4 Modelling Issues

What do you measure?
▶ Memory requirement
▶ Running time
▶ Number of comparisons
▶ Number of multiplications
▶ Number of hard-disc accesses
▶ Program size
▶ Power consumption
▶ ...

4 Modelling Issues

How do you measure?
▶ Implementing and testing on representative inputs
 ▶ How do you choose your inputs?
 ▶ May be very time-consuming.
 ▶ Very reliable results if done correctly.
 ▶ Results only hold for a specific machine and for a specific set of inputs.
▶ Theoretical analysis in a specific model of computation.
 ▶ Gives asymptotic bounds like "this algorithm always runs in time $O(n^2)$".
 ▶ Typically focuses on the worst case.
 ▶ Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

4 Modelling Issues

Input length
The theoretical bounds are usually given by a function $f : \mathbb{N} \rightarrow \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be
▶ the size of the input (number of bits)
▶ the number of arguments

Example 1
Suppose n numbers from the interval $\{1, \ldots, N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

Model of Computation

How to measure performance
1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.
Turing Machine

- Very simple model of computation.
- Only the “current” memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.

⇒ Not a good model for developing efficient algorithms.

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$.
- Registers hold integers.
- Indirect addressing.

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
 - READ i
- output operations ($R[i] \rightarrow \text{output tape}$)
 - WRITE i
- register-register transfers
 - $R[j] := R[i]$
 - $R[j] := 4$
- indirect addressing
 - $R[j] := R[R[i]]$
 loads the content of the $R[i]$-th register into the j-th register
 - $R[R[i]] := R[j]$
 loads the content of the j-th into the $R[i]$-th register

The jump-directives are very close to the jump-instructions contained in the assembler language of real machines.
Model of Computation

- **uniform** cost model
 Every operation takes time 1.
- **logarithmic** cost model
 The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^w, where usually $w = \log_2 n$.

The latter model is quite realistic as the word-size of a standard computer that handles a problem of size n must be at least $\log_2 n$ as otherwise the computer could either not store the problem instance or not address all its memory.

4 Modelling Issues

Example 2

<table>
<thead>
<tr>
<th>Algorithm 1 RepeatedSquaring(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: $r \leftarrow 2$;</td>
</tr>
<tr>
<td>2: for $i = 1 \rightarrow n$ do</td>
</tr>
<tr>
<td>3: $r \leftarrow r^2$</td>
</tr>
<tr>
<td>4: return r</td>
</tr>
</tbody>
</table>

- **running time:**
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} - 1 = \Theta(2^n)$
- **space requirement:**
 - uniform model: $\Theta(1)$
 - logarithmic model: $\Theta(2^n)$

There are different types of complexity bounds:

- **best-case complexity:**
 $$C_{bc}(n) := \min \{ C(x) \mid |x| = n \}$$
 Usually easy to analyze, but not very meaningful.

- **worst-case complexity:**
 $$C_{wc}(n) := \max \{ C(x) \mid |x| = n \}$$
 Usually moderately easy to analyze; sometimes too pessimistic.

- **average case complexity:**
 $$C_{avg}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$
 more general: probability measure μ
 $$C_{avg}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

There are different types of complexity bounds:

- **amortized complexity:**
 The average cost of data structure operations over a worst case sequence of operations.

- **randomized complexity:**
 The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x. Then take the worst-case over all x with $|x| = n$.
4 Modelling Issues

Bibliography

Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.