How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.
Capacity Scaling

Intuition:

▶ Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
▶ Don’t worry about finding the exact bottleneck.
▶ Maintain scaling parameter Δ.
▶ $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.

![Diagram of G_f and G_f(Δ)]
Algorithm 2 maxflow(G, s, t, c)

1: foreach $e \in E$ do $f_e \leftarrow 0$;
2: $\Delta \leftarrow 2^{\lceil \log_2 C \rceil}$
3: while $\Delta \geq 1$ do
4: $G_f(\Delta) \leftarrow \Delta$-residual graph
5: while there is augmenting path P in $G_f(\Delta)$ do
6: $f \leftarrow$ augment(f, c, P)
7: update$(G_f(\Delta))$
8: $\Delta \leftarrow \Delta/2$
9: return f
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:
- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.
Capacity Scaling

Lemma 1

There are \(\lceil \log C \rceil\) iterations over \(\Delta\).

Proof: obvious.

Lemma 2

Let \(f\) be the flow at the end of a \(\Delta\)-phase. Then the maximum flow is smaller than \(\text{val}(f) + m\Delta\).

Proof: less obvious, but simple:

- There must exist an \(s-t\) cut in \(G_f(\Delta)\) of zero capacity.
- In \(G_f\) this cut can have capacity at most \(m\Delta\).
- This gives me an upper bound on the flow that I can still add.
Lemma 3
There are at most $2m$ augmentations per scaling-phase.

Proof:
- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
- Each augmentation increases flow by Δ.

Theorem 4
We need $\Theta(m \log C)$ augmentations. The algorithm can be implemented in time $\Theta(m^2 \log C)$.