How to choose augmenting paths?

▶ We need to find paths efficiently.
▶ We want to guarantee a small number of iterations.

Several possibilities:
▶ Choose path with maximum bottleneck capacity.
▶ Choose path with sufficiently large bottleneck capacity.
▶ Choose the shortest augmenting path.

Capacity Scaling

Intuition:
▶ Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
▶ Don’t worry about finding the exact bottleneck.
▶ Maintain scaling parameter Δ.
▶ $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.

Algorithm 2 maxflow(G, s, t, c)

1: *foreach* $e \in E$ *do* $f_e \leftarrow 0$;
2: $\Delta \leftarrow 2^\lceil \log_2 C \rceil$
3: *while* $\Delta \geq 1$ *do*
4: $G_f(\Delta) \leftarrow \Delta$-residual graph
5: *while* there is augmenting path P in $G_f(\Delta)$ *do*
6: $f \leftarrow$ augment(f, c, P)
7: update($G_f(\Delta)$)
8: $\Delta \leftarrow \Delta/2$
9: *return* f

Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:
▶ because of integrality we have $G_f(1) = G_f$
▶ therefore after the last phase there are no augmenting paths anymore
▶ this means we have a maximum flow.

1.3 Capacity Scaling
Capacity Scaling

Lemma 1
There are $\lceil \log C \rceil$ iterations over Δ.
Proof: obvious.

Lemma 2
Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + m\Delta$.
Proof: less obvious, but simple:
- There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- In G_f this cut can have capacity at most $m\Delta$.
- This gives me an upper bound on the flow that I can still add.

Theorem 4
We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $O(m^2 \log C)$.