8.2 Binomial Heaps

<table>
<thead>
<tr>
<th>Operation</th>
<th>Binary Heap</th>
<th>BST</th>
<th>Binomial Heap</th>
<th>Fibonacci Heap*</th>
</tr>
</thead>
<tbody>
<tr>
<td>build</td>
<td>(n)</td>
<td>(n \log n)</td>
<td>(n \log n)</td>
<td>(n)</td>
</tr>
<tr>
<td>minimum</td>
<td>1</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(1)</td>
</tr>
<tr>
<td>is-empty</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>insert</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>1</td>
</tr>
<tr>
<td>delete</td>
<td>(\log n^{**})</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>delete-min</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>decrease-key</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>1</td>
</tr>
<tr>
<td>merge</td>
<td>(n)</td>
<td>(n \log n)</td>
<td>(\log n)</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^{**}n\) indicates the complexity is \(O(n)\) for logarithmic factors.
Binomial Trees

\[B_0 \quad B_1 \quad B_2 \quad B_3 \quad B_4 \]

\[B_{t-1} \quad B_t \quad B_{t-1} \]

8.2 Binomial Heaps
Binomial Trees

Properties of Binomial Trees

- B_k has 2^k nodes.
- B_k has height k.
- The root of B_k has degree k.
- B_k has $\binom{k}{\ell}$ nodes on level ℓ.
- Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.
Deleting the root of B_5 leaves sub-trees B_4, B_3, B_2, B_1, and B_0.
Deleting the leaf furthest from the root (in B_5) leaves a path that connects the roots of sub-trees B_4, B_3, B_2, B_1, and B_0.
Binomial Trees

The number of nodes on level ℓ in tree B_k is therefore

$$\binom{k-1}{\ell-1} + \binom{k-1}{\ell} = \binom{k}{\ell}$$
The binomial tree B_k is a sub-graph of the hypercube H_k.

The parent of a node with label b_n, \ldots, b_1, b_0 is obtained by setting the least significant 1-bit to 0.

The ℓ-th level contains nodes that have ℓ 1’s in their label.
8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have siblings then x.left = x.right = x).
Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.

We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.
In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0, B_1, and B_4.
Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let $B_{k_1}, B_{k_2}, B_{k_3}, k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n.
Binomial Heap

Properties of a heap with \(n \) keys:

- Let \(n = b_d b_{d-1} \ldots b_0 \) denote binary representation of \(n \).
- The heap contains tree \(B_i \) iff \(b_i = 1 \).
- Hence, at most \(\lceil \log n \rceil + 1 \) trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most \(\lceil \log n \rceil \).
- The trees are stored in a single-linked list; ordered by dimension/size.
The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous to binary addition.
8.2 Binomial Heaps

S_1 \texttt{merge}(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- Time: $\mathcal{O}(\log n)$.
All other operations can be reduced to \texttt{merge}().

\textbf{S. insert}(x):

- Create a new heap \(S' \) that contains just the element \(x \).
- Execute \(S.\ merge(S') \).
- Time: \(\Theta(\log n) \).
8.2 Binomial Heaps

S. minimum():

- Find the minimum key-value among all roots.
- Time: \(\Theta(\log n)\).
8.2 Binomial Heaps

\textbf{S. delete-min():}

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{min} after deleting the root (note that these are just $O(\log n)$ trees).
- Compute $S.\text{merge}(S')$.
- Time: $O(\log n)$.
8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $O(\log n)$ since the trees have height $O(\log n)$.
8.2 Binomial Heaps

\(S. \text{ delete}(\text{handle } h): \)

- Execute \(S. \text{ decrease-key}(h, -\infty) \).
- Execute \(S. \text{ delete-min}() \).
- Time: \(\Theta(\log n) \).