7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than $\text{key}[v]$ and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:
7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- $T.\ insert(x)$
- $T.\ delete(x)$
- $T.\ search(k)$
- $T.\ successor(x)$
- $T.\ predecessor(x)$
- $T.\ minimum()$
- $T.\ maximum()$
Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1

TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)

1: if \(x = \text{null} \) or \(k = \text{key}[x]\) return \(x\)
2: if \(k < \text{key}[x]\) return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch\((x, k)\)

1. **if** \(x = \text{null} \text{ or } k = \text{key}[x]\) **return** \(x\)
2. **if** \(k < \text{key}[x]\) **return** TreeSearch\((\text{left}[x], k)\)
3. **else** **return** TreeSearch\((\text{right}[x], k)\)
Algorithm 1 TreeSearch\((x, k)\)

1. if \(x = \text{null}\) or \(k = \text{key}[x]\) return \(x\)
2. if \(k < \text{key}[x]\) return TreeSearch(left\([x]\), \(k\))
3. else return TreeSearch(right\([x]\), \(k\))
Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1

TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

TreeSearch(root, 8)
Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)

1. if $x = \text{null}$ or $k = \text{key}[x]$ return x
2. if $k < \text{key}[x]$ return TreeSearch(left[x], k)
3. else return TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 8)

```
Algorithm 1 TreeSearch($x, k$)
1: if $x = \text{null or } k = \text{key}[x]$ return $x$
2: if $k < \text{key}[x]$ return TreeSearch(left[$x$], $k$)
3: else return TreeSearch(right[$x$], $k$)
```
Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
TreeSearch(root, 8)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 2 TreeMin(x)
1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
7.1 Binary Search Trees

Algorithm 2 TreeMin(x)

1. if \(x = \text{null} \) or \(\text{left}[x] = \text{null} \) return \(x \)
2. return TreeMin(left[x])
Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1. if $x = \text{null}$ or left[x] = null return x
2. return TreeMin(left[x])
Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if $x = \text{null}$ or left[x] = null return x
2: return TreeMin(left[x])
Binary Search Trees: Minimum

Algorithm 2 \text{TreeMin}(x)
\begin{algorithmic}
 \STATE \textbf{if} $x = \text{null}$ \textbf{or} left[x] = null \textbf{return} x
 \STATE \textbf{return} TreeMin(left[x])
\end{algorithmic}
Algorithm 3 TreeSucc(\(x\))
\[
1: \text{if right}[x] \neq \text{null} \text{ return TreeMin(right}[x])
2: y \leftarrow \text{parent}[x]
3: \text{while } y \neq \text{null and } x = \text{right}[y] \text{ do}
4: \quad x \leftarrow y; y \leftarrow \text{parent}[x]
5: \text{return } y;
\]
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Algorithm 3 TreeSucc(\(x \))

1: if right[\(x \)] ≠ null return TreeMin(right[\(x \)])
2: \(y \leftarrow\) parent[\(x \)]
3: while \(y \) ≠ null and \(x = \) right[\(y \)] do
4: \(x \leftarrow y; y \leftarrow\) parent[\(x \)]
5: return \(y \);
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Algorithm 3 TreeSucc(x)

1: if $\text{right}[x] \neq \text{null}$ return $\text{TreeMin}(\text{right}[x])$
2: $y \leftarrow \text{parent}[x]$
3: while $y \neq \text{null}$ and $x = \text{right}[y]$ do
4: $x \leftarrow y$; $y \leftarrow \text{parent}[x]$
5: return y;
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Binary Search Trees: Insert

TreeInsert(root, 20)

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreelInsert(x, z)

1: if x = null then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreelInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreelInsert(right[x], z);
Binary Search Trees: Insert

Insert element **not** in the tree.

Algorithm 4: TreeInsert(x, z)

1. if $x = \text{null}$ then
2. \quad $\text{root}[T] \leftarrow z$; $\text{parent}[z] \leftarrow \text{null}$;
3. \quad return;
4. if $\text{key}[x] > \text{key}[z]$ then
5. \quad if $\text{left}[x] = \text{null}$ then
6. \quad \quad $\text{left}[x] \leftarrow z$; $\text{parent}[z] \leftarrow x$;
7. \quad else TreeInsert($\text{left}[x]$, z);
8. \quad else
9. \quad \quad if $\text{right}[x] = \text{null}$ then
10. \quad \quad \quad $\text{right}[x] \leftarrow z$; $\text{parent}[z] \leftarrow x$;
11. \quad \quad else TreeInsert($\text{right}[x]$, z);
Binary Search Trees: Insert

Insert element **not** in the tree.

Algorithm 4
TreeInsert(*x*, *z*)

1: if *x* = null then
2: root[*T*] ← *z*; parent[*z*] ← null;
3: return;
4: if key[*x*] > key[*z*] then
5: if left[*x*] = null then
6: left[*x*] ← *z*; parent[*z*] ← *x*;
7: else TreeInsert(left[*x*], *z*);
8: else
9: if right[*x*] = null then
10: right[*x*] ← *z*; parent[*z*] ← *x*;
11: else TreeInsert(right[*x*], *z*);

Search for *z*. At some point the search stops at a null-pointer. This is the place to insert *z*.
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert (root, 20)

Search for \(z \). At some point the search stops at a null-pointer. This is the place to insert \(z \).

Algorithm 4 TreeInsert(\(x, z \))

1. \textbf{if} \(x = \text{null} \) \textbf{then}
2. \hspace{1em} \text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null};
3. \hspace{1em} \text{return};
4. \textbf{if} \(\text{key}[x] > \text{key}[z] \) \textbf{then}
5. \hspace{1em} \textbf{if} \(\text{left}[x] = \text{null} \) \textbf{then}
6. \hspace{2em} \text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x;
7. \hspace{1em} \textbf{else} TreeInsert(left[x], z);
8. \hspace{1em} \textbf{else}
9. \hspace{2em} \textbf{if} right[x] = \text{null} \textbf{then}
10. \hspace{3em} \text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x;
11. \hspace{1em} \textbf{else} TreeInsert(right[x], z);
Binary Search Trees: Insert

Insert element not in the tree.

TreeInsert(root, 20)

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreelInsert(x, z)

1: if x = null then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreelInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreelInsert(right[x], z);
Insert element **not** in the tree.

TreeInsert(*root, 20*)

Search for *z*. At some point the search stops at a null-pointer. This is the place to insert *z*.

Algorithm 4 TreeInsert(*x, z*)**

1: if *x* = null then
2: root[*T*] ← *z*; parent[*z*] ← null;
3: return;
4: if key[*x*] > key[*z*] then
5: if left[*x*] = null then
6: left[*x*] ← *z*; parent[*z*] ← *x*;
7: else TreeInsert(left[*x*], *z*);
8: else
9: if right[*x*] = null then
10: right[*x*] ← *z*; parent[*z*] ← *x*;
11: else TreeInsert(right[*x*], *z*);
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert(root, 20)

Search for **z**. At some point the search stops at a null-pointer. This is the place to insert **z**.

Algorithm 4 TreeInsert(x, z)

1: if $x = \text{null}$ then
2: $\text{root}[T] \leftarrow z$; $\text{parent}[z] \leftarrow \text{null}$;
3: return;
4: if $\text{key}[x] > \text{key}[z]$ then
5: if $\text{left}[x] = \text{null}$ then
6: $\text{left}[x] \leftarrow z$; $\text{parent}[z] \leftarrow x$;
7: else TreeInsert(left[x], z);
8: else
9: if $\text{right}[x] = \text{null}$ then
10: $\text{right}[x] \leftarrow z$; $\text{parent}[z] \leftarrow x$;
11: else TreeInsert(right[x], z);
Binary Search Trees: Insert

Insert element **not** in the tree.

TreelInsert (root, 20)

Search for \(z \). At some point the search stops at a null-pointer. This is the place to insert \(z \).

Algorithm 4 TreelInsert \((x, z)\)

1. **if** \(x = \text{null} \) **then**
2. \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null}; \)
3. **return**;
4. **if** key[\(x \)] > key[\(z \)] **then**
5. **if** left[\(x \)] = null **then**
6. left[\(x \)] \leftarrow z; parent[\(z \)] \leftarrow x;
7. **else** TreelInsert(left[\(x \)], \(z \));
8. **else**
9. **if** right[\(x \)] = null **then**
10. right[\(x \)] \leftarrow z; parent[\(z \)] \leftarrow x;
11. **else** TreelInsert(right[\(x \)], \(z \));
Binary Search Trees: Insert

Insert element not in the tree.

TreeInsert(root, 20)

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x, z)

1: if x = null then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreeInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreeInsert(right[x], z);
Binary Search Trees: Delete
Case 1:
Element does not have any children
- Simply go to the parent and set the corresponding pointer to null.
Binary Search Trees: Delete

Case 1:
Element does not have any children
 ▶ Simply go to the parent and set the corresponding pointer to null.
Case 1:
Element does not have any children
 ▶ Simply go to the parent and set the corresponding pointer to null.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Algorithm 9 TreeDelete(z)

1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z); select y to splice out
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y]; x is child of y (or null)
5: if x ≠ null then parent[x] ← parent[y]; parent[x] is correct
6: if parent[y] = null then
7: root[T] ← x
8: else
9: if y = left[parent[y]] then
10: left[parent[y]] ← x
11: else
12: right[parent[y]] ← x
13: if y ≠ z then copy y-data to z

fix pointer to x
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\Theta(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $\Theta(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $O(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.