9 Union Find

Union Find Data Structure \mathcal{P}: Maintains a partition of disjoint sets over elements.

- $\mathcal{P}.\text{makeset}(x)$: Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- $\mathcal{P}.\text{find}(x)$: Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- $\mathcal{P}.\text{union}(x, y)$: Given two elements x, and y that are currently in sets S_x and S_y, respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

Applications:
- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.

Algorithm 16 Kruskal-MST($G = (V, E), w$)

1: $A \leftarrow \emptyset$
2: for all $v \in V$ do
3: \hspace{1em} $v.\text{set} \leftarrow \mathcal{P}.\text{makeset}(v.\text{label})$
4: sort edges in non-decreasing order of weight w
5: for all $(u, v) \in E$ in non-decreasing order do
6: \hspace{1em} if $\mathcal{P}.\text{find}(u.\text{set}) \neq \mathcal{P}.\text{find}(v.\text{set})$ then
7: \hspace{2em} $A \leftarrow A \cup \{(u, v)\}$
8: \hspace{1em} $\mathcal{P}.\text{union}(u.\text{set}, v.\text{set})$

- $\text{makeset}(x)$ can be performed in constant time.
- $\text{find}(x)$ can be performed in constant time.
List Implementation

union(x, y)

- Determine sets S_x and S_y.
- Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x.
- Insert list S_y at the head of S_x.
- Adjust the size-field of list S_x.
- Time: $\min\{|S_x|, |S_y|\}$.

Running times:

- $\text{find}(x)$: constant
- $\text{makeset}(x)$: constant
- $\text{union}(x, y)$: $O(n)$, where n denotes the number of elements contained in the set system.
List Implementation

Lemma 1
The list implementation for the ADT union find fulfills the following amortized time bounds:
- \(\text{find}(x) : \Theta(1) \).
- \(\text{makeset}(x) : \Theta(\log n) \).
- \(\text{union}(x, y) : \Theta(1) \).

The Accounting Method for Amortized Time Bounds
- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

List Implementation
- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most \(\Theta(\log n) \) to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to \(\Theta(\log n) \), i.e., at this point we fill the bank account of the element to \(\Theta(\log n) \).
- Later operations charge the account but the balance never drops below zero.

List Implementation
- \(\text{makeset}(x) \): The actual cost is \(\Theta(1) \). Due to the cost inflation the amortized cost is \(\Theta(\log n) \).
- \(\text{find}(x) \): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: \(\Theta(1) \).
- \(\text{union}(x, y) \):
 - If \(S_x = S_y \) the cost is constant; no bank accounts change.
 - Otw. the actual cost is \(\Theta(\min(|S_x|, |S_y|)) \).
 - Assume wlog. that \(S_x \) is the smaller set; let \(c \) denote the hidden constant, i.e., the actual cost is at most \(c \cdot |S_x| \).
 - Charge \(c \) to every element in set \(S_x \).
List Implementation

Lemma 2
An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

Proof.
Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $\lfloor \log n \rfloor$ times.

Implementation via Trees

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:

 ![Set system](image)

 - $\{2, 5, 10, 12\}$,
 - $\{3, 6, 7, 8, 9, 14, 17\}$,
 - $\{16, 19, 23\}$.

makeset(x)
- Create a singleton tree. Return pointer to the root.
- Time: $O(1)$.

find(x)
- Start at element x in the tree. Go upwards until you reach the root.
- Time: $O(\text{level}(x))$, where $\text{level}(x)$ is the distance of element x to the root in its tree. Not constant.

union(x, y)
- Perform $a \leftarrow \text{find}(x); b \leftarrow \text{find}(y)$. Then: $\text{link}(a, b)$.
- $\text{link}(a, b)$ attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.
- Time: constant for $\text{link}(a, b)$ plus two find-operations.
Lemma 3
The running time (non-amortized!!!) for \(\text{find}(x) \) is \(\Theta(\log n) \).

Proof.
- When we attach a tree with root \(c \) to become a child of a tree with root \(p \), then \(\text{size}(p) \geq 2 \times \text{size}(c) \), where \(\text{size} \) denotes the value of the size-field right after the operation.
- After that the value of \(\text{size}(c) \) stays fixed, while the value of \(\text{size}(p) \) may still increase.
- Hence, at any point in time a tree fulfills \(\text{size}(p) \geq 2 \times \text{size}(c) \), for any pair of nodes \((p, c) \), where \(p \) is a parent of \(c \).

Path Compression
\(\text{find}(x) \):
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time \(\Theta(\log n) \).
Amortized Analysis

Definitions:
- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
 Note that this is the same as the size of v’s subtree in the case that there are no find-operations.
- rank(v) = \lfloor \log(\text{size}(v)) \rfloor.
- \Rightarrow \text{size}(v) \geq 2^{\text{rank}(v)}.

Lemma 4
The rank of a parent must be strictly larger than the rank of a child.

Lemma 5
There are at most n/2^s nodes of rank s.

Proof.
- Let’s say a node v sees node x if v is in x’s sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node sees at most one rank s node, but every rank s node is seen by at least 2^s different nodes.

Amortized Analysis

In the following we assume \(n \geq 2 \).

rank-group:
- A node with rank rank(v) is in rank group \(\log^*(\text{rank}(v)) \).
- The rank-group \(g = 0 \) contains only nodes with rank 0 or rank 1.
- A rank group \(g \geq 1 \) contains ranks \(\text{tow}(g-1)+1, \ldots, \text{tow}(g) \).
- The maximum non-empty rank group is \(\log^*([\log n]) \leq \log^*(n) - 1 \) (which holds for \(n \geq 2 \)).
- Hence, the total number of rank-groups is at most \(\log^* n \).
Amortized Analysis

Accounting Scheme:
- create an account for every find-operation
- create an account for every node \(v \)

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from \(v \) to \(\text{parent}[v] \) as follows:
- If \(\text{parent}[v] \) is the root we charge the cost to the find-account.
- If the group-number of \(\text{rank}(v) \) is the same as that of \(\text{rank}(\text{parent}[v]) \) (before starting path compression) we charge the cost to the node-account of \(v \).
- Otherwise we charge the cost to the find-account.

Observations:
- A find-account is charged at most \(\log^* (n) \) times (once for the root and at most \(\log^* (n) - 1 \) times when increasing the rank-group).
- After a node \(v \) is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to \(v \) the parent will be in a larger rank-group. \(\Rightarrow v \) will never be charged again.
- The total charge made to a node in rank-group \(g \) is at most \(\text{tow}(g) - \text{tow}(g - 1) - 1 \leq \text{tow}(g) \).

What is the total charge made to nodes?
- The total charge is at most
 \[
 \sum_{g} n(g) \cdot \text{tow}(g) ,
 \]
 where \(n(g) \) is the number of nodes in group \(g \).

For \(g \geq 1 \) we have
\[
\sum_{g} n(g) \cdot \text{tow}(g) \leq n(0) \text{tow}(0) + \sum_{g=1} \frac{n(g) \cdot \text{tow}(g)}{\text{tow}(g)} \leq n \log^* (n)
\]
Amortized Analysis

Without loss of generality we can assume that all makeset-operations occur at the start. This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

Amortized Analysis

$\alpha(m, n) = \min\{i \geq 1 : A(i, \lfloor m/n \rfloor) \geq \log n\}$

- $A(0, y) = y + 1$
- $A(1, y) = y + 2$
- $A(2, y) = 2^{y+3} - 3$
- $A(4, y) = 2^{2^{2^y} - 3}$ $\gamma+3$ times

Union Find

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $O(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

Bibliography

Union find data structures are discussed in Chapter 21 of [CLRS90b] and [CLRS90c] and in Chapter 22 of [CLRS90a]. The analysis of union by rank with path compression can be found in [CLRS90a] but neither in [CLRS90b] nor in [CLRS90c]. The latter books contains a more involved analysis that gives a better bound than $O(\log^* n)$.

A description of the $O(\log^* n)$-bound can also be found in Chapter 4.8 of [AHU74].