Algorithm 6 highest-label(G, s, t)
1: initialize preflow
2: foreach $u \in V \setminus \{s, t\}$ do
3: \hspace{1em} $u.current-neighbour \leftarrow u.neighbour-list$-head
4: while \exists active node u do
5: \hspace{1em} select active node u with highest label
6: \hspace{2em} discharge(u)

Lemma 1
When using highest label the number of non-saturating pushes is only $O(n^3)$.

A push from a node on level ℓ can only “activate” nodes on levels strictly less than ℓ.

This means, after a non-saturating push from u a relabel is required to make u active again.

Hence, after n non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most $n(\#\text{relabels} + 1) = O(n^3)$.

Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of $O(n^3)$ on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

Question:
How do we find the next node for a discharge operation?

Maintain lists L_i, $i \in \{0, \ldots, 2n\}$, where list L_i contains active nodes with label i (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists $L_k, L_{k-1}, \ldots, L_0$, (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to s or t the list $k - 1$ must be non-empty (i.e., the search takes constant time).
13.3 Highest Label

Hence, the total time required for searching for active nodes is at most

\[O(n^3) + n(\#\text{non-saturating pushes to } s \text{ or } t) \]

Lemma 2

The number of non-saturating pushes to \(s \) or \(t \) is at most \(O(n^2) \).

With this lemma we get

Theorem 3

The push-relabel algorithm with the rule highest-label takes time \(O(n^3) \).

Proof of the Lemma.

- We only show that the number of pushes to the source is at most \(O(n^2) \). A similar argument holds for the target.
- After a node \(v \) (which must have \(\ell(v) = n + 1 \)) made a non-saturating push to the source there needs to be another node whose label is increased from \(\leq n + 1 \) to \(n + 2 \) before \(v \) can become active again.
- This happens for every push that \(v \) makes to the source. Since, every node can pass the threshold \(n + 2 \) at most once, \(v \) can make at most \(n \) pushes to the source.
- As this holds for every node the total number of pushes to the source is at most \(O(n^2) \).