Mincost Flow

Problem Definition:

\[\min \sum_{e} c(e) f(e) \]
\[\text{s.t. } \forall e \in E: \ 0 \leq f(e) \leq u(e) \]
\[\forall v \in V: \ f(v) = b(v) \]

- \(G = (V, E) \) is a directed graph.
- \(u : E \to \mathbb{R}_{+}^0 \cup \{\infty\} \) is the capacity function.
- \(c : E \to \mathbb{R} \) is the cost function (note that \(c(e) \) may be negative).
- \(b : V \to \mathbb{R} \), \(\sum_{v \in V} b(v) = 0 \) is a demand function.

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- Given a flow network for a standard maxflow problem, and a value \(k \).
- Set \(b(v) = 0 \) for every node apart from \(s \) or \(t \). Set \(b(s) = -k \) and \(b(t) = k \).
- Set edge-costs to zero, and keep the capacities.
- There exists a maxflow of value at least \(k \) if and only if the mincost-flow problem is feasible.

Generalization

Our model:

\[\min \sum_{e} c(e) f(e) \]
\[\text{s.t. } \forall e \in E: \ \ell(e) \leq f(e) \leq u(e) \]
\[\forall v \in V: \ a(v) \leq f(v) \leq b(v) \]

where \(b : V \to \mathbb{R}, \sum_{v \in V} b(v) = 0; u : E \to \mathbb{R}_{+}^0 \cup \{\infty\}; c : E \to \mathbb{R}; \)

A more general model?

\[\min \sum_{e} c(e) f(e) \]
\[\text{s.t. } \forall e \in E: \ \ell(e) \leq f(e) \leq u(e) \]
\[\forall v \in V: \ a(v) \leq f(v) \leq b(v) \]

where \(a : V \to \mathbb{R}, b : V \to \mathbb{R}; \ell : E \to \mathbb{R} \cup \{-\infty\}, u : E \to \mathbb{R} \cup \{\infty\} \)
\[c : E \to \mathbb{R}; \]
Generalization

Differences
- Flow along an edge e may have non-zero lower bound $\ell(e)$.
- Flow along e may have negative upper bound $u(e)$.
- The demand at a node v may have lower bound $a(v)$ and upper bound $b(v)$ instead of just lower bound = upper bound = $b(v)$.

Reduction I

$$\min \sum_{e} c(e)f(e)$$

s.t. \quad \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e)$$
$$\forall v \in V: \quad a(v) \leq f(v) \leq b(v)$$

We can assume that $a(v) = b(v)$:

Add new node r.

Add edge (r, v) for all $v \in V$.

Set $\ell(e) = c(e) = 0$ for these edges.

Set $u(e) = b(v) - a(v)$ for edge (r, v).

Set $a(v) = b(v)$ for all $v \in V$.

Set $b(r) = -\sum_{v \in V} b(v)$.

$-\sum_{v} b(v)$ is negative; hence r is only sending flow.

Reduction II

$$\min \sum_{e} c(e)f(e)$$

s.t. \quad \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e)$$
$$\forall v \in V: \quad f(v) = b(v)$$

We can assume that either $\ell(e) \neq -\infty$ or $u(e) \neq \infty$:

If $c(e) = 0$ we can contract the edge/identify nodes u and v.
If $c(e) \neq 0$ we can transform the graph so that $c(e) = 0$.

Reduction II

We can transform any network so that a particular edge has cost $c(e) = 0$:

Additionally we set $b(u) = 0$.

Reduction III
\[
\begin{align*}
\min & \quad \sum_e c(e)f(e) \\
\text{s.t.} & \quad \forall e \in E: \; \ell(e) \leq f(e) \leq u(e) \\
& \quad \forall v \in V: \; f(v) = b(v)
\end{align*}
\]

We can assume that \(\ell(e) \neq -\infty \):

Replace the edge by an edge in opposite direction.

Reduction IV
\[
\begin{align*}
\min & \quad \sum_e c(e)f(e) \\
\text{s.t.} & \quad \forall e \in E: \; \ell(e) \leq f(e) \leq u(e) \\
& \quad \forall v \in V: \; f(v) = b(v)
\end{align*}
\]

We can assume that \(\ell(e) = 0 \):

The added edges have infinite capacity and cost \(c(e)/2 \).

Applications

Caterer Problem
- She needs to supply \(r_i \) napkins on \(N \) successive days.
- She can buy new napkins at \(p \) cents each.
- She can launder them at a fast laundry that takes \(m \) days and cost \(f \) cents a napkin.
- She can use a slow laundry that takes \(k > m \) days and costs \(s \) cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.
Buy edges:
- Upper bound: $u(e_i) = \infty$
- Lower bound: $\ell(e_i) = 0$
- Cost: $c(e) = p$

Forward edges:
- Upper bound: $u(e_i) = \infty$
- Lower bound: $\ell(e_i) = 0$
- Cost: $c(e) = 0$

Slow edges:
- Upper bound: $u(e_i) = \infty$
- Lower bound: $\ell(e_i) = 0$
- Cost: $c(e) = s$

Fast edges:
- Upper bound: $u(e_i) = \infty$
- Lower bound: $\ell(e_i) = 0$
- Cost: $c(e) = f$
Residual Graph

Version A:
The residual graph G' for a mincost flow is just a copy of the graph G.

If we send $f(e)$ along an edge, the corresponding edge e' in the residual graph has its lower and upper bound changed to $\ell(e') = \ell(e) - f(e)$ and $u(e') = u(e) - f(e)$.

Version B:
The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v,u) has capacity z and a cost of $-c((u,v))$.

14 Mincost Flow

A circulation in a graph $G = (V,E)$ is a function $f : E \to \mathbb{R}^+$ that has an excess flow $f(v) = 0$ for every node $v \in V$.

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \leq u(e)$ for every edge of G.

Lemma 1
A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then $f + g$ is a feasible flow with cost $\text{cost}(f) + \text{cost}(g) < \text{cost}(f)$. Hence, f is not minimum cost.

⇐ Let f be a non-min-cost flow, and let f^* be a min-cost flow.

We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending $-f$ in the residual graph (pushing all flow back) we arrive at the original graph; for this f^* is clearly feasible)
For previous slide:
\[g = f^* - f \] is obtained by computing \(\Delta(e) = f^*(e) - f(e) \) for every edge \(e = (u, v) \). If the result is positive set \(g((u, v)) = \Delta(e) \) and \(g((v, u)) = 0 \). Otherwise set \(g((u, v)) = 0 \) and \(g((v, u)) = -\Delta(e) \).

14 Mincost Flow

Lemma 2
A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights \(c : E \to \mathbb{R} \).

Proof.
- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.

Algorithm 22 CycleCanceling

Algorithm 22 CycleCanceling
\(G = (V, E), c, u, b \)

1. establish a feasible flow \(f \) in \(G \)
2. while \(G_f \) contains negative cycle do
3. use Bellman-Ford to find a negative circuit \(Z \)
4. \(\delta \leftarrow \min \{ u_f(e) \mid e \in Z \} \)
5. augment \(\delta \) units along \(Z \) and update \(G_f \)

How do we find the initial feasible flow?

- Connect new node \(s \) to all nodes with negative \(b(v) \)-value.
- Connect nodes with positive \(b(v) \)-value to a new node \(t \).
- There exist a feasible flow in the original graph iff in the resulting graph there exists an \(s-t \) flow of value

\[
\sum_{v : b(v) < 0} (-b(v)) = \sum_{v : b(v) > 0} b(v) .
\]
Lemma 3
The improving cycle algorithm runs in time $O(nm^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \leq C$ and $|u(e)| \leq U$.

- Running time of Bellman-Ford is $O(mn)$.
- Pushing flow along the cycle can be done in time $O(n)$.
- Each iteration decreases the total cost by at least 1.
- The true optimum cost must lie in the interval $[-mCU, \ldots, +mCU]$.

Note that this lemma is weak since it does not allow for edges with infinite capacity.

A general mincost flow problem is of the following form:

$$\min \sum_e c(e)f(e)$$

s.t. $\forall e \in E: \ell(e) \leq f(e) \leq u(e)$

$\forall v \in V: a(v) \leq f(v) \leq b(v)$

where $a : V \to \mathbb{R}$, $b : V \to \mathbb{R}$; $\ell : E \to \mathbb{R} \cup \{-\infty\}$, $u : E \to \mathbb{R} \cup \{\infty\}$

$c : E \to \mathbb{R}$.

Lemma 4 (without proof)
A general mincost flow problem can be solved in polynomial time.