7.7 Hashing

Dictionary:

- **S. insert(x)**: Insert an element x.
- **S. delete(x)**: Delete the element pointed to by x.
- **S. search(k)**: Return a pointer to an element e with \[\text{key}[e] = k\] in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.
7.7 Hashing

Dictionary:

▶ **S. insert(\(x\))**: Insert an element \(x\).
▶ **S. delete(\(x\))**: Delete the element pointed to by \(x\).
▶ **S. search(\(k\))**: Return a pointer to an element \(e\) with \(\text{key}[e] = k\) in \(S\) if it exists; otherwise return \text{null}.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object \(x\) with key \(k\) is determined by successively comparing \(k\) to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.
7.7 Hashing

Dictionary:

- **S. insert(x)**: Insert an element *x*.
- **S. delete(x)**: Delete the element pointed to by *x*.
- **S. search(k)**: Return a pointer to an element *e* with `key[e] = k` in *S* if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object *x* with key *k* is determined by successively comparing *k* to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.
7.7 Hashing

Dictionary:

- **S. insert(x)**: Insert an element \(x \).
- **S. delete(x)**: Delete the element pointed to by \(x \).
- **S. search(k)**: Return a pointer to an element \(e \) with \(\text{key}[e] = k \) in \(S \) if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object \(x \) with key \(k \) is determined by successively comparing \(k \) to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.
7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \leq |U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h : U \rightarrow [0, \ldots, n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.
7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \leq |U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h : U \rightarrow [0, \ldots, n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.
7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \leq |U|$.
- Array $T[0,\ldots,n-1]$ hash-table.
- Hash function $h : U \rightarrow [0,\ldots,n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.
7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \leq |U|$.
- Array $T[0,\ldots,n-1]$ hash-table.
- Hash function $h : U \rightarrow [0,\ldots,n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.
7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \leq |U|$.
- Array $T[0,\ldots,n-1]$ hash-table.
- Hash function $h : U \rightarrow [0,\ldots,n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.
7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \leq |U|$.
- Array $T[0, \ldots, n - 1]$ hash-table.
- Hash function $h : U \rightarrow [0, \ldots, n - 1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.
7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \leq |U|$.
- Array $T[0,\ldots,n-1]$ hash-table.
- Hash function $h : U \rightarrow [0,\ldots,n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.
7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \leq |U|$.
- Array $T[0,\ldots,n-1]$ hash-table.
- Hash function $h : U \rightarrow [0,\ldots,n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.
Direct Addressing

Ideally the hash function maps all keys to different memory locations.

This special case is known as Direct Addressing. It is usually very unrealistic as the universe of keys typically is quite large, and in particular larger than the available memory.
Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.

Such a hash function h is called a perfect hash function for set S.
Collisions

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions
Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_1, k_2 from the set S that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.
Collisions

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions
Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_1, k_2 from the set S that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.
Collisions

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions
Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_1, k_2 from the set S that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.
Collisions

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \geq \omega(\sqrt{n})$.

Lemma 1
The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2n}} \approx 1 - e^{-\frac{m^2}{2n}}.$$

Uniform hashing:
Choose a hash function uniformly at random from all functions $f : U \rightarrow [0,\ldots,n-1]$.
Collisions

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \geq \omega(\sqrt{n})$.

Lemma 1

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2n}} \approx 1 - e^{-\frac{m^2}{2n}}.$$

Uniform hashing:

Choose a hash function uniformly at random from all functions $f : U \to [0, \ldots, n - 1]$.
Collisions

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \geq \omega(\sqrt{n})$.

Lemma 1

The probability of having a collision when hashing m elements into a table of size n under **uniform hashing** is at least

$$1 - e^{-\frac{m(m-1)}{2n}} \approx 1 - e^{-\frac{m^2}{2n}}.$$

Uniform hashing:

Choose a hash function uniformly at random from all functions $f : U \rightarrow [0, \ldots, n - 1]$.

7.7 Hashing
Collisions

Proof.
Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then
Collisions

Proof.
Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}]$$
Collisions

Proof.
Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n - \ell + 1}{n}$$

Here the first equality follows since the ℓ-th element that is hashed has a probability of \(\frac{n - \ell + 1}{n}\) to not generate a collision under the condition that the previous elements did not induce collisions.
Collisions

Proof.
Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n - \ell + 1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$
Collisions

Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)
$$

$$
\leq \prod_{j=0}^{m-1} e^{-j/n}
$$
Collisions

Proof.
Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n - \ell + 1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}}$$
Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n - \ell + 1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}}.$$
Collisions

Proof.
Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n - \ell + 1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}} .$$

Here the first equality follows since the ℓ-th element that is hashed has a probability of $\frac{n - \ell + 1}{n}$ to not generate a collision under the condition that the previous elements did not induce collisions. \qed
The inequality $1 - x \leq e^{-x}$ is derived by stopping the Taylor-expansion of e^{-x} after the second term.
Resolving Collisions

The methods for dealing with collisions can be classified into the two main types

- **open addressing**, aka. closed hashing
- **hashing with chaining**, aka. closed addressing, open hashing.

There are applications e.g. computer chess where you do not resolve collisions at all.
Resolving Collisions

The methods for dealing with collisions can be classified into the two main types

- **open addressing**, aka. closed hashing
- **hashing with chaining**, aka. closed addressing, open hashing.

There are applications e.g. computer chess where you do not resolve collisions at all.
Hashing with Chaining

Arrange elements that map to the same position in a linear list.

- Access: compute $h(x)$ and search list for key[x].
- Insert: insert at the front of the list.
Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^+ denotes the average time for a \textit{successful} search when using A;
- A^- denotes the average time for an \textit{unsuccessful} search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.
Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^+ denotes the average time for a **successful** search when using A;
- A^- denotes the average time for an **unsuccessful** search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called **fill factor** of the hash-table.

We assume **uniform hashing** for the following analysis.
Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^+ denotes the average time for a **successful** search when using A;
- A^- denotes the average time for an **unsuccessful** search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.
Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^+ denotes the average time for a **successful** search when using A;
- A^- denotes the average time for an **unsuccessful** search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called **fill factor** of the hash-table.

We assume uniform hashing for the following analysis.
Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^+ denotes the average time for a **successful** search when using A;
- A^- denotes the average time for an **unsuccessful** search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called **fill factor** of the hash-table.

We assume **uniform hashing** for the following analysis.
Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined.
Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is \(\alpha = \frac{m}{n} \).
Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is \(\alpha = \frac{m}{n} \). Hence, if \(A \) is the collision resolving strategy “Hashing with Chaining” we have

\[
A^- = 1 + \alpha
\]
Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key \(k \) in the hash-table and ask for the search-time for \(k \).

This is 1 plus the number of elements that lie before \(k \) in \(k \)'s list.

Let \(k_\ell \) denote the \(\ell \)-th key inserted into the table.

Let for two keys \(k_i \) and \(k_j \), \(X_{ij} \) denote the indicator variable for the event that \(k_i \) and \(k_j \) hash to the same position. Clearly, \(\Pr[X_{ij} = 1] = 1/n \) for uniform hashing.

The expected successful search cost is

\[
E\left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right]
\]
Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k_ℓ denote the ℓ-th key inserted into the table.

Let for two keys k_i and k_j, X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

The expected successful search cost is

$$E\left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij}\right)\right]$$
Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k_ℓ denote the ℓ-th key inserted into the table.

Let for two keys k_i and k_j, X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

The expected successful search cost is

$$E\left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij}\right)\right]$$
Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key \(k \) in the hash-table and ask for the search-time for \(k \).

This is 1 plus the number of elements that lie before \(k \) in \(k \)'s list.

Let \(k_\ell \) denote the \(\ell \)-th key inserted into the table.

Let for two keys \(k_i \) and \(k_j \), \(X_{ij} \) denote the indicator variable for the event that \(k_i \) and \(k_j \) hash to the same position. Clearly, \(\Pr[X_{ij} = 1] = 1/n \) for uniform hashing.

The expected successful search cost is

\[
E\left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right]
\]
Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key \(k \) in the hash-table and ask for the search-time for \(k \).

This is 1 plus the number of elements that lie before \(k \) in \(k \)'s list.

Let \(k_\ell \) denote the \(\ell \)-th key inserted into the table.

Let for two keys \(k_i \) and \(k_j \), \(X_{ij} \) denote the indicator variable for the event that \(k_i \) and \(k_j \) hash to the same position. Clearly, \(\Pr[X_{ij} = 1] = 1/n \) for uniform hashing.

The expected successful search cost is

\[
E\left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right]
\]
Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k_ℓ denote the ℓ-th key inserted into the table.

Let for two keys k_i and k_j, X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

The expected successful search cost is

$$E \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right]$$
Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k_ℓ denote the ℓ-th key inserted into the table.

Let for two keys k_i and k_j, X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

The expected successful search cost is

$$E\left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij}\right)\right]$$

cost for key k_i
Hashing with Chaining

\[
E \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right]
\]

Hence, the expected cost for a successful search is

\[
1 + \frac{\alpha^2 - \alpha^2 m}{m - 1}
\]
Hashing with Chaining

\[
E \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right] = \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} E[X_{ij}] \right)
\]
Hashing with Chaining

\[
E \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right] = \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} E[X_{ij}] \right)
\]

\[
= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \frac{1}{n} \right)
\]

Hence, the expected cost for a successful search is

\[
\mathbb{A} + \alpha \leq 1 + \alpha_2.
\]
Hashing with Chaining

\[
E \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right] = \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} E[X_{ij}] \right)
\]

\[
= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \frac{1}{n} \right)
\]

\[
= 1 + \frac{1}{mn} \sum_{i=1}^{m} (m - i)
\]

Hence, the expected cost for a successful search is

\[
\leq 1 + \frac{\alpha}{2m} - \frac{\alpha^2}{m(m+1)}
\]

7.7 Hashing
Hashing with Chaining

\[
E \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right] = \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} E[X_{ij}] \right)
\]

\[
= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \frac{1}{n} \right)
\]

\[
= 1 + \frac{1}{mn} \sum_{i=1}^{m} (m - i)
\]

\[
= 1 + \frac{1}{mn} \left(m^2 - \frac{m(m + 1)}{2} \right)
\]

Hence, the expected cost for a successful search is

\[A \leq 1 + \frac{1}{\alpha^2} - \frac{\alpha^2}{m} .\]
Hashing with Chaining

\[
E \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right] = \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} E[X_{ij}] \right)
\]

\[
= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \frac{1}{n} \right)
\]

\[
= 1 + \frac{1}{mn} \sum_{i=1}^{m} (m - i)
\]

\[
= 1 + \frac{1}{mn} \left(m^2 - \frac{m(m + 1)}{2} \right)
\]

\[
= 1 + \frac{m - 1}{2n}
\]

Hence, the expected cost for a successful search is

\[
A + \alpha^2 \leq 1 + \frac{m - 1}{2n}
\]

7.7 Hashing
Hashing with Chaining

\[
\mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij}\right)\right] = \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \mathbb{E}[X_{ij}]\right)
\]

\[
= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \frac{1}{n}\right)
\]

\[
= 1 + \frac{1}{mn} \sum_{i=1}^{m} (m - i)
\]

\[
= 1 + \frac{1}{mn} \left(m^2 - \frac{m(m + 1)}{2}\right)
\]

\[
= 1 + \frac{m - 1}{2n} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2m}.
\]

Hence, the expected cost for a successful search is

\[
\mathbb{E}[X_{ij}] \leq 1 + \frac{\alpha}{2} - \frac{\alpha}{2m}.
\]
Hashing with Chaining

\[
E \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right] = \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} E[X_{ij}] \right)
\]

\[
= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \frac{1}{n} \right)
\]

\[
= 1 + \frac{1}{mn} \sum_{i=1}^{m} (m - i)
\]

\[
= 1 + \frac{1}{mn} \left(m^2 - \frac{m(m+1)}{2} \right)
\]

\[
= 1 + \frac{m - 1}{2n} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2m}.
\]

Hence, the expected cost for a successful search is \(A^+ \leq 1 + \frac{\alpha}{2} \).
Hashing with Chaining

Disadvantages:

▶ pointers increase memory requirements
▶ pointers may lead to bad cache efficiency

Advantages:

▶ no à priori limit on the number of elements
▶ deletion can be implemented efficiently
▶ by using balanced trees instead of linked list one can also obtain worst-case guarantees.
Open Addressing

All objects are stored in the table itself.

Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n - 1)$ must form a permutation of $0, \ldots, n - 1$.

Search(k): Try position $h(k, 0)$; if it is empty your search fails; otw. continue with $h(k, 1), h(k, 2), \ldots$.

Insert(x): Search until you find an empty slot; insert your element there. If your search reaches $h(k, n - 1)$, and this slot is non-empty then your table is full.
Open Addressing

All objects are stored in the table itself.

Define a function \(h(k, j) \) that determines the table-position to be examined in the \(j \)-th step. The values \(h(k, 0), \ldots, h(k, n - 1) \) must form a permutation of \(0, \ldots, n - 1 \).

Search\((k) \): Try position \(h(k, 0) \); if it is empty your search fails; otw. continue with \(h(k, 1), h(k, 2), \ldots \).

Insert\((x) \): Search until you find an empty slot; insert your element there. If your search reaches \(h(k, n - 1) \), and this slot is non-empty then your table is full.
Open Addressing

All objects are stored in the table itself.

Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n - 1)$ must form a permutation of $0, \ldots, n - 1$.

Search(k): Try position $h(k, 0)$; if it is empty your search fails; otherwise continue with $h(k, 1), h(k, 2), \ldots$.

Insert(x): Search until you find an empty slot; insert your element there. If your search reaches $h(k, n - 1)$, and this slot is non-empty then your table is full.
Open Addressing

All objects are stored in the table itself.

Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n - 1)$ must form a permutation of $0, \ldots, n - 1$.

Search(k): Try position $h(k, 0)$; if it is empty your search fails; otw. continue with $h(k, 1), h(k, 2), \ldots$.

Insert(x): Search until you find an empty slot; insert your element there. If your search reaches $h(k, n - 1)$, and this slot is non-empty then your table is full.
Open Addressing

All objects are stored in the table itself.

Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n - 1)$ must form a permutation of $0, \ldots, n - 1$.

Search(k): Try position $h(k, 0)$; if it is empty your search fails; otw. continue with $h(k, 1), h(k, 2), \ldots$.

Insert(x): Search until you find an empty slot; insert your element there. If your search reaches $h(k, n - 1)$, and this slot is non-empty then your table is full.
Open Addressing

Choices for $h(k, j)$:

- **Linear probing**:
 $h(k, i) = h(k) + i \mod n$
 (sometimes: $h(k, i) = h(k) + c_1 i \mod n$).

- **Quadratic probing**:
 $h(k, i) = h(k) + c_1 i + c_2 i^2 \mod n$.

- **Double hashing**:
 $h(k, i) = h_1(k) + i h_2(k) \mod n$.

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_2(k)$ must be relatively prime to n (teilerfremd); for quadratic probing c_1 and c_2 have to be chosen carefully).
Open Addressing

Choices for \(h(k, j) \):

- **Linear probing:**
 \[
 h(k, i) = h(k) + i \mod n
 \]
 (sometimes: \(h(k, i) = h(k) + ci \mod n \)).

- **Quadratic probing:**
 \[
 h(k, i) = h(k) + c_1i + c_2i^2 \mod n.
 \]

- **Double hashing:**
 \[
 h(k, i) = h_1(k) + ih_2(k) \mod n.
 \]

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing \(h_2(k) \) must be relatively prime to \(n \) (teilerfremd); for quadratic probing \(c_1 \) and \(c_2 \) have to be chosen carefully).
Open Addressing

Choices for $h(k, j)$:

- **Linear probing:**
 \[
 h(k, i) = h(k) + i \mod n
 \]
 (sometimes: $h(k, i) = h(k) + ci \mod n$).

- **Quadratic probing:**
 \[
 h(k, i) = h(k) + c_1 i + c_2 i^2 \mod n.
 \]

- **Double hashing:**
 \[
 h(k, i) = h_1(k) + ih_2(k) \mod n.
 \]

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_2(k)$ must be relatively prime to n (teilerfremd); for quadratic probing c_1 and c_2 have to be chosen carefully).
Open Addressing

Choices for $h(k,j)$:

- **Linear probing:**

 \[h(k, i) = h(k) + i \mod n \]

 (sometimes: $h(k, i) = h(k) + ci \mod n$).

- **Quadratic probing:**

 \[h(k, i) = h(k) + c_1 i + c_2 i^2 \mod n. \]

- **Double hashing:**

 \[h(k, i) = h_1(k) + ih_2(k) \mod n. \]

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_2(k)$ must be relatively prime to n (teilerfremd); for quadratic probing c_1 and c_2 have to be chosen carefully).
Linear Probing

- Advantage: **Cache-efficiency**. The new probe position is very likely to be in the cache.
- Disadvantage: **Primary clustering**. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 2

Let L be the method of linear probing for resolving collisions:

$$L^+ \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$

$$L^- \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right)$$
Linear Probing

- Advantage: **Cache-efficiency**. The new probe position is very likely to be in the cache.
- Disadvantage: **Primary clustering**. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 2

Let L be the method of linear probing for resolving collisions:

$$L^+ \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$

$$L^- \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right)$$
Linear Probing

- **Advantage:** Cache-efficiency. The new probe position is very likely to be in the cache.
- **Disadvantage:** Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 2

Let L be the method of linear probing for resolving collisions:

\[
L^+ \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)
\]

\[
L^- \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right)
\]
Quadratic Probing

- Not as cache-efficient as Linear Probing.
- **Secondary clustering**: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 3

Let Q be the method of quadratic probing for resolving collisions:

\[
Q^+ \approx 1 + \ln\left(\frac{1}{1 - \alpha}\right) - \frac{\alpha}{2}
\]

\[
Q^- \approx \frac{1}{1 - \alpha} + \ln\left(\frac{1}{1 - \alpha}\right) - \alpha
\]
Quadratic Probing

- Not as cache-efficient as Linear Probing.
- **Secondary clustering**: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 3

Let Q be the method of quadratic probing for resolving collisions:

\[
Q^+ \approx 1 + \ln \left(\frac{1}{1 - \alpha} \right) - \frac{\alpha}{2}
\]

\[
Q^- \approx \frac{1}{1 - \alpha} + \ln \left(\frac{1}{1 - \alpha} \right) - \alpha
\]
Double Hashing

- Any probe into the hash-table usually creates a cache-miss.

Lemma 4

Let A be the method of double hashing for resolving collisions:

\[
D^+ \approx \frac{1}{\alpha} \ln\left(\frac{1}{1 - \alpha}\right)
\]

\[
D^- \approx \frac{1}{1 - \alpha}
\]
Double Hashing

- Any probe into the hash-table usually creates a cache-miss.

Lemma 4

Let A be the method of double hashing for resolving collisions:

$$D^+ \approx \frac{1}{\alpha} \ln\left(\frac{1}{1 - \alpha}\right)$$

$$D^- \approx \frac{1}{1 - \alpha}$$
Open Addressing

Some values:

<table>
<thead>
<tr>
<th>α</th>
<th>Linear Probing</th>
<th>Quadratic Probing</th>
<th>Double Hashing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L^+</td>
<td>L^-</td>
<td>Q^+</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>2.5</td>
<td>1.44</td>
</tr>
<tr>
<td>0.9</td>
<td>5.5</td>
<td>50.5</td>
<td>2.85</td>
</tr>
<tr>
<td>0.95</td>
<td>10.5</td>
<td>200.5</td>
<td>3.52</td>
</tr>
</tbody>
</table>
Open Addressing

$\#\text{probes}$

α

L^-, Q^-, D^-

L^+, Q^+, D^+

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

7.7 Hashing
We analyze the time for a search in a very idealized Open Addressing scheme.

- The probe sequence $h(k, 0), h(k, 1), h(k, 2), \ldots$ is equally likely to be any permutation of $\langle 0, 1, \ldots, n - 1 \rangle$.
Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the i-th probe occurs and is to a non-empty slot.

$$ Pr[A_1 \cap A_2 \cap \ldots \cap A_{i-1}] = Pr[A_1] \cdot Pr[A_2 | A_1] \cdot Pr[A_3 | A_1 \cap A_2] \cdot \ldots \cdot Pr[A_{i-1} | A_1 \cap \ldots \cap A_{i-2}] $$

$$ Pr[X \geq i] = m^n \cdot m^{n-1} \cdot m^{n-2} \cdot \ldots \cdot m^{n-i+2} \leq \left(\frac{m}{n}\right)^{i-1} = \alpha_{i-1}. $$
Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.
Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the i-th probe occurs and is to a non-empty slot.

$$\Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$$

$$\Pr[X \geq i] = m^n \cdot m^{n-1} \cdot m^{n-2} \cdot \cdots \cdot m^{n-i+2} \leq (m^n)^{i-1} = \alpha^{i-1}.$$
Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}] = \Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdot \cdots \cdot \Pr[A_{i-1} \mid A_1 \cap \cdots \cap A_{i-2}]
$$
Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]
= \Pr[A_1] \cdot \Pr[A_2 | A_1] \cdot \Pr[A_3 | A_1 \cap A_2] \cdot \cdots \cdot \Pr[A_{i-1} | A_1 \cap \cdots \cap A_{i-2}]
$$

$$
\Pr[X \geq i]
$$
Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the i-th probe occurs and is to a non-empty slot.

$$\Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}] = \Pr[A_1] \cdot \Pr[A_2 | A_1] \cdot \Pr[A_3 | A_1 \cap A_2] \cdot \cdots \cdot \Pr[A_{i-1} | A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \geq i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdots \cdot \frac{m-i+2}{n-i+2}$$
Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the i-th probe occurs and is to a non-empty slot.

\[
\Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}] = \Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdot \cdots \cdot \Pr[A_{i-1} \mid A_1 \cap \cdots \cap A_{i-2}]
\]

\[
\Pr[X \geq i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \cdots \cdot \frac{m-i+2}{n-i+2} \leq \left(\frac{m}{n}\right)^{i-1}
\]
Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the i-th probe occurs and is to a non-empty slot.

$$\Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}] = \Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdot \cdots \cdot \Pr[A_{i-1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \geq i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \cdots \cdot \frac{m-i+2}{n-i+2} \leq \left(\frac{m}{n}\right)^{i-1} = \alpha^{i-1}.$$
Analysis of Idealized Open Address Hashing

\(E[X] \)
Analysis of Idealized Open Address Hashing

\[E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i] \]
Analysis of Idealized Open Address Hashing

\[E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1} \]
Analysis of Idealized Open Address Hashing

\[E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^i \]
Analysis of Idealized Open Address Hashing

\[E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1 - \alpha} \]
Analysis of Idealized Open Address Hashing

\[E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1 - \alpha}. \]

\[\frac{1}{1 - \alpha} = 1 + \alpha + \alpha^2 + \alpha^3 + \ldots \]
Analysis of Idealized Open Address Hashing

\[\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i] \]

The \(j \)-th rectangle appears in both sums \(j \) times. (\(j \) times in the first due to multiplication with \(j \); and \(j \) times in the second for summands \(i = 1, 2, ..., j \)).

7.7 Hashing
Analysis of Idealized Open Address Hashing

\(i = 1 \)

\[
\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i]
\]

The \(j \)-th rectangle appears in both sums \(j \) times. (\(j \) times in the first due to multiplication with \(j \); and \(j \) times in the second for summands \(i = 1, 2, \ldots, j \))
Analysis of Idealized Open Address Hashing

\[i = 2 \]

\[\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i] \]

The \(j \)-th rectangle appears in both sums \(j \) times. (\(j \) times in the first due to multiplication with \(j \); and \(j \) times in the second for summands \(i = 1, 2, ..., j \).)
Analysis of Idealized Open Address Hashing

\[i = 3 \]

\[
\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i]
\]

The \(j \)-th rectangle appears in both sums \(j \) times. (\(j \) times in the first due to multiplication with \(j \); and \(j \) times in the second for summands \(i = 1, 2, \ldots, j \)).
Analysis of Idealized Open Address Hashing

\(i = 4 \)

\[
\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i]
\]

The \(j \)-th rectangle appears in both sums \(j \) times. (\(j \) times in the first due to multiplication with \(j \); and \(j \) times in the second for summands \(i = 1, 2, ..., j \)).
Analysis of Idealized Open Address Hashing

\[i = 1 \]

\[\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i] \]

The \(j \)-th rectangle appears in both sums \(j \) times. (\(j \) times in the first due to multiplication with \(j \); and \(j \) times in the second for summands \(i = 1, 2, ..., j \))
Analysis of Idealized Open Address Hashing

\(i = 2 \)

\[
\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i]
\]

The \(j \)-th rectangle appears in both sums \(j \) times. (\(j \) times in the first due to multiplication with \(j \); and \(j \) times in the second for summands \(i = 1, 2, \ldots, j \)).
Analysis of Idealized Open Address Hashing

\[i = 3 \]

\[\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i] \]

The \(j \)-th rectangle appears in both sums \(j \) times. (\(j \) times in the first due to multiplication with \(j \); and \(j \) times in the second for summands \(i = 1, 2, \ldots, j \)).
Analysis of Idealized Open Address Hashing

\(i = 4 \)

\[
\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i]
\]
Analysis of Idealized Open Address Hashing

\[
\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i]
\]

The \(j \)-th rectangle appears in both sums \(j \) times. (\(j \) times in the first due to multiplication with \(j \); and \(j \) times in the second for summands \(i = 1, 2, ..., j \)).
The j-th rectangle appears in both sums j times. (j times in the first due to multiplication with j; and j times in the second for summands $i = 1, 2, \ldots, j$)

$$\sum_i i \Pr[X = i] = \sum_i \Pr[X \geq i]$$
Analysis of Idealized Open Address Hashing

The number of probes in a successful search for \(k \) is equal to the number of probes made in an unsuccessful search for \(k \) at the time that \(k \) is inserted.

Let \(k \) be the \(i+1 \)-st element. The expected time for a search for \(k \) is at most

\[
\frac{1}{1 - \frac{i}{n}} \leq n - \frac{i}{\alpha n}.
\]

Ernst Mayr, Harald Räcke
The number of probes in a *successful* search for \(k \) is equal to the number of probes made in an unsuccessful search for \(k \) at the time that \(k \) is inserted.
Analysis of Idealized Open Address Hashing

The number of probes in a successful search for \(k \) is equal to the number of probes made in an unsuccessful search for \(k \) at the time that \(k \) is inserted.

Let \(k \) be the \(i + 1 \)-st element. The expected time for a search for \(k \) is at most \(\frac{1}{1-i/n} = \frac{n}{n-i} \).
Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i}$$
Analysis of Idealized Open Address Hashing

The number of probes in a successful search for \(k \) is equal to the number of probes made in an unsuccessful search for \(k \) at the time that \(k \) is inserted.

Let \(k \) be the \(i+1 \)-st element. The expected time for a search for \(k \) is at most \(\frac{1}{1-i/n} = \frac{n}{n-i} \).

\[
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}
\]
Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$
Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

\[
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}
\]

\[
\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \, dx
\]
The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i + 1$-st element. The expected time for a search for k is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \, dx = \frac{1}{\alpha} \ln \frac{n}{n-m}$$
Analysis of Idealized Open Address Hashing

The number of probes in a successful search for \(k \) is equal to the number of probes made in an unsuccessful search for \(k \) at the time that \(k \) is inserted.

Let \(k \) be the \(i + 1 \)-st element. The expected time for a search for \(k \) is at most \(\frac{1}{1-i/n} = \frac{n}{n-i} \).

\[
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k} \leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \, dx = \frac{1}{\alpha} \ln \frac{n}{n-m} = \frac{1}{\alpha} \ln \frac{1}{1 - \alpha}.
\]
Analysis of Idealized Open Address Hashing

7.7 Hashing

\[f(x) = \frac{1}{x} \]

\[\sum_{k=m-n+1}^{n} \frac{1}{k} \leq \int_{m-n}^{n} \frac{1}{x} \, dx \]
Deletions in Hashtables

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.

- For open addressing this is difficult.
Deletions in Hashtables

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.
- For open addressing this is difficult.
Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.
Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.
Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.
Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.
Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
 - If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.
Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.
Deletions for Linear Probing

- For Linear Probing one can delete elements without using deletion-markers.
- Upon a deletion elements that are further down in the probe-sequence may be moved to guarantee that they are still found during a search.
Deletions for Linear Probing

- For Linear Probing one can delete elements without using deletion-markers.
- Upon a deletion elements that are further down in the probe-sequence may be moved to guarantee that they are still found during a search.
Deletions for Linear Probing

Algorithm 12 delete(p)

1: \(T[p] \leftarrow \text{null} \)
2: \(p \leftarrow \text{succ}(p) \)
3: \(\textbf{while} \ T[p] \neq \text{null} \ \textbf{do} \)
4: \(y \leftarrow T[p] \)
5: \(T[p] \leftarrow \text{null} \)
6: \(p \leftarrow \text{succ}(p) \)
7: \(\text{insert}(y) \)

\(p \) is the index into the table-cell that contains the object to be deleted.

Pointers into the hash-table become invalid.

7.7 Hashing

Ernst Mayr, Harald Räcke
Deletions for Linear Probing

Algorithm 12 delete(p)
1: \(T[p] \leftarrow \text{null} \)
2: \(p \leftarrow \text{succ}(p) \)
3: while \(T[p] \neq \text{null} \) do
4: \(y \leftarrow T[p] \)
5: \(T[p] \leftarrow \text{null} \)
6: \(p \leftarrow \text{succ}(p) \)
7: insert(y)

\(p \) is the index into the table-cell that contains the object to be deleted.

Pointers into the hash-table become invalid.
Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f : U \rightarrow [0, \ldots, n - 1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Universal hashing tries to define a set \mathcal{H} of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \mathcal{H}.
Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that \(h \) is chosen randomly from all functions \(f : U \rightarrow [0, \ldots, n - 1] \) is clearly unrealistic as there are \(n^{|U|} \) such functions. Even writing down such a function would take \(|U| \log n \) bits.

Universal hashing tries to define a set \(\mathcal{H} \) of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \(\mathcal{H} \).
Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that \(h \) is chosen randomly from all functions \(f : U \rightarrow [0, \ldots, n - 1] \) is clearly unrealistic as there are \(n^{|U|} \) such functions. Even writing down such a function would take \(|U| \log n \) bits.

Universal hashing tries to define a set \(\mathcal{H} \) of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \(\mathcal{H} \).
Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f : U \rightarrow [0,\ldots,n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Universal hashing tries to define a set H of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from H.
Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that \(h \) is chosen randomly from all functions \(f : U \rightarrow [0, \ldots, n - 1] \) is clearly unrealistic as there are \(n^{|U|} \) such functions. Even writing down such a function would take \(|U| \log n \) bits.

Universal hashing tries to define a set \(\mathcal{H} \) of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \(\mathcal{H} \).
Definition 5
A class \mathcal{H} of hash-functions from the universe U into the set \{0,\ldots,n-1\} is called universal if for all $u_1, u_2 \in U$ with $u_1 \neq u_2$

$$\Pr[h(u_1) = h(u_2)] \leq \frac{1}{n},$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

Note that this means that the probability of a collision between two arbitrary elements is at most $\frac{1}{n}$.
Definition 5
A class \(\mathcal{H} \) of hash-functions from the universe \(U \) into the set \{0, \ldots, n - 1\} is called universal if for all \(u_1, u_2 \in U \) with \(u_1 \neq u_2 \)

\[
\Pr[h(u_1) = h(u_2)] \leq \frac{1}{n},
\]

where the probability is w. r. t. the choice of a random hash-function from set \(\mathcal{H} \).

Note that this means that the probability of a collision between two arbitrary elements is at most \(\frac{1}{n} \).
Universal Hashing

Definition 6
A class \mathcal{H} of hash-functions from the universe U into the set \{0,\ldots, n - 1\} is called 2-independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in \{0,\ldots, n - 1\}$ $\Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_1, u_2 \in U$ with $u_1 \neq u_2$, and for any two hash-positions t_1, t_2:

$$\Pr[h(u_1) = t_1 \land h(u_2) = t_2] \leq \frac{1}{n^2}.$$

This requirement clearly implies a universal hash-function.
Universal Hashing

Definition 6
A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called 2-independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in \{0, \ldots, n-1\}$ $\Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_1, u_2 \in U$ with $u_1 \neq u_2$, and for any two hash-positions t_1, t_2:
 \[\Pr[h(u_1) = t_1 \land h(u_2) = t_2] \leq \frac{1}{n^2} . \]

This requirement clearly implies a universal hash-function.
Universal Hashing

Definition 7
A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n - 1\}$ is called k-independent if for any choice of $\ell \leq k$ distinct keys $u_1, \ldots, u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1, \ldots, t_ℓ:

$$\Pr[h(u_1) = t_1 \land \cdots \land h(u_\ell) = t_\ell] \leq \frac{1}{n^\ell},$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.
Definition 8
A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called (μ, k)-independent if for any choice of $\ell \leq k$ distinct keys $u_1, \ldots, u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1, \ldots, t_ℓ:

$$\Pr[h(u_1) = t_1 \land \cdots \land h(u_\ell) = t_\ell] \leq \frac{\mu}{n^\ell},$$

where the probability is w. r. t. the choice of a random hash-function from set \mathcal{H}.
Universal Hashing

Let $U := \{0, \ldots, p - 1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, \ldots, p - 1\}$, and let $\mathbb{Z}_p^* := \{1, \ldots, p - 1\}$ denote the set of invertible elements in \mathbb{Z}_p.

Define

$$h_{a,b}(x) := (ax + b \mod p) \mod n$$

Lemma 9

The class

$$\mathcal{H} = \{h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p\}$$

is a universal class of hash-functions from U to $\{0, \ldots, n - 1\}$.
Universal Hashing

Let $U := \{0, \ldots, p - 1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, \ldots, p - 1\}$, and let $\mathbb{Z}_p^* := \{1, \ldots, p - 1\}$ denote the set of invertible elements in \mathbb{Z}_p.

Define

$$h_{a,b}(x) := (ax + b \mod p) \mod n$$

Lemma 9

The class

$$\mathcal{H} = \{h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p\}$$

is a universal class of hash-functions from U to $\{0, \ldots, n - 1\}$.

7.7 Hashing

Ernst Mayr, Harald Räcke
Universal Hashing

Let $U := \{0, \ldots, p - 1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, \ldots, p - 1\}$, and let $\mathbb{Z}_p^* := \{1, \ldots, p - 1\}$ denote the set of invertible elements in \mathbb{Z}_p.

Define

$$h_{a,b}(x) := (ax + b \mod p) \mod n$$

Lemma 9
The class

$$\mathcal{H} = \{h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p\}$$

is a universal class of hash-functions from U to $\{0, \ldots, n - 1\}$.

7.7 Hashing
Universal Hashing

Let $U := \{0, \ldots, p - 1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, \ldots, p - 1\}$, and let $\mathbb{Z}_p^* := \{1, \ldots, p - 1\}$ denote the set of invertible elements in \mathbb{Z}_p.

Define

$$h_{a,b}(x) := (ax + b \mod p) \mod n$$

Lemma 9

The class

$$\mathcal{H} = \{h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p\}$$

is a universal class of hash-functions from U to $\{0, \ldots, n - 1\}$.
Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1/n$.

If $x \neq y$ then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives $a(x - y) \not\equiv 0 \pmod{p}$ where we use that \mathbb{Z}_p is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).
Universal Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1/n$.

- $ax + b \not\equiv ay + b \pmod{p}$

If $x = y$ then $x - y \equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$a(x - y) \not\equiv 0 \pmod{p}$

where we use that Z_p is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).
Universal Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1/n$.

- $ax + b \not\equiv ay + b \pmod{p}$

If $x \neq y$ then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$$a(x - y) \not\equiv 0 \pmod{p}$$

where we use that \mathbb{Z}_p is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).
Universal Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1/n$.

- $ax + b \not\equiv ay + b \pmod{p}$

If $x \neq y$ then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$$a(x - y) \not\equiv 0 \pmod{p}$$

where we use that \mathbb{Z}_p is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).
Universal Hashing

Proof.
Let \(x, y \in U \) be two distinct keys. We have to show that the probability of a collision is only \(1/n \).

\[ax + b \not\equiv ay + b \pmod{p} \]

If \(x \neq y \) then \((x - y) \not\equiv 0 \pmod{p} \).

Multiplying with \(a \not\equiv 0 \pmod{p} \) gives

\[a(x - y) \not\equiv 0 \pmod{p} \]

where we use that \(\mathbb{Z}_p \) is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).
Universal Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1/n$.

$\text{\checkmark} \quad ax + b \not\equiv ay + b \pmod{p}$

If $x \neq y$ then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$$a(x - y) \not\equiv 0 \pmod{p}$$

where we use that \mathbb{Z}_p is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).
Universal Hashing

- The hash-function does not generate collisions before the \((\text{mod } n)\)-operation. Furthermore, every choice \((a, b)\) is mapped to a different pair \((t_x, t_y)\) with \(t_x := ax + b\) and \(t_y := ay + b\).
Universal Hashing

- The hash-function does not generate collisions before the \((\text{mod } n)\)-operation. Furthermore, every choice \((a, b)\) is mapped to a different pair \((t_x, t_\gamma)\) with \(t_x := ax + b\) and \(t_\gamma := ay + b\).

This holds because we can compute \(a\) and \(b\) when given \(t_x\) and \(t_\gamma\):
Universal Hashing

- The hash-function does not generate collisions before the \((\text{mod} \ n)\)-operation. Furthermore, every choice \((a, b)\) is mapped to a different pair \((t_x, t_y)\) with \(t_x := ax + b\) and \(t_y := ay + b\).

This holds because we can compute \(a\) and \(b\) when given \(t_x\) and \(t_y\):

\[
\begin{align*}
t_x &\equiv ax + b \quad \text{(mod } p\text{)} \\
t_y &\equiv ay + b \quad \text{(mod } p\text{)}
\end{align*}
\]
Universal Hashing

- The hash-function does not generate collisions before the \((\text{mod } n)\)-operation. Furthermore, every choice \((a, b)\) is mapped to a different pair \((t_x, t_y)\) with \(t_x := ax + b\) and \(t_y := ay + b\).

This holds because we can compute \(a\) and \(b\) when given \(t_x\) and \(t_y\):

\[
\begin{align*}
 t_x &\equiv ax + b \pmod{p} \\
 t_y &\equiv ay + b \pmod{p} \\
 t_x - t_y &\equiv a(x - y) \pmod{p} \\
 t_y &\equiv ay + b \pmod{p}
\end{align*}
\]
Universal Hashing

- The hash-function does not generate collisions before the \((\text{mod } n)\)-operation. Furthermore, every choice \((a, b)\) is mapped to a different pair \((t_x, t_y)\) with \(t_x := ax + b\) and \(t_y := ay + b\).

This holds because we can compute \(a\) and \(b\) when given \(t_x\) and \(t_y\):

\[
\begin{align*}
 t_x &\equiv ax + b \quad \text{(mod } p) \\
 t_y &\equiv ay + b \quad \text{(mod } p) \\
 t_x - t_y &\equiv a(x - y) \quad \text{(mod } p) \\
 t_y &\equiv ay + b \quad \text{(mod } p) \\
 a &\equiv (t_x - t_y)(x - y)^{-1} \quad \text{(mod } p) \\
 b &\equiv t_y - ay \quad \text{(mod } p)
\end{align*}
\]
Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs \((a, b), a \neq 0\)) and pairs \((t_x, t_y), t_x \neq t_y\).

Therefore, we can view the first step (before the \(\text{mod } n\)-operation) as choosing a pair \((t_x, t_y), t_x \neq t_y\) uniformly at random.

What happens when we do the \(\text{mod } n\) operation?

Fix a value \(t_x\). There are \(p - 1\) possible values for choosing \(t_y\).

From the range \(0, \ldots, p - 1\) the values \(t_x, t_x + n, t_x + 2n, \ldots\) map to \(t_x\) after the modulo-operation. These are at most \(\lceil p/n \rceil\) values.
Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs \((a, b), a \neq 0\)) and pairs \((t_x, t_y), t_x \neq t_y\).

Therefore, we can view the first step (before the \(\text{mod } n\)-operation) as choosing a pair \((t_x, t_y), t_x \neq t_y\) uniformly at random.

What happens when we do the \(\text{mod } n\) operation?

Fix a value \(t_x\). There are \(p - 1\) possible values for choosing \(t_y\).

From the range \(0, \ldots, p - 1\) the values \(t_x, t_x + n, t_x + 2n, \ldots\) map to \(t_x\) after the modulo-operation. These are at most \(\lceil p/n \rceil\) values.
Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs \((a, b), a \neq 0\)) and pairs \((t_x, t_y), t_x \neq t_y\).

Therefore, we can view the first step (before the \text{mod } n\text{-operation}) as choosing a pair \((t_x, t_y), t_x \neq t_y\) uniformly at random.

What happens when we do the \text{mod } n\text{ operation}?

Fix a value \(t_x\). There are \(p - 1\) possible values for choosing \(t_y\).

From the range \(0, \ldots, p - 1\) the values \(t_x, t_x + n, t_x + 2n, \ldots\) map to \(t_x\) after the modulo-operation. These are at most \(\lceil p/n \rceil\) values.
Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs \((a, b), a \neq 0\)) and pairs \((t_x, t_y), t_x \neq t_y\).

Therefore, we can view the first step (before the \text{mod } n\text{-operation}) as choosing a pair \((t_x, t_y), t_x \neq t_y\) uniformly at random.

What happens when we do the \text{mod } n \text{ operation}?

Fix a value \(t_x\). There are \(p - 1\) possible values for choosing \(t_y\).

From the range \(0, \ldots, p - 1\) the values \(t_x, t_x + n, t_x + 2n, \ldots\) map to \(t_x\) after the modulo-operation. These are at most \(\lceil p/n \rceil\) values.
Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs \((a, b), a \neq 0\)) and pairs \((t_x, t_y), t_x \neq t_y\).

Therefore, we can view the first step (before the \(\text{mod } n\)-operation) as choosing a pair \((t_x, t_y), t_x \neq t_y\) uniformly at random.

What happens when we do the \(\text{mod } n\) operation?

Fix a value \(t_x\). There are \(p - 1\) possible values for choosing \(t_y\).

From the range \(0, \ldots, p - 1\) the values \(t_x, t_x + n, t_x + 2n, \ldots\) map to \(t_x\) after the modulo-operation. These are at most \(\lceil p/n \rceil\) values.
Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs \((a, b), a \neq 0\)) and pairs \((t_x, t_y), t_x \neq t_y\).

Therefore, we can view the first step (before the \(\text{mod } n\)-operation) as choosing a pair \((t_x, t_y), t_x \neq t_y\) uniformly at random.

What happens when we do the \(\text{mod } n\) operation?

Fix a value \(t_x\). There are \(p - 1\) possible values for choosing \(t_y\).

From the range \(0, \ldots, p - 1\) the values \(t_x, t_x + n, t_x + 2n, \ldots\) map to \(t_x\) after the modulo-operation. These are at most \([p/n]\) values.
Universal Hashing

As $t_γ ≠ t_x$ there are

$$\left\lceil \frac{p^n}{n} \right\rceil - 1 ≤ \frac{p^n}{n} + n - 1 \leq \frac{p^n}{n}$$

possibilities for choosing $t_γ$ such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.

7.7 Hashing
Universal Hashing

As $t_γ \neq t_x$ there are

$$\left\lfloor \frac{p}{n} \right\rfloor - 1 \leq \frac{p}{n} + \frac{n-1}{n} - 1 \leq \frac{p - 1}{n}$$

possibilities for choosing $t_γ$ such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.

7.7 Hashing
Universal Hashing

As \(t_y \neq t_x \) there are

\[
\left\lfloor \frac{p}{n} \right\rfloor - 1 \leq \frac{p}{n} + \frac{n-1}{n} - 1 \leq \frac{p-1}{n}
\]

possibilities for choosing \(t_y \) such that the final hash-value creates a collision.

This happens with probability at most \(\frac{1}{n} \).
Universal Hashing

As \(t_y \neq t_x \) there are

\[
\left\lfloor \frac{p}{n} \right\rfloor - 1 \leq \frac{p}{n} + \frac{n-1}{n} - 1 \leq \frac{p-1}{n}
\]

possibilities for choosing \(t_y \) such that the final hash-value creates a collision.

This happens with probability at most \(\frac{1}{n} \).
Universal Hashing

As $t_y \neq t_x$ there are

$$\left\lfloor \frac{p}{n} \right\rfloor - 1 \leq \frac{p}{n} + \frac{n-1}{n} - 1 \leq \frac{p-1}{n}$$

possibilities for choosing t_y such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.
Universal Hashing

As \(t_y \neq t_x \) there are

\[
\left\lfloor \frac{p}{n} \right\rfloor - 1 \leq \frac{p}{n} + \frac{n-1}{n} - 1 \leq \frac{p-1}{n}
\]

possibilities for choosing \(t_y \) such that the final hash-value creates a collision.

This happens with probability at most \(\frac{1}{n} \).
Universal Hashing

It is also possible to show that H is an (almost) pairwise independent class of hash-functions.

\[\left\lfloor \frac{p}{n} \right\rfloor^2 2^{p(p-1)} \leq \Pr_{x \neq y \in \mathbb{Z}_2} [tx \mod n = h_1 \land ty \mod n = h_2] \leq \left\lceil \frac{p}{n} \right\rceil^2 2^{p(p-1)} \]

Note that the middle is the probability that $h(x) = h_1$ and $h(y) = h_2$. The total number of choices for (tx, ty) is $p(p-1)$.

The number of choices for tx (ty) such that $tx \mod n = h_1$ ($ty \mod n = h_2$) lies between $\left\lfloor \frac{p}{n} \right\rfloor$ and $\left\lceil \frac{p}{n} \right\rceil$.

7.7 Hashing
Universal Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

\[
\Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[\begin{array}{l}
 t_x \mod n = h_1 \\
 \wedge \\
 t_y \mod n = h_2
\end{array} \right]
\]
Universal Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p-1)} \leq \Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_x \mod n = h_1 \\ t_y \mod n = h_2 \end{array} \right] \leq \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p-1)}$$
Universal Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p - 1)} \leq \Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[t_x \mod n = h_1 \right. \left. \wedge t_y \mod n = h_2 \right] \leq \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p - 1)}$$

Note that the middle is the probability that $h(x) = h_1$ and $h(y) = h_2$. The total number of choices for (t_x, t_y) is $p(p - 1)$. The number of choices for t_x (t_y) such that $t_x \mod n = h_1$ ($t_y \mod n = h_2$) lies between $\left\lfloor \frac{p}{n} \right\rfloor$ and $\left\lceil \frac{p}{n} \right\rceil$. 7.7 Hashing
Definition 10
Let \(d \in \mathbb{N}; \ q \geq (d + 1)n \) be a prime; and let
\(\bar{a} \in \{0, \ldots, q - 1\}^{d+1} \). Define for \(x \in \{0, \ldots, q - 1\} \)
\[
h_{\bar{a}}(x) := \left(\sum_{i=0}^{d} a_i x^i \mod q \right) \mod n.
\]
Let \(\mathcal{H}^d_n := \{h_{\bar{a}} \mid \bar{a} \in \{0, \ldots, q - 1\}^{d+1}\} \). The class \(\mathcal{H}^d_n \) is
\((e, d + 1)\)-independent.

Note that in the previous case we had \(d = 1 \) and chose \(a_d \neq 0 \).
For the coefficients $\bar{a} \in \{0, \ldots, q - 1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\bar{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i \right) \mod q$$

The polynomial is defined by $d + 1$ distinct points.
Universal Hashing

For the coefficients $\bar{a} \in \{0, \ldots, q - 1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\bar{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i \right) \mod q$$

The polynomial is defined by $d + 1$ distinct points.
Universal Hashing

For the coefficients $\bar{a} \in \{0, \ldots, q - 1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\bar{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i \right) \mod q$$

The polynomial is defined by $d + 1$ distinct points.
Universal Hashing

Fix $\ell \leq d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^\ell = \{ h_\bar{a} \in H \mid h_\bar{a}(x_i) = t_i \text{ for all } i \in \{1, \ldots, \ell\} \}$

Then

$$h_\bar{a} \in A^\ell \iff h_\bar{a} = f_\bar{a} \mod n \text{ and }$$

$$f_\bar{a}(x_i) \in \{ t_i + \alpha \cdot n \mid \alpha \in \{0, \ldots, \left\lceil \frac{q}{n} \right\rceil - 1\} \} =: B_i$$

In order to obtain the cardinality of A^ℓ we choose our polynomial by fixing $d + 1$ points.

We first fix the values for inputs x_1, \ldots, x_ℓ.

We have

$$|B_1| \cdot \ldots \cdot |B_\ell|$$

possibilities to do this (so that $h_\bar{a}(x_i) = t_i$).
Universal Hashing

Fix $\ell \leq d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^\ell = \{ h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}(x_i) = t_i \text{ for all } i \in \{1, \ldots, \ell\} \}$

Then

$$h_{\bar{a}} \in A^\ell \iff h_{\bar{a}} = f_{\bar{a}} \mod n \text{ and }$$

$$f_{\bar{a}}(x_i) \in \{ t_i + \alpha \cdot n \mid \alpha \in \{0, \ldots, \left\lfloor \frac{q}{n} \right\rfloor - 1\} \}$$

$$=: B_i$$

In order to obtain the cardinality of A^ℓ we choose our polynomial by fixing $d + 1$ points.

We first fix the values for inputs x_1, \ldots, x_ℓ. We have

$$|B_1| \cdot \ldots \cdot |B_\ell|$$

possibilities to do this (so that $h_{\bar{a}}(x_i) = t_i$).
Universal Hashing

Fix $\ell \leq d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A_\ell = \{ h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}(x_i) = t_i \text{ for all } i \in \{1, \ldots, \ell\} \}$

Then

$$h_{\bar{a}} \in A_\ell \iff h_{\bar{a}} = f_{\bar{a}} \mod n \text{ and }$$

$$f_{\bar{a}}(x_i) \in \{t_i + \alpha \cdot n \mid \alpha \in \{0, \ldots, \lceil \frac{q}{n} \rceil - 1\}\} =: B_i$$

In order to obtain the cardinality of A_ℓ we choose our polynomial by fixing $d + 1$ points.

We first fix the values for inputs x_1, \ldots, x_ℓ.

We have

$$|B_1| \cdot \ldots \cdot |B_\ell|$$

possibilities to do this (so that $h_{\bar{a}}(x_i) = t_i$).
Universal Hashing

Fix \(\ell \leq d + 1 \); let \(x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\} \) be keys, and let \(t_1, \ldots, t_\ell \) denote the corresponding hash-function values.

Let \(A^\ell = \{ h_\tilde{a} \in \mathcal{H} \mid h_\tilde{a}(x_i) = t_i \text{ for all } i \in \{1, \ldots, \ell\} \} \)

Then

\[
h_\tilde{a} \in A^\ell \iff h_\tilde{a} = f_\tilde{a} \mod n \text{ and } f_\tilde{a}(x_i) \in \{t_i + \alpha \cdot n \mid \alpha \in \{0, \ldots, \left\lfloor \frac{q}{n} \right\rfloor - 1\}\}
\]

\[
= : B_i
\]

In order to obtain the cardinality of \(A^\ell \) we choose our polynomial by fixing \(d + 1 \) points.

We first fix the values for inputs \(x_1, \ldots, x_\ell \).

We have

\[
|B_1| \cdot \ldots \cdot |B_\ell|
\]

possibilities to do this (so that \(h_\tilde{a}(x_i) = t_i \)).
Universal Hashing

Fix $\ell \leq d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^\ell = \{h\bar{a} \in \mathcal{H} \mid h\bar{a}(x_i) = t_i \text{ for all } i \in \{1, \ldots, \ell\}\}$

Then

$$h\bar{a} \in A^\ell \iff h\bar{a} = f\bar{a} \mod n \text{ and }$$

$$f\bar{a}(x_i) \in \{t_i + \alpha \cdot n \mid \alpha \in \{0, \ldots, [\frac{q}{n}] - 1\}\}$$

In order to obtain the cardinality of A^ℓ we choose our polynomial by fixing $d + 1$ points.

We first fix the values for inputs x_1, \ldots, x_ℓ.

We have

$$|B_1| \cdot \ldots \cdot |B_\ell|$$

possibilities to do this (so that $h\bar{a}(x_i) = t_i$).
Universal Hashing

Fix $\ell \leq d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^\ell = \{ h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}(x_i) = t_i \text{ for all } i \in \{1, \ldots, \ell\} \}$

Then

$$h_{\bar{a}} \in A^\ell \iff h_{\bar{a}} = f_{\bar{a}} \mod n \text{ and }$$

$$f_{\bar{a}}(x_i) \in \{ t_i + \alpha \cdot n \mid \alpha \in \{0, \ldots, \left\lceil \frac{q}{n} \right\rceil - 1\} \} =: B_i$$

In order to obtain the cardinality of A^ℓ we choose our polynomial by fixing $d + 1$ points.

We first fix the values for inputs x_1, \ldots, x_ℓ.

We have

$$|B_1| \cdot \ldots \cdot |B_\ell|$$

possibilities to do this (so that $h_{\bar{a}}(x_i) = t_i$).
Universal Hashing

Fix $\ell \leq d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A_\ell = \{h_\bar{a} \in \mathcal{H} \mid h_\bar{a}(x_i) = t_i \text{ for all } i \in \{1, \ldots, \ell\}\}$
Then
$$h_\bar{a} \in A_\ell \iff h_\bar{a} = f_\bar{a} \mod n \text{ and }$$

$$f_\bar{a}(x_i) \in \{t_i + \alpha \cdot n \mid \alpha \in \{0, \ldots, \left\lfloor \frac{q}{n} \right\rfloor - 1\}\}$$

In order to obtain the cardinality of A_ℓ we choose our polynomial by fixing $d + 1$ points.

We first fix the values for inputs x_1, \ldots, x_ℓ.
We have
$$|B_1| \cdot \ldots \cdot |B_\ell|$$
possibilities to do this (so that $h_\bar{a}(x_i) = t_i$).
Universal Hashing

Now, we choose $d - \ell + 1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Therefore we have

$$|B_1| \cdot \ldots \cdot |B_\ell| \cdot q^{d-\ell+1} \leq \left\lceil \frac{q}{n} \right\rceil^\ell \cdot q^{d-\ell+1}$$

possibilities to choose \bar{a} such that $h\bar{a} \in A_\ell$.
Now, we choose $d - \ell + 1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Therefore we have

$$|B_1| \cdot \ldots \cdot |B_\ell| \cdot q^{d-\ell+1} \leq \left[\frac{q}{n} \right]^{\ell} \cdot q^{d-\ell+1}$$

possibilities to choose \bar{a} such that $h\bar{a} \in A_\ell$.
Universal Hashing

Therefore the probability of choosing $h_{\bar{a}}$ from A_ℓ is only

$$\frac{\left\lceil \frac{q}{n} \right\rceil^\ell \cdot q^{d-\ell+1}}{q^{d+1}}$$
Therefore the probability of choosing $h\bar{a}$ from A_ℓ is only

$$\frac{\left\lceil\frac{q}{n}\right\rceil^\ell \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(q+n)^\ell}{q^\ell}$$
Therefore the probability of choosing $h\tilde{a}$ from A_ℓ is only

$$\left\lfloor \frac{q}{n} \right\rfloor \cdot \frac{q^{d-\ell+1}}{q^{d+1}} \leq \frac{(q+n)^\ell}{n^\ell} \leq \left(\frac{q+n}{q} \right)^\ell \cdot \frac{1}{n^\ell}$$
Therefore the probability of choosing $h_{\bar{\alpha}}$ from A_{ℓ} is only

$$\frac{\left\lceil \frac{q}{n} \right\rceil^\ell \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(\frac{q+n}{n})^\ell}{q^\ell} \leq \left(\frac{q+n}{q}\right)^\ell \cdot \frac{1}{n^\ell}$$

$$\leq \left(1 + \frac{1}{\ell}\right)^\ell \cdot \frac{1}{n^\ell}$$
Therefore the probability of choosing $h\bar{a}$ from A_ℓ is only

\[
\frac{\left\lceil \frac{q}{n} \right\rceil \ell \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(q+n)^\ell}{q^\ell} \leq \left(\frac{q+n}{q} \right)^\ell \cdot \frac{1}{n^\ell} \\
\leq \left(1 + \frac{1}{\ell} \right)^\ell \cdot \frac{1}{n^\ell} \leq \frac{e}{n^\ell}.
\]
Universal Hashing

Therefore the probability of choosing $h_{\bar{a}}$ from A_ℓ is only

\[
\frac{\left\lceil \frac{q}{n} \right\rceil^\ell \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(\frac{q+n}{n})^\ell}{q^\ell} \leq \left(\frac{q+n}{q} \right)^\ell \cdot \frac{1}{n^\ell} \\
\leq \left(1 + \frac{1}{\ell} \right)^\ell \cdot \frac{1}{n^\ell} \leq \frac{e}{n^\ell}.
\]

This shows that the \mathcal{H} is $(e, d + 1)$-universal.

The last step followed from $q \geq (d + 1)n$, and $\ell \leq d + 1$.
Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.

![Diagram of key mapping]

U = universe of keys

S (actual keys)
Perfect Hashing

Let $m = |S|$. We could simply choose the hash-table size very large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\text{#Collisions}] = \binom{m}{2} \cdot \frac{1}{n}.$$

If we choose $n = m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.

7.7 Hashing
Perfect Hashing

Let $m = |S|$. We could simply choose the hash-table size very large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#\text{Collisions}] = \binom{m}{2} \cdot \frac{1}{n}.$$

If we choose $n = m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.
Perfect Hashing

Let \(m = |S| \). We could simply choose the hash-table size very large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions is

\[
E[\#\text{Collisions}] = \binom{m}{2} \cdot \frac{1}{n} .
\]

If we choose \(n = m^2 \) the expected number of collisions is strictly less than \(\frac{1}{2} \).

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most \(\frac{1}{2} \) as otherwise the expectation would be larger than \(\frac{1}{2} \).
Perfect Hashing

Let $m = |S|$. We could simply choose the hash-table size very large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#\text{Collisions}] = \binom{m}{2} \cdot \frac{1}{n}.$$

If we choose $n = m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.
Perfect Hashing

Let $m = |S|$. We could simply choose the hash-table size very large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#\text{Collisions}] = \binom{m}{2} \cdot \frac{1}{n}.$$

If we choose $n = m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.

7.7 Hashing
Perfect Hashing

Let \(m = |S| \). We could simply choose the hash-table size very large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions is

\[
E[\#\text{Collisions}] = \binom{m}{2} \cdot \frac{1}{n}.
\]

If we choose \(n = m^2 \) the expected number of collisions is strictly less than \(\frac{1}{2} \).

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most \(\frac{1}{2} \) as otherwise the expectation would be larger than \(\frac{1}{2} \).
Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of \(n = m^2 \) is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from \(S \) to \(m \) buckets.

Let \(m_j \) denote the number of items that are hashed to the \(j \)-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size \(m_j^2 \). The second function can be chosen such that all elements are mapped to different locations.
Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_j denote the number of items that are hashed to the j-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_j^2. The second function can be chosen such that all elements are mapped to different locations.
Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_j denote the number of items that are hashed to the j-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_j^2. The second function can be chosen such that all elements are mapped to different locations.
Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_j denote the number of items that are hashed to the j-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_j^2. The second function can be chosen such that all elements are mapped to different locations.
Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_j denote the number of items that are hashed to the j-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_j^2. The second function can be chosen such that all elements are mapped to different locations.
Perfect Hashing

U

universe of keys

$k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8$

$\emptyset, m_2, m_3, \emptyset, \emptyset, m_6, \emptyset, m_8$

$\sum_i m_i = m$

7.7 Hashing
Perfect Hashing

The total memory that is required by all hash-tables is $O \left(\sum j m_j^2 \right)$. Note that m_j is a random variable.

\[
E \left[\sum j m_j^2 \right] = E \left[2 \sum j (m_j^2) \right] + \sum j m_j
\]

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

\[
E \left[\sum j (m_j^2) \right] = 2 \cdot \left(\frac{1}{m} \right) m + m = 2m - 1.
\]
Perfect Hashing

The total memory that is required by all hash-tables is $\Theta(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_j m_j^2 \right]$$
Perfect Hashing

The total memory that is required by all hash-tables is $O(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_j m_j^2 \right] = E\left[2 \sum_j \binom{m_j}{2} + \sum_j m_j \right]$$
Perfect Hashing

The total memory that is required by all hash-tables is $\Theta(\sum_j m_j^2)$. Note that m_j is a random variable.

\[
E\left[\sum_j m_j^2 \right] = E\left[2 \sum_j \left(m_j \right)^2 + \sum_j m_j \right]
\]

\[
= 2 E\left[\sum_j \left(m_j \right)^2 \right] + E\left[\sum_j m_j \right]
\]
Perfect Hashing

The total memory that is required by all hash-tables is $\Theta(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_j m_j^2\right] = E\left[2 \sum_j \left(\frac{m_j}{2}\right) + \sum_j m_j\right]$$

$$= 2 E\left[\sum_j \left(\frac{m_j}{2}\right)\right] + E\left[\sum_j m_j\right]$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have
Perfect Hashing

The total memory that is required by all hash-tables is $O(\sum_j m_j^2)$. Note that m_j is a random variable.

$$
E\left[\sum_j m_j^2\right] = E\left[2 \sum_j \left(\frac{m_j}{2}\right) + \sum_j m_j\right]
$$

$$
= 2 E\left[\sum_j \left(\frac{m_j}{2}\right)\right] + E\left[\sum_j m_j\right]
$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

$$
= 2 \left(\frac{m}{2}\right) \frac{1}{m} + m = 2m - 1.
$$
Perfect Hashing

We need only $O(m)$ time to construct a hash-function h with $\sum_j m_j^2 = O(4m)$, because with probability at least $1/2$ a random function from a universal family will have this property.

Then we construct a hash-table h_j for every bucket. This takes expected time $O(m_j)$ for every bucket. A random function h_j is collision-free with probability at least $1/2$. We need $O(m_j)$ to test this.

We only need that the hash-functions are chosen from a universal family!!!
Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

Two hash-tables $T_1[0, \ldots, n-1]$ and $T_2[0, \ldots, n-1]$, with hash-functions h_1, and h_2.

An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.

A search clearly takes constant time if the above constraint is met.
Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- Two hash-tables $T_1[0,\ldots, n-1]$ and $T_2[0,\ldots, n-1]$, with hash-functions h_1, and h_2.
- An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
- A search clearly takes constant time if the above constraint is met.
Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- Two hash-tables $T_1[0,\ldots,n-1]$ and $T_2[0,\ldots,n-1]$, with hash-functions h_1, and h_2.
- An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
- A search clearly takes constant time if the above constraint is met.
Goal:
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- Two hash-tables $T_1[0, \ldots, n-1]$ and $T_2[0, \ldots, n-1]$, with hash-functions h_1, and h_2.
- An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
- A search clearly takes constant time if the above constraint is met.
Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- Two hash-tables $T_1[0, \ldots, n-1]$ and $T_2[0, \ldots, n-1]$, with hash-functions h_1, and h_2.
- An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
- A search clearly takes constant time if the above constraint is met.
Cuckoo Hashing

Insert:

\[
\begin{array}{c}
\emptyset \\
\emptyset \\
\emptyset \\
x_7 \\
\emptyset \\
x_4 \\
x_1 \\
\emptyset \\
\emptyset
\end{array} \quad \begin{array}{c}
\emptyset \\
\emptyset \\
\emptyset \\
x_9 \\
\emptyset \\
x_6 \\
x_3 \\
\emptyset \\
\emptyset
\end{array}
\]

\[T_1 \quad T_2\]
Cuckoo Hashing

Insert:

\[T_1 \]
- \(\emptyset \)
- \(\emptyset \)
- \(\emptyset \)
- \(x_4 \)
- \(x_1 \)
- \(\emptyset \)
- \(\emptyset \)

\[T_2 \]
- \(\emptyset \)
- \(\emptyset \)
- \(x_9 \)
- \(\emptyset \)
- \(\emptyset \)
- \(x_6 \)
- \(x_3 \)
- \(\emptyset \)
Cuckoo Hashing

Insert:

\[T_1 \]

\[T_2 \]

\[x \]

\[x_1 \]

\[x_4 \]

\[x_7 \]

\[x_9 \]

\[x_6 \]

\[x_3 \]
Cuckoo Hashing

Insert:

\[T_1 \]

\[T_2 \]
Cuckoo Hashing

Insert:

\[T_1 \]

\[T_2 \]
Cuckoo Hashing

Algorithm 13 Cuckoo-Insert(x)

1. if $T_1[h_1(x)] = x \lor T_2[h_2(x)] = x$ then return
2. steps ← 1
3. while steps ≤ maxsteps do
4. exchange x and $T_1[h_1(x)]$
5. if $x = \text{null}$ then return
6. exchange x and $T_2[h_2(x)]$
7. if $x = \text{null}$ then return
8. steps ← steps + 1
9. rehash() // change hash-functions; rehash everything
10. Cuckoo-Insert(x)
Cuckoo Hashing

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.
- We say a phase is successful if it is not terminated by the \texttt{maxstep}-condition, but the while loop is left because \(x = \text{null} \).
Cuckoo Hashing

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.
- We say a phase is successful if it is not terminated by the maxstep-condition, but the while loop is left because $x = \text{null}$.
Cuckoo Hashing

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.
- We say a phase is successful if it is not terminated by the maxstep-condition, but the while loop is left because \(x = \text{null} \).
What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that touches s different keys?
Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that touches s different keys?
What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after \texttt{maxsteps} steps).

Formally what is the probability to enter an infinite loop that touches \(s \) different keys?
Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that touches s different keys?
Cuckoo Hashing: Insert

\[T_1 \]

\[T_2 \]
Cuckoo Hashing: Insert

\[x = x_1 \]
Cuckoo Hashing: Insert

\[x = x_1 \]

\[x = x_1 \rightarrow x_1 \]

\[T_1 \]

\[T_2 \]

\[x_2 \]
Cuckoo Hashing: Insert

\[x = x_1 \rightarrow x_1 \]

\[x_3 \rightarrow x_2 \]

\[T_1 \]

\[T_2 \]
Cuckoo Hashing: Insert

\[x = x_1 \]

\[x = x_1, x_2, x_3, x_4 \]
Cuckoo Hashing: Insert

\[x = x_1 \]

\[x = x_2 \]

\[x = x_3 \]

\[x = x_4 \]

\[x = x_5 \]
Cuckoo Hashing: Insert

\[x = x_1 \]

\[x_1 \rightarrow x_2 \]

\[x_3 \rightarrow x_4 \]

\[x_5 \rightarrow x_4 \]

\[T_1 \rightarrow x_6 \rightarrow T_2 \]
Cuckoo Hashing: Insert

\[x = x_1 \]

\[T_1 \]

\[x_1 \]

\[x_3 \]

\[x_5 \]

\[T_2 \]

\[x_2 \]

\[x_3 \]

\[x_4 \]

\[x_5 \]

\[x_6 \]

\[x_7 \]
Cuckoo Hashing: Insert

\[x = x_1 \]

\[T_1 \]

\[T_2 \]
Cuckoo Hashing: Insert

\[x = x_1 \]

\[x = x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \]

\[T_1 \quad x_1, x_3, x_5, x_7 \]

\[x_2, x_4, x_6, x_8 \]

\[T_2 \]

\[7.7 \text{ Hashing} \]
Cuckoo Hashing: Insert

\[x = x_1 \]

\[x_1 \rightarrow x_2 \]
\[x_3 \rightarrow x_4 \]
\[x_5 \rightarrow x_6 \]
\[x_7 \rightarrow x_8 \]

7.7 Hashing
Cuckoo Hashing: Insert

\[x = x_1 \]

\[x_1 \rightarrow x_3 \rightarrow x_7 \rightarrow x_4 \rightarrow x_5 \rightarrow x_2 \rightarrow x_8 \rightarrow x_6 \]

T1 \hspace{1cm} x_2 \hspace{1cm} T2
Cuckoo Hashing: Insert

\[x = x_1 \]

\[x_2 \]

\[x_3 \]

\[x_4 \]

\[x_5 \]

\[x_6 \]

\[x_7 \]

\[x_8 \]

\[x = x_1 \]

\[T_1 \]

\[T_2 \]
Cuckoo Hashing: Insert

\[x = x_1 \]

7.7 Hashing
Cuckoo Hashing: Insert
Cuckoo Hashing: Insert

7.7 Hashing
Cuckoo Hashing: Insert
Cuckoo Hashing: Insert

\[T_1 \quad x_3 \quad T_2 \]

\[x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6 \rightarrow x_7 \rightarrow x_8 \rightarrow x_9 \rightarrow x_{10} \rightarrow x_{11} \]

Ernst Mayr, Harald Räcke
Cuckoo Hashing: Insert

\[x = x_1 \]

\[T_1 \]

\[T_2 \]

7.7 Hashing
A cycle-structure of size s is defined by

- s different cells (alternating blue, cells from P_1 and P_2)
- s distinct keys $x = x_1, x_2, \ldots, x_s$, linking the cells.
- The leftmost cell is “linked forward” to some cell on the right.
- The rightmost cell is “linked backward” to a cell on the left.
- One link represents key x; this is where the counting starts.
A cycle-structure of size s is defined by

- $s - 1$ different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \ldots, x_s$, linking the cells.
- The leftmost cell is “linked forward” to some cell on the right.
- The rightmost cell is “linked backward” to a cell on the left.
- One link represents key x; this is where the counting starts.
Cuckoo Hashing

A cycle-structure of size s is defined by

- $s - 1$ different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \ldots, x_s$, linking the cells.
- The leftmost cell is “linked forward” to some cell on the right.
- The rightmost cell is “linked backward” to a cell on the left.
- One link represents key x; this is where the counting starts.
A cycle-structure of size s is defined by

- $s - 1$ different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \ldots, x_s$, linking the cells.
- The leftmost cell is “linked forward” to some cell on the right.
- The rightmost cell is “linked backward” to a cell on the left.
- One link represents key x; this is where the counting starts.
A cycle-structure of size s is defined by

- $s - 1$ different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \ldots, x_s$, linking the cells.
- The leftmost cell is “linked forward” to some cell on the right.
- The rightmost cell is “linked backward” to a cell on the left.
- One link represents key x; this is where the counting starts.
A cycle-structure of size s is defined by

- $s - 1$ different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \ldots, x_s$, linking the cells.
- The leftmost cell is “linked forward” to some cell on the right.
- The rightmost cell is “linked backward” to a cell on the left.
- One link represents key x; this is where the counting starts.
Cuckoo Hashing

A cycle-structure is active if for every key x_ℓ (linking a cell p_i from T_1 and a cell p_j from T_2) we have

$$h_1(x_\ell) = p_i \quad \text{and} \quad h_2(x_\ell) = p_j$$

Observation:
If during a phase the insert-procedure runs into a cycle there must exist an active cycle structure of size $s \geq 3$.
A cycle-structure is **active** if for every key x_ℓ (linking a cell p_i from T_1 and a cell p_j from T_2) we have

\[
 h_1(x_\ell) = p_i \quad \text{and} \quad h_2(x_\ell) = p_j
\]

Observation:
If during a phase the insert-procedure runs into a cycle there must exist an active cycle structure of size $s \geq 3$.
Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1-cell?

This probability is at most $\frac{\mu}{n^3}$ since h_1 is a (μ, s)-independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2-cell?

This probability is at most $\frac{\mu}{n^3}$ since h_2 is a (μ, s)-independent hash-function.

These events are independent.
Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1-cell?

This probability is at most $\frac{\mu}{ns}$ since h_1 is a (μ, s)-independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2-cell?

This probability is at most $\frac{\mu}{ns}$ since h_2 is a (μ, s)-independent hash-function.

These events are independent.
Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1-cell?

This probability is at most $\frac{\mu}{ns}$ since h_1 is a (μ, s)-independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2-cell?

This probability is at most $\frac{\mu}{ns}$ since h_2 is a (μ, s)-independent hash-function.

These events are independent.
Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1-cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ, s)-independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2-cell?

This probability is at most $\frac{\mu}{n^s}$ since h_2 is a (μ, s)-independent hash-function.

These events are independent.
Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1-cell?

This probability is at most $\frac{\mu}{ns}$ since h_1 is a (μ, s)-independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2-cell?

This probability is at most $\frac{\mu}{ns}$ since h_2 is a (μ, s)-independent hash-function.

These events are independent.
The probability that a given cycle-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

What is the probability that there exists an active cycle structure of size s?
Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

What is the probability that there exists an active cycle structure of size s?
Cuckoo Hashing

The number of cycle-structures of size s is at most

$$s^3 \cdot n^{s-1} \cdot m^{s-1}.$$
Cuckoo Hashing

The number of cycle-structures of size s is at most

$$s^3 \cdot n^{s-1} \cdot m^{s-1}.$$

- There are at most s^2 possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.
- There are n^{s-1} possibilities to choose the cells.
Cuckoo Hashing

The number of cycle-structures of size s is at most

$$s^3 \cdot n^{s-1} \cdot m^{s-1}.$$

- There are at most s^2 possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.
- There are n^{s-1} possibilities to choose the cells.
Cuckoo Hashing

The number of cycle-structures of size s is at most

$$s^3 \cdot n^{s-1} \cdot m^{s-1}.$$

- There are at most s^2 possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.
- There are n^{s-1} possibilities to choose the cells.
Cuckoo Hashing

The number of cycle-structures of size s is at most

$$s^3 \cdot n^{s-1} \cdot m^{s-1}.$$

- There are at most s^2 possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.
- There are n^{s-1} possibilities to choose the cells.
Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

\[\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \]
Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

\[
\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n} \right)^s
\]
Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

\[
\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n} \right)^s
\]

\[
\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon} \right)^s
\]
Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

\[
\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s
\]

\[
\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s \leq O\left(\frac{1}{m^2}\right).
\]
Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n} \right)^s$$

$$\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1 + \epsilon} \right)^s \leq O \left(\frac{1}{m^2} \right).$$

Here we used the fact that \((1 + \epsilon)m \leq n\).
Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n} \right)^s$$

$$\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon} \right)^s \leq O \left(\frac{1}{m^2} \right).$$

Here we used the fact that $(1 + \epsilon)m \leq n$.

Hence,

$$\Pr[\text{cycle}] = O \left(\frac{1}{m^2} \right).$$
Cuckoo Hashing

Now, we analyze the probability that a phase is not successful without running into a closed cycle.
Cuckoo Hashing

Sequence of visited keys:
\[x = x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_3, x_2, x_1 = x, x_8, x_9, \ldots \]
Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 11
If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.
Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 11

If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.
Cuckoo Hashing

Proof.
Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

$x = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i \rightarrow x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$

As $r \leq i - 1$ the length p of the sequence is

$$p = i + r + (j - i) \leq i + j - 1 .$$

Either sub-sequence $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i$ or sub-sequence $x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$ has at least \(\frac{p+2}{3} \) elements.
Cuckoo Hashing

Proof.
Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

$$x = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i \rightarrow x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$$

As $r \leq i - 1$ the length p of the sequence is

$$p = i + r + (j - i) \leq i + j - 1 .$$

Either sub-sequence $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i$ or sub-sequence $x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$ has at least $\frac{p+2}{3}$ elements.
A path-structure of size s is defined by

- $s + 1$ different cells (alternating between cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- The leftmost cell is either from T_1 or T_2.

Cuckoo Hashing
A path-structure of size s is defined by

- $s + 1$ different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \ldots, x_s$, linking the cells.
- The leftmost cell is either from T_1 or T_2.

Cuckoo Hashing
A path-structure of size s is defined by

- $s + 1$ different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \ldots, x_s$, linking the cells.
- The leftmost cell is either from T_1 or T_2.

Cuckoo Hashing
A **path-structure of size** s **is defined by**

- $s + 1$ different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \ldots, x_s$, linking the cells.
- The leftmost cell is either from T_1 or T_2.
A path-structure is **active** if for every key x_ℓ (linking a cell p_i from T_1 and a cell p_j from T_2) we have

$$h_1(x_\ell) = p_i \quad \text{and} \quad h_2(x_\ell) = p_j$$

Observation:
If a phase takes at least t steps without running into a cycle there must exist an active path-structure of size $(2t + 2)/3$.
Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^2s}$.
Cuckoo Hashing

The probability that a given path-structure of size \(s \) is active is at most \(\frac{\mu^2}{n^{2s}} \).

The probability that there exists an active path-structure of size \(s \) is at most

\[
2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}
\]
Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1}$$
Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \leq 2\mu^2 \left(\frac{m}{n} \right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{s-1}$$
Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in $s = (2t + 2)/3$ gives
Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \leq 2\mu^2 \left(\frac{m}{n} \right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{s-1}$$

Plugging in $s = (2t + 2)/3$ gives

$$\leq 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2t+2)/3-1}$$
Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

$$\leq 2 \mu^2 \left(\frac{m}{n} \right)^{s-1} \leq 2 \mu^2 \left(\frac{1}{1 + \epsilon} \right)^{s-1}$$

Plugging in $s = (2t + 2)/3$ gives

$$\leq 2 \mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2t+2)/3-1} = 2 \mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2t-1)/3}.$$
Cuckoo Hashing

We choose \(\text{maxsteps} \geq 3 \ell / 2 + 1 / 2 \).
Cuckoo Hashing

We choose \(\text{maxsteps} \geq \frac{3\ell}{2} + \frac{1}{2} \). Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

\[
\Pr[\text{unsuccessful} \mid \text{no cycle}]
\]
Cuckoo Hashing

We choose $\text{maxsteps} \geq 3 \ell / 2 + 1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$\operatorname{Pr}[\text{unsuccessful} | \text{no cycle}] \leq \operatorname{Pr}[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}]$$
Cuckoo Hashing

We choose maxsteps $\geq 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$\Pr[\text{unsuccessful} \mid \text{no cycle}] \leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1]$$
Cuckoo Hashing

We choose \(\text{maxsteps} \geq 3\ell/2 + 1/2 \). Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

\[
\Pr[\text{unsuccessful} \mid \text{no cycle}] \\
\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\
\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\
\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1]
\]
Cuckoo Hashing

We choose \(\text{maxsteps} \geq 3\ell/2 + 1/2 \). Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

\[
\Pr[\text{unsuccessful} \mid \text{no cycle}]
\leq \Pr[\exists \text{ active path-structure of size at least } 2^{\text{maxsteps}+2}/3]
\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1]
\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1]
\leq 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^\ell
\]
Cuckoo Hashing

We choose $\text{maxsteps} \geq 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

\[
\Pr[\text{unsuccessful} \mid \text{no cycle}] \\
\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\
\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\
\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\
\leq 2\mu^2\left(\frac{1}{1+\epsilon}\right)^\ell \leq \frac{1}{m^2}
\]
Cuckoo Hashing

We choose \(\text{maxsteps} \geq \frac{3\ell}{2} + \frac{1}{2} \). Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

\[
\Pr[\text{unsuccessful} \mid \text{no cycle}] \\
\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps} + 2}{3}] \\
\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\
\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\
\leq 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^\ell \leq \frac{1}{m^2}
\]

by choosing \(\ell \geq \log \left(\frac{1}{2\mu^2 m^2} \right) / \log \left(\frac{1}{1 + \epsilon} \right) = \log \left(2\mu^2 m^2 \right) / \log \left(1 + \epsilon \right) \).
Cuckoo Hashing

We choose maxsteps ≥ 3ℓ/2 + 1/2. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

\[
\Pr[\text{unsuccessful} \mid \text{no cycle}] \\
\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\
\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\
\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\
\leq 2\mu^2\left(\frac{1}{1+\epsilon}\right)\ell \leq \frac{1}{m^2}
\]

by choosing \(\ell \geq \log\left(\frac{1}{2\mu^2m^2}\right)/\log\left(\frac{1}{1+\epsilon}\right) = \log\left(2\mu^2m^2\right)/\log\left(1 + \epsilon\right)\)

This gives maxsteps = \(\Theta(\log m)\).
Cuckoo Hashing

So far we estimated

$$\Pr[\text{cycle}] \leq O\left(\frac{1}{m^2}\right)$$

and

$$\Pr[\text{unsuccessful | no cycle}] \leq O\left(\frac{1}{m^2}\right)$$
So far we estimated

$$\Pr[\text{cycle}] \leq O\left(\frac{1}{m^2}\right)$$

and

$$\Pr[\text{unsuccessful} \mid \text{no cycle}] \leq O\left(\frac{1}{m^2}\right)$$

Observe that

$$\Pr[\text{successful}] = \Pr[\text{no cycle}] - \Pr[\text{unsuccessful} \mid \text{no cycle}]$$
Cuckoo Hashing

So far we estimated

\[\Pr[\text{cycle}] \leq O\left(\frac{1}{m^2}\right) \]

and

\[\Pr[\text{unsuccessful} \mid \text{no cycle}] \leq O\left(\frac{1}{m^2}\right) \]

Observe that

\[\Pr[\text{successful}] = \Pr[\text{no cycle}] - \Pr[\text{unsuccessful} \mid \text{no cycle}] \geq c \cdot \Pr[\text{no cycle}] \]
Cuckoo Hashing

So far we estimated

$$\Pr[\text{cycle}] \leq O\left(\frac{1}{m^2}\right)$$

and

$$\Pr[\text{unsuccessful} \mid \text{no cycle}] \leq O\left(\frac{1}{m^2}\right)$$

Observe that

$$Pr[\text{successful}] = Pr[\text{no cycle}] - Pr[\text{unsuccessful} \mid \text{no cycle}] \geq c \cdot Pr[\text{no cycle}]$$

for a suitable constant $c > 0$.
Cuckoo Hashing

The expected number of complete steps in the **successful phase** of an insert operation is:
Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$E[\text{number of steps} \mid \text{phase successful}]$$
Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

\[
E[\text{number of steps } \mid \text{phase successful}] = \sum_{t \geq 1} \Pr[\text{search takes at least } t \text{ steps } \mid \text{phase successful}]
\]
Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

\[
E[\text{number of steps} \mid \text{phase successful}] = \sum_{t \geq 1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}]
\]

We have

\[
\Pr[\text{search at least } t \text{ steps} \mid \text{successful}] \leq \frac{1}{c} \frac{\Pr[\text{search at least } t \text{ steps} \land \text{successful}]}{\Pr[\text{no cycle}]}
\]
Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

\[
E[\text{number of steps} \mid \text{phase successful}] = \sum_{t \geq 1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}]
\]

We have

\[
\Pr[\text{search at least } t \text{ steps} \mid \text{successful}] = \Pr[\text{search at least } t \text{ steps} \land \text{successful}] / \Pr[\text{successful}]
\]
Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

\[
E[\text{number of steps } \mid \text{phase successful}] = \sum_{t \geq 1} \Pr[\text{search takes at least } t \text{ steps } \mid \text{phase successful}]
\]

We have

\[
\Pr[\text{search at least } t \text{ steps } \mid \text{successful}] = \Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{successful}]
\]
\[
\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{no cycle}]
\]
Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

\[
E[\text{number of steps} \mid \text{phase successful}] = \sum_{t \geq 1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}]
\]

We have

\[
\Pr[\text{search at least } t \text{ steps} \mid \text{successful}] = \Pr[\text{search at least } t \text{ steps} \land \text{successful}] / \Pr[\text{successful}]
\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps} \land \text{successful}] / \Pr[\text{no cycle}]
\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps} \land \text{no cycle}] / \Pr[\text{no cycle}]
\]
Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$E[\text{number of steps} \mid \text{phase successful}]$$

$$= \sum_{t \geq 1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}]$$

We have

$$\Pr[\text{search at least } t \text{ steps} \mid \text{successful}]$$

$$= \Pr[\text{search at least } t \text{ steps } \land \text{ successful}] \div \Pr[\text{successful}]$$

$$\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{ successful}] \div \Pr[\text{no cycle}]$$

$$\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{ no cycle}] \div \Pr[\text{no cycle}]$$

$$= \frac{1}{c} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$$.
Cuckoo Hashing

Hence,

\[E[\text{number of steps} \mid \text{phase successful}] \]
Hence,

\[E[\text{number of steps} \mid \text{phase successful}] \leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}] \]
Cuckoo Hashing

Hence,

\[
\mathbb{E}[\text{number of steps } | \text{ phase successful}]
\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]
\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2t-1)/3}
\]
Cuckoo Hashing

Hence,

$$E[\text{number of steps} \mid \text{phase successful}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2(t+1)-1)/3}$$
Cuckoo Hashing

Hence,

\[E[\text{number of steps | phase successful}] \]

\[\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps | no cycle}] \]

\[\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2(t+1)-1)/3} \]

\[= \frac{2\mu^2}{c(1 + \epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1 + \epsilon)^{2/3}} \right)^t \]
Cuckoo Hashing

Hence,

\[E[\text{number of steps | phase successful}] \]

\[\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps | no cycle}] \]

\[\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2(t+1)-1)/3} \]

\[= \frac{2\mu^2}{c(1 + \epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1 + \epsilon)^{2/3}} \right)^t = \mathcal{O}(1) . \]
Cuckoo Hashing

Hence,

\[\mathbb{E}[\text{number of steps} \mid \text{phase successful}] \]

\[\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}] \]

\[\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1 + \epsilon} \right)^{(2(t+1)-1)/3} \]

\[= \frac{2\mu^2}{c(1 + \epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1 + \epsilon)^{2/3}} \right)^t = \mathcal{O}(1) . \]

This means the expected cost for a successful phase is constant (even after accounting for the cost of the incomplete step that finishes the phase).
Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $p = \Theta\left(\frac{1}{m^2}\right)$ (probability $\Theta\left(\frac{1}{m^2}\right)$ of running into a cycle and probability $\Theta\left(\frac{1}{m^2}\right)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p := \Theta\left(\frac{1}{m}\right)$.

The expected number of unsuccessful rehashes is

$$\sum_{i \geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \Theta(p).$$

Therefore the expected cost for re-hashes is

$\Theta(m) \cdot \Theta(p) = \Theta(1)$.

7.7 Hashing
A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $p = O\left(\frac{1}{m^2}\right)$ (probability $O\left(\frac{1}{m^2}\right)$ of running into a cycle and probability $O\left(\frac{1}{m^2}\right)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p := O\left(\frac{1}{m}\right)$.

The expected number of unsuccessful rehashes is $\sum_{i \geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = O(p)$.

Therefore the expected cost for re-hashes is $O(m) \cdot O(p) = O(1)$.

7.7 Hashing
Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is \(p = \Theta\left(\frac{1}{m^2}\right) \) (probability \(\Theta\left(\frac{1}{m^2}\right) \) of running into a cycle and probability \(\Theta\left(\frac{1}{m^2}\right) \) of reaching \texttt{maxsteps} without running into a cycle).

A rehash try requires \(m \) insertions and takes expected constant time per insertion. It fails with probability \(p := \Theta\left(\frac{1}{m}\right) \).

The expected number of unsuccessful rehashes is \(\sum_{i \geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \Theta(p) \).

Therefore the expected cost for re-hashes is \(\Theta(m) \cdot \Theta(p) = \Theta(1) \).
A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $p = \Theta(1/m^2)$ (probability $\Theta(1/m^2)$ of running into a cycle and probability $\Theta(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p := \Theta(1/m)$.

The expected number of unsuccessful rehashes is

$$\sum_{i \geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \Theta(p).$$

Therefore the expected cost for re-hashes is $\Theta(m) \cdot \Theta(p) = \Theta(1)$.

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is \(p = \mathcal{O}(1/m^2) \) (probability \(\mathcal{O}(1/m^2) \) of running into a cycle and probability \(\mathcal{O}(1/m^2) \) of reaching \texttt{maxsteps} without running into a cycle).

A rehash try requires \(m \) insertions and takes expected constant time per insertion. It fails with probability \(p := \mathcal{O}(1/m) \).

The expected number of unsuccessful rehashes is
\[
\sum_{i \geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).
\]

Therefore the expected cost for re-hashes is \(\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1) \).
Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $p = \Theta(1/m^2)$ (probability $\Theta(1/m^2)$ of running into a cycle and probability $\Theta(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p := \Theta(1/m)$.

The expected number of unsuccessful rehashes is
$$\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \Theta(p).$$

Therefore the expected cost for re-hashes is $\Theta(m) \cdot \Theta(p) = \Theta(1)$.

7.7 Hashing
Formal Proof

Let Y_i denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m + 1$ insertions fails):
Formal Proof

Let Y_i denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m + 1$ insertions fails):

$$\Pr[Y_i] \leq (m + 1) \cdot \Theta(1/m^2) \leq \Theta(1/m) =: p$$
Formal Proof

Let Y_i denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m + 1$ insertions fails):

$$\Pr[Y_i] \leq (m + 1) \cdot \Theta(1/m^2) \leq \Theta(1/m) =: p.$$

Let Z_i denote the event that the i-th rehash occurs:
Formal Proof

Let Y_i denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m + 1$ insertions fails):

$$\Pr[Y_i] \leq (m + 1) \cdot O(1/m^2) \leq O(1/m) =: p .$$

Let Z_i denote the event that the i-th rehash occurs:

$$\Pr[Z_i] \leq \Pr[\bigwedge_{j=1}^{i-1} Y_j] \leq p^{i-1}$$
Formal Proof

Let Y_i denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m + 1$ insertions fails):

$$\Pr[Y_i] \leq (m + 1) \cdot O(1/m^2) \leq O(1/m) =: p.$$

Let Z_i denote the event that the i-th rehash occurs:

$$\Pr[Z_i] \leq \Pr[\bigwedge_{j=1}^{i-1} Y_j] \leq p^{i-1}.$$

Let $X_i^s, s \in \{1, \ldots, m + 1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$E[X_i^s]$$
Formal Proof

Let Y_i denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m + 1$ insertions fails):

$$
\Pr[Y_i] \leq (m + 1) \cdot O(1/m^2) \leq O(1/m) =: p .
$$

Let Z_i denote the event that the i-th rehash occurs:

$$
\Pr[Z_i] \leq \Pr[\bigwedge_{j=1}^{i-1} Y_j] \leq p^{i-1}
$$

Let $X_i^s, s \in \{1, \ldots, m + 1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$
\mathbb{E}[X_i^s] = \mathbb{E}[\text{steps} \mid \text{phase successful}] \cdot \Pr[\text{phase successful}] + \maxsteps \cdot \Pr[\text{not successful}]
$$
Formal Proof

Let \(Y_i \) denote the event that the \(i \)-th rehash does not lead to a valid configuration (assuming \(i \)-th rehash occurs) (i.e., one of the \(m + 1 \) insertions fails):

\[
\Pr[Y_i] \leq (m + 1) \cdot \Theta(1/m^2) \leq \Theta(1/m) =: p.
\]

Let \(Z_i \) denote the event that the \(i \)-th rehash occurs:

\[
\Pr[Z_i] \leq \Pr[\bigwedge_{j=1}^{i-1} Y_j] \leq p^{i-1}
\]

Let \(X^s_i \), \(s \in \{1, \ldots, m + 1\} \) denote the cost for inserting the \(s \)-th element during the \(i \)-th rehash (assuming \(i \)-th rehash occurs):

\[
E[X^s_i] = E[\text{steps} \mid \text{phase successful}] \cdot \Pr[\text{phase successful}] + \maxsteps \cdot \Pr[\text{not successful}] = \Theta(1).
\]
The expected cost for all rehashes is

$$\mathbb{E}\left[\sum_i \sum_s Z_i X_i^s \right]$$

Note that Z_i is independent of X_j^s, $j \geq i$ (however, it is not independent of X_j^s, $j < i$). Hence,

$$\mathbb{E}\left[\sum_i \sum_s Z_i X_i^s \right] = \sum_i \mathbb{E}[Z_i] \cdot \mathbb{E}[X_i]$$

$$\leq O\left(\frac{1}{p}\right) \cdot \sum_i p_i - 1 = O\left(\frac{1}{p}\right)$$
The expected cost for all rehashes is

\[E \left[\sum_i \sum_s Z_i X^s_i \right] \]

Note that \(Z_i \) is independent of \(X^s_j, j \geq i \) (however, it is not independent of \(X^s_j, j < i \)). Hence,

\[E \left[\sum_i \sum_s Z_i X^s_i \right] = \sum_i \sum_s E[Z_i] \cdot E[X^i_s] \leq O(1) \cdot \sum_i p^{i-1} \leq O(1) \cdot \frac{1}{1 - p} = O(1) . \]
The expected cost for all rehashes is

$$E\left[\sum_i \sum_s Z_i X_i^s\right]$$

Note that Z_i is independent of X_j^s, $j \geq i$ (however, it is not independent of X_j^s, $j < i$). Hence,

$$E\left[\sum_i \sum_s Z_i X_i^s\right] = \sum_i \sum_s E[Z_i] \cdot E[X_i^s] \leq O(1) \cdot \sum_i p^{i-1} \leq O(1) \cdot \frac{1}{1-p} = O(1) .$$
The expected cost for all rehashes is

\[E \left[\sum_i \sum_s Z_i X_i^s \right] \]

Note that \(Z_i \) is independent of \(X_j^s, j \geq i \) (however, it is not independent of \(X_j^s, j < i \)). Hence,

\[E \left[\sum_i \sum_s Z_i X_i^s \right] = \sum_i \sum_s E[Z_i] \cdot E[X_i^s] \]

\[\leq \Theta(1) \cdot \sum_i p^{i-1} \]

\[\leq \Theta(1) \cdot \frac{1}{1 - p} \]

\[= \Theta(1) . \]
The expected cost for all rehashes is

\[E\left[\sum_i \sum_s Z_i X_i^s\right] \]

Note that \(Z_i \) is independent of \(X_j^s, j \geq i \) (however, it is not independent of \(X_j^s, j < i \)). Hence,

\[
E\left[\sum_i \sum_s Z_i X_i^s\right] = \sum_i \sum_s E[Z_i] \cdot E[X_i^s] \\
\leq \mathcal{O}(1) \cdot \sum_i p^{i-1} \\
\leq \mathcal{O}(1) \cdot \frac{1}{1 - p} \\
= \mathcal{O}(1) .
\]
What kind of hash-functions do we need?

Since \(\text{maxsteps} \) is \(\Theta(\log m) \) the largest size of a path-structure or cycle-structure contains just \(\Theta(\log m) \) different keys.

Therefore, it is sufficient to have \((\mu, \Theta(\log m))\)-independent hash-functions.
Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

Therefore, it is sufficient to have $(\mu, \Theta(\log m))$-independent hash-functions.
What kind of hash-functions do we need?

Since \(\text{maxsteps} \) is \(\Theta(\log m) \) the largest size of a path-structure or cycle-structure contains just \(\Theta(\log m) \) different keys. Therefore, it is sufficient to have \((\mu, \Theta(\log m)) \)-independent hash-functions.
Cuckoo Hashing

How do we make sure that \(n \geq (1 + \epsilon)m \)?

- Let \(\alpha := 1/(1 + \epsilon) \).
 - Keep track of the number of elements in the table. When \(m \geq \alpha n \) we double \(n \) and do a complete re-hash (table-expand).
 - Whenever \(m \) drops below \(\alpha n/4 \) we divide \(n \) by 2 and do a rehash (table-shrink).
 - Note that right after a change in table-size we have \(m = \alpha n/2 \). In order for a table-expand to occur at least \(\alpha n/2 \) insertions are required. Similar, for a table-shrink at least \(\alpha n/4 \) deletions must occur.
 - Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.
Cuckoo Hashing

How do we make sure that \(n \geq (1 + \epsilon)m \)?

- Let \(\alpha := 1/(1 + \epsilon) \).
- Keep track of the number of elements in the table. When \(m \geq \alpha n \) we double \(n \) and do a complete re-hash (table-expand).
- Whenever \(m \) drops below \(\alpha n/4 \) we divide \(n \) by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have \(m = \alpha n/2 \). In order for a table-expand to occur at least \(\alpha n/2 \) insertions are required. Similar, for a table-shrink at least \(\alpha n/4 \) deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.
Cuckoo Hashing

How do we make sure that \(n \geq (1 + \epsilon)m \)?

- Let \(\alpha := \frac{1}{1 + \epsilon} \).
- Keep track of the number of elements in the table. When \(m \geq \alpha n \) we double \(n \) and do a complete re-hash (table-expand).
- Whenever \(m \) drops below \(\alpha n/4 \) we divide \(n \) by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have \(m = \alpha n/2 \). In order for a table-expand to occur at least \(\alpha n/2 \) insertions are required. Similar, for a table-shrink at least \(\alpha n/4 \) deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.
Cuckoo Hashing

How do we make sure that $n \geq (1 + \epsilon)m$?

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n/4$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m = \alpha n/2$. In order for a table-expand to occur at least $\alpha n/2$ insertions are required. Similar, for a table-shrink at least $\alpha n/4$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.
Cuckoo Hashing

How do we make sure that \(n \geq (1 + \epsilon)m \)?

- Let \(\alpha := 1/(1 + \epsilon) \).
- Keep track of the number of elements in the table. When \(m \geq \alpha n \) we double \(n \) and do a complete re-hash (table-expand).
- Whenever \(m \) drops below \(\alpha n/4 \) we divide \(n \) by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have \(m = \alpha n/2 \). In order for a table-expand to occur at least \(\alpha n/2 \) insertions are required. Similar, for a table-shrink at least \(\alpha n/4 \) deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.
Lemma 12

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most \(\frac{1}{2(1+\epsilon)} \).
Lemma 12

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most \(\frac{1}{2(1+\epsilon)} \).