7.1 Binary Search Trees

An \textit{(internal) binary search tree} stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than $\text{key}[v]$ and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

\textbf{Examples:}
7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- \(T.\ insert(x) \)
- \(T.\ delete(x) \)
- \(T.\ search(k) \)
- \(T.\ successor(x) \)
- \(T.\ predecessor(x) \)
- \(T.\ minimum() \)
- \(T.\ maximum() \)
Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 5 TreeSearch(x, k)
1: **if** x = null **or** k = key[x] **return** x
2: **if** k < key[x] **return** TreeSearch(left[x], k)
3: **else return** TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 6 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Algorithm 7 TreeSucc(x)
1: if $\text{right}[x] \neq \text{null}$ return $\text{TreeMin}(\text{right}[x])$
2: $y \leftarrow \text{parent}[x]$
3: while $y \neq \text{null}$ and $x = \text{right}[y]$ do
4: $x \leftarrow y$; $y \leftarrow \text{parent}[x]$
5: return y;
Algorithm 7 TreeSucc(x)

1: if $\text{right}[x] \neq \text{null}$ return TreeMin($\text{right}[x]$)
2: $y \leftarrow \text{parent}[x]$
3: while $y \neq \text{null}$ and $x = \text{right}[y]$ do
4: $x \leftarrow y$; $y \leftarrow \text{parent}[x]$
5: return y;
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert(root, 20)

Search for \(z \). At some point the search stops at a null-pointer. This is the place to insert \(z \).

Algorithm 8 TreeInsert(\(x, z \))

1: if \(x = \text{null} \) then
2: \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null}; \)
3: return;
4: if key[\(x \)] > key[\(z \)] then
5: if left[\(x \)] = \text{null} then
6: \(\text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
7: else TreeInsert(left[\(x \)], \(z \));
8: else
9: if right[\(x \)] = \text{null} then
10: \(\text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
11: else TreeInsert(right[\(x \)], \(z \));
Case 1:
Element does not have any children
 ▶ Simply go to the parent and set the corresponding pointer to null.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Algorithm 9 TreeDelete(z)

1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z); select y to splice out
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y]; x is child of y (or null)
5: if x ≠ null then parent[x] ← parent[y]; parent[x] is correct
6: if parent[y] = null then
7: root[T] ← x
8: else
9: if y = left[parent[y]] then
10: left[parent[y]] ← x
11: else
12: right[parent[y]] ← x
13: if y ≠ z then copy y-data to z
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $O(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Binary search trees can be found in every standard text book. For example Chapter 7.1 in [MS08] and Chapter 12 in [CLRS90].