(i)$ do
2: if j is even then contract (i, j) and return
3: if j is unmatched then
4: $q \leftarrow j$
5: $pred(q) \leftarrow i$
6: $found \leftarrow true$
7: return
8: if j is matched and unlabeled then
9: $pred(j) \leftarrow i$
10: $pred(mate(j)) \leftarrow j$
11: add $mate(j)$ to $list$

Examine the neighbours of a node i.
Algorithm 25 \textit{contract}(i, j)

1: trace pred-indices of \(i \) and \(j \) to identify a blossom \(B \)
2: create new node \(b \) and set \(\hat{A}(b) = \bigcup_{x \in B} \hat{A}(x) \)
3: label \(b \) even and add to list
4: update \(\hat{A}(j) = \hat{A}(j) \cup \{ b \} \) for each \(j \in \hat{A}(b) \)
5: form a circular double linked list of nodes in \(B \)
6: delete nodes in \(B \) from the graph

Contract blossom identified by nodes \(i \) and \(j \)

Algorithm 25 \textit{contract}(i, j)

1: trace pred-indices of \(i \) and \(j \) to identify a blossom \(B \)
2: create new node \(b \) and set \(\hat{A}(b) = \bigcup_{x \in B} \hat{A}(x) \)
3: label \(b \) even and add to list
4: update \(\hat{A}(j) = \hat{A}(j) \cup \{ b \} \) for each \(j \in \hat{A}(b) \)
5: form a circular double linked list of nodes in \(B \)
6: delete nodes in \(B \) from the graph

Get all nodes of the blossom.

Time: \(O(m) \)

Algorithm 25 \textit{contract}(i, j)

1: trace pred-indices of \(i \) and \(j \) to identify a blossom \(B \)
2: create new node \(b \) and set \(\hat{A}(b) = \bigcup_{x \in B} \hat{A}(x) \)
3: label \(b \) even and add to list
4: update \(\hat{A}(j) = \hat{A}(j) \cup \{ b \} \) for each \(j \in \hat{A}(b) \)
5: form a circular double linked list of nodes in \(B \)
6: delete nodes in \(B \) from the graph

Identify all neighbours of \(b \).

Time: \(O(m) \) (how?)

Algorithm 25 \textit{contract}(i, j)

1: trace pred-indices of \(i \) and \(j \) to identify a blossom \(B \)
2: create new node \(b \) and set \(\hat{A}(b) = \bigcup_{x \in B} \hat{A}(x) \)
3: label \(b \) even and add to list
4: update \(\hat{A}(j) = \hat{A}(j) \cup \{ b \} \) for each \(j \in \hat{A}(b) \)
5: form a circular double linked list of nodes in \(B \)
6: delete nodes in \(B \) from the graph

\(b \) will be an even node, and it has unexamined neighbours.
Algorithm 25 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\hat{A}(b) = \cup_{x \in B} \hat{A}(x)$
3: label b even and add to list
4: update $\hat{A}(j) = \hat{A}(j) \cup \{b\}$ for each $j \in \hat{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Every node that was adjacent to a node in B is now adjacent to b.

Analysis

- A contraction operation can be performed in time $O(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $O(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $O(n)$. There are at most n of them.
- In total the running time is at most
 \[n \cdot (O(mn) + O(n)) = O(mn^2). \]
Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.