6.2 Master Theorem

Lemma 1

Let $a \geq 1, b \geq 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n).$$

Case 1.

If $f(n) = \Theta(n^{\log_b(a)-\epsilon})$ then $T(n) = \Theta(n^{\log_b(a)})$.

Case 2.

If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b(a)} \log^{k+1} n)$, $k \geq 0$.

Case 3.

If $f(n) = \Omega(n^{\log_b(a)+\epsilon})$ and for sufficiently large n
a $af\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c < 1$ then $T(n) = \Theta(f(n))$.
We prove the Master Theorem for the case that n is of the form b^ℓ, and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

\[n \]
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

![Recursion Tree Diagram]

6.2 Master Theorem
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

\[f(n) \]

\[af\left(\frac{n}{b}\right) \]

\[a^2 f\left(\frac{n}{b^2}\right) \]
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

\[
\begin{align*}
 f(n) & \quad \text{root of the tree} \\
 af\left(\frac{n}{b}\right) & \quad \text{second level} \\
 a^2f\left(\frac{n}{b^2}\right) & \quad \text{third level} \\
 \vdots & \\
 a^{\log_b n} & \quad \text{leaves of the tree}
\end{align*}
\]
The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

\[
\begin{align*}
\text{n} & \quad a \\
\text{n/b} & \quad a \text{f(n/b)} \\
\text{n/b^2} & \quad a^2 \text{f(n/b^2)} \\
\vdots & \quad \vdots \\
1 & = n^{\log_b a}
\end{align*}
\]
6.2 Master Theorem

This gives

\[T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right). \]
Case 1. Now suppose that $f(n) \leq cn^{\log_b a - \epsilon}$.
Case 1. Now suppose that $f(n) \leq cn^{\log_b a - \epsilon}$.

$$T(n) - n^{\log_b a}$$
Case 1. Now suppose that $f(n) \leq cn^{\log_b a - \epsilon}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$
Case 1. Now suppose that \(f(n) \leq cn^{\log_b a - \epsilon} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}
\]

Hence,

\[
T(n) \leq (c b^{\epsilon - 1} + 1) n^{\log_b a - \epsilon}
\]
Case 1. Now suppose that $f(n) \leq cn^{\log_b a - \epsilon}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$
Case 1. Now suppose that \(f(n) \leq cn^{\log_b a - \epsilon} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}
\]

\[
= cn^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^\epsilon)^i
\]

\[
b^{-i(\log_b a - \epsilon)} = b^{\epsilon i (\log_b a) - i} = b^{\epsilon i a - i}
\]
Case 1. Now suppose that $f(n) \leq cn^{\log_b a - \epsilon}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$b^{-i(\log_b a - \epsilon)} = b^\epsilon i (b^{\log_b a})^{-i} = b^\epsilon i a^{-i}$$

$$= cn^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n-1} (b^\epsilon)^i$$

$$\sum_{i=0}^{k} q^i = \frac{q^{k+1} - 1}{q - 1}$$
Case 1. Now suppose that \(f(n) \leq cn^{\log_b a - \epsilon} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}
\]

\[
b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}
\]

\[
\sum_{i=0}^{k} q^i = \frac{q^{k+1} - 1}{q - 1}
\]

\[
= cn^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n-1} (b^\epsilon)^i
\]

\[
= cn^{\log_b a - \epsilon} (b^\epsilon \log_b n - 1) / (b^\epsilon - 1)
\]
Case 1. Now suppose that \(f(n) \leq cn^{\log_b a - \epsilon} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right) \\
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}
\]

\[
b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}
\]

\[
\sum_{i=0}^{k} q^i = \frac{q^{k+1} - 1}{q - 1} = c n^{\log_b a - \epsilon} (\frac{b^{\epsilon \log_b n} - 1}{b^\epsilon - 1})
\]

\[
= c n^{\log_b a - \epsilon} (n^\epsilon - 1) / (b^\epsilon - 1)
\]
Case 1. Now suppose that \(f(n) \leq cn^{\log_b a - \epsilon} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)
\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}
\]

\[
b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}
\]

\[
\sum_{i=0}^{k} q^i = \frac{q^{k+1} - 1}{q - 1}
\]

\[
= c n^{\log_b a - \epsilon} \left(b^{\epsilon \log_b n - 1} \right) / (b^{\epsilon} - 1)
= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)
= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1) / (n^{\epsilon})
\]
Case 1. Now suppose that $f(n) \leq cn^{\log_b a - \epsilon}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^{i} f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^{i} \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$

$$= cn^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$

$$= cn^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)$$

$$= cn^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1) / (n^{\epsilon})$$

Hence,

$$T(n) \leq \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b a}$$
Case 1. Now suppose that \(f(n) \leq cn^{\log_b a - \epsilon} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right) \\
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}
\]

\[
b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}
\]

\[
\sum_{i=0}^{k} q^i = \frac{q^{k+1} - 1}{q - 1}
\]

Hence,

\[
T(n) \leq \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b (a)}
\]

\[\Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).\]
Case 2. Now suppose that \(f(n) \leq cn^{\log_b a} \).
Case 2. Now suppose that $f(n) \leq cn^{\log_b a}$.

$$T(n) - n^{\log_b a}$$
Case 2. Now suppose that $f(n) \leq cn^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$
Case 2. Now suppose that \(f(n) \leq cn^{\log_b a} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}
\]

Hence, \(T(n) = O(n^{\log_b a} \log_b n) \).
Case 2. Now suppose that \(f(n) \leq cn^{\log_b a} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) \\
\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \\
= cn^{\log_b a} \sum_{i=0}^{\log_b n-1} 1
\]
Case 2. Now suppose that $f(n) \leq cn^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= cn^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= cn^{\log_b a} \log_b n$$
Case 2. Now suppose that \(f(n) \leq cn^{\log_b a} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}
\]

\[
= cn^{\log_b a} \sum_{i=0}^{\log_b n-1} 1
\]

\[
= cn^{\log_b a} \log_b n
\]

Hence,

\[
T(n) = O(n^{\log_b a} \log_b n)
\]
Case 2. Now suppose that $f(n) \leq cn^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= cn^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= cn^{\log_b a} \log_b n$$

Hence,

$$T(n) = O(n^{\log_b a} \log_b n) \Rightarrow T(n) = O(n^{\log_b a} \log n).$$
Case 2. Now suppose that $f(n) \geq cn^{\log_b a}$.
Case 2. Now suppose that \(f(n) \geq cn^{\log_b a} \).

\[
T(n) - n^{\log_b a}
\]
Case 2. Now suppose that \(f(n) \geq cn^{\log_b a} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\]
Case 2. Now suppose that $f(n) \geq cn^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) \geq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}.$$
Case 2. Now suppose that $f(n) \geq cn^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= cn^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$
Case 2. Now suppose that $f(n) \geq c n^{\log_b a}$.

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)
\geq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}
= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1
= c n^{\log_b a} \log_b n
\]
Case 2. Now suppose that $f(n) \geq cn^\log_b a$.

\[
T(n) - n^\log_b a = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}
\]

\[
= cn^\log_b a \sum_{i=0}^{\log_b n - 1} 1
\]

\[
= cn^\log_b a \log_b n
\]

Hence,

\[
T(n) = \Omega(n^\log_b a \log_b n)
\]
Case 2. Now suppose that $f(n) \geq cn^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f \left(\frac{n}{b^i} \right)$$

$$\geq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i} \right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \Omega \left(n^{\log_b a} \log_b n \right)$$

$\Rightarrow T(n) = \Omega \left(n^{\log_b a} \log n \right)$.

6.2 Master Theorem
Case 2. Now suppose that $f(n) \leq cn^{\log_b a} (\log_b(n))^k$.
Case 2. Now suppose that $f(n) \leq cn^{\log_b a} (\log_b(n))^k$.

$$T(n) - n^{\log_b a}$$
Case 2. Now suppose that \(f(n) \leq cn^{\log_b a (\log_b(n))^k} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\]
Case 2. Now suppose that \(f(n) \leq cn^{\log_b a} (\log_b (n))^k \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k
\]
Case 2. Now suppose that $f(n) \leq cn^{\log_b a} (\log_b(n))^k$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$n = b^\ell \Rightarrow \ell = \log_b n$
Case 2. Now suppose that \(f(n) \leq cn^{\log_b a} (\log_b (n))^k \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f \left(\frac{n}{b^i} \right)
\]

\[
\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i} \right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i} \right) \right)^k
\]

\[
n = b^\ell \Rightarrow \ell = \log_b n
\]

\[
= cn^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b \left(\frac{b^\ell}{b^i} \right) \right)^k
\]
Case 2. Now suppose that $f(n) \leq cn^{\log_b a} (\log_b (n))^k$.

\[T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right) \leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k \]

$n = b^\ell \Rightarrow \ell = \log_b n$

\[= cn^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k \]

\[= cn^{\log_b a} \sum_{i=0}^{\ell-1} (\ell - i)^k \]
Case 2. Now suppose that \(f(n) \leq c n^{\log_b a} (\log_b(n))^k \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k
\]

\[
n = b^\ell \Rightarrow \ell = \log_b n
\]

\[
= c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k
\]

\[
= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k
\]

\[
= c n^{\log_b a} \sum_{i=1}^{\ell} i^k
\]
Case 2. Now suppose that \(f(n) \leq cn^{\log_b a} (\log_b(n))^k \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b\left(\frac{n}{b^i}\right)\right)^k
\]

\[
n = b^\ell \Rightarrow \ell = \log_b n
\]

\[
= cn^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k
\]

\[
= cn^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k
\]

\[
= cn^{\log_b a} \sum_{i=1}^{\ell} i^k \approx \frac{1}{k} \ell^{k+1}
\]
Case 2. Now suppose that \(f(n) \leq cn^{\log_b a (\log_b (n))^k} \).

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k
\]

\[
n = b^\ell \Rightarrow \ell = \log_b n
\]

\[
= cn^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k
\]

\[
= cn^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k
\]

\[
= cn^{\log_b a} \sum_{i=1}^{\ell} i^k
\]

\[
\approx \frac{c}{k} n^{\log_b a} \ell^{k+1}
\]
Case 2. Now suppose that $f(n) \leq cn^{\log_b a (\log_b(n))^k}$.

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k
\]

\[
n = b^\ell \Rightarrow \ell = \log_b n
\]

\[
= cn^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k
\]

\[
= cn^{\log_b a} \sum_{i=0}^{\ell-1} (\ell - i)^k
\]

\[
= cn^{\log_b a} \sum_{i=0}^{\ell} i^k
\]

\[
\approx \frac{c}{k} n^{\log_b a \ell k + 1}
\]

\[
\Rightarrow T(n) = \Theta(n^{\log_b a \log^{k+1} n}).
\]
Case 3. Now suppose that $f(n) \geq dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $af(n/b) \leq cf(n)$, for $c < 1$.

Hence, $T(n) \leq O(f(n))$.

Where did we use $f(n) \geq \Omega(n^{\log_b a + \epsilon})$?
Case 3. Now suppose that \(f(n) \geq dn^{\log_b a + \epsilon} \), and that for sufficiently large \(n \): \(af(n/b) \leq cf(n) \), for \(c < 1 \).

From this we get \(a^i f(n/b^i) \leq c^i f(n) \), where we assume that \(n/b^{i-1} \geq n_0 \) is still sufficiently large.
Case 3. Now suppose that $f(n) \geq d n^{\log_b a + \epsilon}$, and that for sufficiently large n: $a f(n/b) \leq c f(n)$, for $c < 1$.

From this we get $a^i f(n/b^i) \leq c^i f(n)$, where we assume that $n/b^{i-1} \geq n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
Case 3. Now suppose that \(f(n) \geq dn^{\log_b a + \epsilon} \), and that for sufficiently large \(n \): \(af(n/b) \leq cf(n) \), for \(c < 1 \).

From this we get \(a^i f(n/b^i) \leq c^i f(n) \), where we assume that \(n/b^{i-1} \geq n_0 \) is still sufficiently large.

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right) \\
\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})
\]
Case 3. Now suppose that $f(n) \geq dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $af(n/b) \leq cf(n)$, for $c < 1$.

From this we get $a^i f(n/b^i) \leq c^i f(n)$, where we assume that $n/b^{i-1} \geq n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right) \leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$q < 1: \sum_{i=0}^{n} q^i = \frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q}$
Case 3. Now suppose that \(f(n) \geq dn^{\log_b a + \epsilon} \), and that for sufficiently large \(n \): \(af(n/b) \leq cf(n) \), for \(c < 1 \).

From this we get \(a^i f(n/b^i) \leq c^i f(n) \), where we assume that \(n/b^{i-1} \geq n_0 \) is still sufficiently large.

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)
\]

\[
\leq \sum_{i=0}^{\log_b n-1} c^i f(n) + \mathcal{O}(n^{\log_b a})
\]

\[
q < 1 : \sum_{i=0}^{n} q^i = \frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q}
\]

\[
\leq \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_b a})
\]
Case 3. Now suppose that \(f(n) \geq dn^{\log_b a + \epsilon} \), and that for sufficiently large \(n \): \(af(n/b) \leq cf(n) \), for \(c < 1 \).

From this we get \(a^i f(n/b^i) \leq c^i f(n) \), where we assume that \(n/b^{i-1} \geq n_0 \) is still sufficiently large.

\[
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + O(n^{\log_b a})
\leq \frac{1}{1 - c} f(n) + O(n^{\log_b a})
\]

Hence,

\[
T(n) \leq O\left(f(n)\right)
\]
Case 3. Now suppose that $f(n) \geq dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $af(n/b) \leq cf(n)$, for $c < 1$.

From this we get $a^i f(n/b^i) \leq c^i f(n)$, where we assume that $n/b^{i-1} \geq n_0$ is still sufficiently large.

\[
\begin{align*}
T(n) - n^{\log_b a} & = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right) \\
& \leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + O(n^{\log_b a}) \\
\end{align*}
\]

$q < 1: \sum_{i=0}^{n} q^i = \frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q}$

Hence,

\[
T(n) \leq O(f(n)) \quad \Rightarrow \quad T(n) = \Theta(f(n)).
\]
Example: Multiplying Two Integers

Suppose we want to multiply two \(n \)-bit Integers, but our registers can only perform operations on integers of constant size.
Example: Multiplying Two Integers

Suppose we want to multiply two \(n \)-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers \(A \) and \(B \):
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{c}
1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \\
\hline
1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1
\end{array}
\]

This gives that two n-bit integers can be added in time $O(n)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose we want to multiply two \(n \)-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers \(A \) and \(B \):

\[
\begin{array}{c}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{cccccccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}
\]

This gives that two n-bit integers can be added in time $O(n)$.

\[6.2 \text{ Master Theorem}\]
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{c}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & B \\
\end{array}
\]

\[
\begin{array}{c}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 \\
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{cccccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
\hline
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}
\]

This gives that two n-bit integers can be added in time $O(n)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose we want to multiply two \(n \)-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers \(A \) and \(B \):

\[
\begin{array}{c}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & B \\
\end{array}
\]

\[
\begin{array}{c}
0 & 0 \\
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline
0 & 0 & 0 & 0
\end{array}
\]

This gives that two n-bit integers can be added in time $O(n)$.
Example: Multiplying Two Integers

Suppose we want to multiply two \(n \)-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers \(A \) and \(B \):

\[
\begin{array}{c}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

This gives that two \(n \)-bit integers can be added in time \(O(n) \).
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{cccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}
\]

This gives that two n-bit integers can be added in time $O(n)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{cccc}
1&1&0&1 \\
1&0&0&0
\end{array}
\begin{array}{cccc}
1&0&1&0 \\
1&0&0&1
\end{array}
\begin{array}{cccc}
A \\
B
\end{array}
\]

\[
\begin{array}{cccc}
1&0&0&0
\end{array}
\begin{array}{cccc}
0&1&1&1
\end{array}
\begin{array}{cccc}
1&0&0&0
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{c}
1 & 1 & 0 & 1 \\
& & & \\
1 & 0 & 0 & 0
\end{array}
\quad
\begin{array}{c}
1 & 0 & 1 & 0 & 1 \\
& & & \\
1 & 0 & 0 & 1 & 1
\end{array}
\quad
A
\quad
B
\]

\[
\begin{array}{c}
0 & 1 & 0 & 0 & 0
\end{array}
\]

This gives that two n-bit integers can be added in time $O(n)$.
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{cccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & A \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & B \\
\hline
0 & 1 & 0 & 0 & 0 & 0
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
0 & 0 & 1 & 0 & 0 & 0 &
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & B \\
\hline
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two \(n \)-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers \(A \) and \(B \):
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{c}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two \(n \)-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers \(A \) and \(B \):

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
\]

This gives that two \(n \)-bit integers can be added in time \(O(n) \).
Example: Multiplying Two Integers

Suppose we want to multiply two \(n \)-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers \(A \) and \(B \):

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
\]

This gives that two \(n \)-bit integers can be added in time \(O(n) \).
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{ccccccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
\]
Example: Multiplying Two Integers

Suppose we want to multiply two \(n \)-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers \(A \) and \(B \):

\[
\begin{array}{cccccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
\]

This gives that two \(n \)-bit integers can be added in time \(O(n) \).
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

\[
\begin{array}{c}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & B \\
\hline
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\]

This gives that two n-bit integers can be added in time $O(n)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an \(n \)-bit integer \(A \) and an \(m \)-bit integer \(B \) \((m \leq n)\).
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{c}
1 & 0 & 0 & 0 & 1 \\
\times & 1 & 0 & 1 & 1
\end{array}
\]

Time requirement:
- Computing intermediate results: $O(nm)$.
- Adding m numbers of length $\leq 2n$: $O((m+n)m) = O(nm)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an \(n \)-bit integer \(A \) and an \(m \)-bit integer \(B \) (\(m \leq n \)).

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 & 1 \\
\times & & 1 & 0 & 1 \\
\hline
1 & 0 & 0 & 0 & 1
\end{array}
\]
Example: Multiplying Two Integers

Suppose that we want to multiply an \(n \)-bit integer \(A \) and an \(m \)-bit integer \(B \) \((m \leq n)\).

\[
\begin{array}{c}
1 & 0 & 0 & 0 & 1 \\
\times & & & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline
1 & 0 & 0 & 0 & 0 & 1
\end{array}
\]

Time requirement:

- Computing intermediate results: \(O(nm) \).
- Adding \(m \) numbers of length \(\leq 2n \): \(O((m + n)m) = O(nm) \).
Example: Multiplying Two Integers

Suppose that we want to multiply an \(n \)-bit integer \(A \) and an \(m \)-bit integer \(B \) \((m \leq n)\).

\[
\begin{array}{c}
1 \ 0 \ 0 \ 0 \ 1 \\
\times \\
1 \ 0 \ \boxed{1} \ 1
\end{array}
\]

\[
\begin{array}{c}
1 \ 0 \ 0 \ 0 \ 0 \ 1
\end{array}
\]

Time requirement:

- Computing intermediate results: \(O(\ell^m) \).
- Adding \(m \) numbers of length \(\leq 2n \): \(O((m + n)m) = O(nm) \).

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 & 1 \\
\times & 1 & 0 & 1 & 1 \\
\hline
1 & 0 & 0 & 0 & 1 \\
0 &
\end{array}
\]

Time requirement:

\begin{itemize}
 \item Computing intermediate results: $O(nm)$.
 \item Adding m numbers of length $\leq 2n$: $O((m+n)m) = O(nm)$.
\end{itemize}
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 1 & \times & 1 & 0 & 1 & 1 \\
\hline
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}
\]

Time requirement:
- Computing intermediate results: $O(nm)$.
- Adding m numbers of length $\leq 2n$: $O((m+n)m) = O(nm)$.

6.2 Master Theorem

Ernst Mayr, Harald Räcke
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{c}
 1 & 0 & 0 & 0 & 1 \\
\times & \begin{array}{c} 1 \ \ 0 \ \ 1 \ \ 1 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
 1 & 0 & 0 & 0 & 1 \\
 \hline
 1 & 0 & 0 & 0 & 1 \\
 1 & 0 & 0 & 0 & 1 \ 0
\end{array}
\]

Time requirement:
- Computing intermediate results: $O(nm)$.
- Adding m numbers of length $\leq 2n$: $O((m+n)m) = O(nm)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{cc}
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \end{array} \times \begin{array}{cc}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Time requirement:
- Computing intermediate results: $O(nm)$.
- Adding m numbers of length $\leq 2n$: $O((m + n)m) = O(nm)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 & 1 \\
\times & 1 & 0 & 1 & 1 \\
\hline
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

Time requirement:

- Computing intermediate results: $O(nm)$.
- Adding m numbers of length $\leq 2n$: $O((m+n)m) = O(nm)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an \(n \)-bit integer \(A \) and an \(m \)-bit integer \(B \) \((m \leq n)\).

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 & 1 \\
\times & 1 & 0 & 1 & 1 \\
\hline
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Time requirement:
- Computing intermediate results: \(O(nm) \).
- Adding \(m \) numbers of length \(\leq 2n \): \(O((m+n)m) = O(nm) \).

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 & 1 \\
\times & 1 & 0 & 1 & 1 \\
\hline
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

Time requirement:
- Computing intermediate results: $O(nm)$.
- Adding m numbers of length $\leq 2n$: $O((m+n)m) = O(nm)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{c}
1 & 0 & 0 & 0 & 1 \\
\times & 1 & 0 & 1 & 1 \\
\hline
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\]

Time requirement:
- Computing intermediate results: $O(nm)$.
- Adding m numbers of length $\leq 2n$: $O((m+n)m) = O(nm)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\times & 1 & 0 & 1 \\
\hline
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
\]

Time requirement:

- Computing intermediate results: $O(nm)$.
- Adding m numbers of length $\leq 2n$: $O((m+n)m) = O(nm)$.

6.2 Master Theorem
Example: Multiplying Two Integers

Suppose that we want to multiply an \(n \)-bit integer \(A \) and an \(m \)-bit integer \(B \) \((m \leq n)\).

\[
\begin{array}{c}
1 \ 0 \ 0 \ 0 \ 1 \\
\times \\
1 \ 0 \ 1 \ 1 \\
\hline
1 \ 0 \ 0 \ 0 \ 1 \\
1 \ 0 \ 0 \ 0 \ 1 \ 0 \\
0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\
1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\
\hline
1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \\
\end{array}
\]

Time requirement:
- Computing intermediate results: \(O(nm) \).
- Adding \(m \) numbers of length \(\leq 2n \): \(O((m+n)m) = O(nm) \).

6.2 Master Theorem

Ernst Mayr, Harald Räcke
Example: Multiplying Two Integers

Suppose that we want to multiply an \(n\)-bit integer \(A\) and an \(m\)-bit integer \(B\) \((m \leq n)\).

\[
\begin{array}{c}
1 \quad 0 \quad 0 \quad 0 \quad 1 \\
\times \quad 1 \quad 0 \quad 1 \quad 1 \\
\hline
1 \quad 0 \quad 0 \quad 0 \quad 1 \\
1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \\
0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \\
\hline
1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1
\end{array}
\]

Time requirement:
Example: Multiplying Two Integers

Suppose that we want to multiply an \(n \)-bit integer \(A \) and an \(m \)-bit integer \(B \) (\(m \leq n \)).

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\times & 1 & 0 & 1 \\
\hline
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1
\end{array}
\]

Time requirement:
- Computing intermediate results: \(\Theta(nm) \).
Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \leq n$).

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 & 1 \\
\times & 1 & 0 & 1 & 1 \\
\hline
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

Time requirement:

- Computing intermediate results: $\mathcal{O}(nm)$.
- Adding m numbers of length $\leq 2n$:
 \[\mathcal{O}((m + n)m) = \mathcal{O}(nm).\]
Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n = 2^k$, for some k.
Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n = 2^k$, for some k.

$B \times A$
Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n = 2^k$, for some k.

\[
\begin{array}{c}
\begin{array}{c}
b_{n-1} \\
\cdots \\
b_0
\end{array}
\end{array}
\times
\begin{array}{c}
\begin{array}{c}
a_{n-1} \\
\cdots \\
a_0
\end{array}
\end{array}\]
Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n = 2^k$, for some k.

$$
\begin{array}{c}
\text{b}_{n-1} \cdots \text{b}_n \text{b}_{n-1} \cdots \text{b}_0 \\
\text{a}_{n-1} \cdots \text{a}_n \text{a}_{n-1} \cdots \text{a}_0
\end{array}
$$
Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n = 2^k$, for some k.

Then it holds that $A = A_1 \cdot 2^{n_2} + A_0$ and $B = B_1 \cdot 2^{n_2} + B_0$.
Hence, $A \cdot B = A_1 B_1 \cdot 2^{n_2} + (A_1 B_0 + A_0 B_1) \cdot 2^{n_2} + A_0 B_0$.

\square
A recursive approach:
Suppose that integers A and B are of length $n = 2^k$, for some k.

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0 \quad \text{and} \quad B = B_1 \cdot 2^{\frac{n}{2}} + B_0$$
Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n = 2^k$, for some k.

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
$$B = B_1 \cdot 2^{\frac{n}{2}} + B_0$$

Hence,

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 B_0$$
Example: Multiplying Two Integers

Algorithm 3 $\text{mult}(A, B)$

1: if $|A| = |B| = 1$ then
2: \hspace{1em} return $a_0 \cdot b_0$
3: split A into A_0 and A_1
4: split B into B_0 and B_1
5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$
6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$
7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n).$$
Algorithm 3 \text{mult}(A, B)
\begin{align*}
1: & \text{ if } |A| = |B| = 1 \text{ then} \\
2: & \quad \text{return } a_0 \cdot b_0 \\
3: & \text{ split } A \text{ into } A_0 \text{ and } A_1 \\
4: & \text{ split } B \text{ into } B_0 \text{ and } B_1 \\
5: & Z_2 \leftarrow \text{mult}(A_1, B_1) \\
6: & Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1) \\
7: & Z_0 \leftarrow \text{mult}(A_0, B_0) \\
8: & \text{return } Z_2 \cdot 2^n + Z_1 \cdot 2^{n/2} + Z_0
\end{align*}

\(O(1)\)
Example: Multiplying Two Integers

Algorithm 3 $\text{mult}(A, B)$

1: if $|A| = |B| = 1$ then
2: return $a_0 \cdot b_0$
3: split A into A_0 and A_1
4: split B into B_0 and B_1
5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$
6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$
7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

\(\mathcal{O}(1)\)

We get the following recurrence:

\(T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n)\)
Example: Multiplying Two Integers

Algorithm 3 \mult(A, B)

\begin{align*}
1: \quad & \textbf{if } |A| = |B| = 1 \textbf{ then} \\
2: \quad & \textbf{return } a_0 \cdot b_0 \\
3: \quad & \text{split } A \text{ into } A_0 \text{ and } A_1 \\
4: \quad & \text{split } B \text{ into } B_0 \text{ and } B_1 \\
5: \quad & Z_2 \leftarrow \mult(A_1, B_1) \\
6: \quad & Z_1 \leftarrow \mult(A_1, B_0) + \mult(A_0, B_1) \\
7: \quad & Z_0 \leftarrow \mult(A_0, B_0) \\
8: \quad & \textbf{return } Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0
\end{align*}

$O(1)$

$O(1)$

$O(n)$

We get the following recurrence:

$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$

6.2 Master Theorem
Example: Multiplying Two Integers

Algorithm 3 $\text{mult}(A, B)$

1: if $|A| = |B| = 1$ then
2: return $a_0 \cdot b_0$
3: split A into A_0 and A_1
4: split B into B_0 and B_1
5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$
6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$
7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

$O(1)$

$O(1)$

$O(n)$

$O(n)$
Example: Multiplying Two Integers

\begin{algorithm}
\begin{align*}
\text{Algorithm 3 } & \text{ mult}(A, B) \\
1: \quad & \text{if } |A| = |B| = 1 \text{ then} \quad \mathcal{O}(1) \\
2: \quad & \text{return } a_0 \cdot b_0 \quad \mathcal{O}(1) \\
3: \quad & \text{split } A \text{ into } A_0 \text{ and } A_1 \quad \mathcal{O}(n) \\
4: \quad & \text{split } B \text{ into } B_0 \text{ and } B_1 \quad \mathcal{O}(n) \\
5: \quad & Z_2 \leftarrow \text{mult}(A_1, B_1) \\
6: \quad & Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1) \\
7: \quad & Z_0 \leftarrow \text{mult}(A_0, B_0) \\
8: \quad & \text{return } Z_2 \cdot 2^n + Z_1 \cdot 2^{n/2} + Z_0 \\
\end{align*}
\end{algorithm}

We get the following recurrence:

\[T(n) = 4 \cdot T\left(\frac{n}{2}\right) + \mathcal{O}(n) \]
Example: Multiplying Two Integers

Algorithm 3 \(\text{mult}(A, B) \)

1: \textbf{if} \(|A| = |B| = 1 \) \textbf{then}
2: \quad \textbf{return} \(a_0 \cdot b_0 \)
3: \quad \text{split} \(A \) into \(A_0 \) and \(A_1 \)
4: \quad \text{split} \(B \) into \(B_0 \) and \(B_1 \)
5: \quad \(Z_2 \leftarrow \text{mult}(A_1, B_1) \)
6: \quad \(Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1) \)
7: \quad \(Z_0 \leftarrow \text{mult}(A_0, B_0) \)
8: \quad \textbf{return} \(Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0 \)

\(\mathcal{O}(1) \)
\(\mathcal{O}(1) \)
\(\mathcal{O}(n) \)
\(\mathcal{O}(n) \)
\(T(\frac{n}{2}) \)
\(2T(\frac{n}{2}) + \mathcal{O}(n) \)

6.2 Master Theorem
Algorithm 3 \texttt{mult}(A, B)

1: \textbf{if} \ |A| = |B| = 1 \textbf{then} \quad \mathcal{O}(1)
2: \quad \textbf{return} \ a_0 \cdot b_0 \quad \mathcal{O}(1)
3: \quad \text{split} \ A \ \text{into} \ A_0 \ \text{and} \ A_1 \quad \mathcal{O}(n)
4: \quad \text{split} \ B \ \text{into} \ B_0 \ \text{and} \ B_1 \quad \mathcal{O}(n)
5: \quad Z_2 \leftarrow \text{mult}(A_1, B_1) \quad \mathcal{T(n/2)}
6: \quad Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1) \quad 2\mathcal{T(n/2)} + \mathcal{O}(n)
7: \quad Z_0 \leftarrow \text{mult}(A_0, B_0) \quad \mathcal{T(n/2)}
8: \quad \textbf{return} \ Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0

We get the following recurrence:

\[T(n) = 4 \mathcal{T}(n^{2}) + \mathcal{O}(n) \]
Example: Multiplying Two Integers

Algorithm 3 \text{mult}(A, B)

1: \textbf{if } |A| = |B| = 1 \textbf{ then} \hfill \mathcal{O}(1)
2: \hspace{1em} \textbf{return } a_0 \cdot b_0 \hfill \mathcal{O}(1)
3: \text{split } A \text{ into } A_0 \text{ and } A_1 \hfill \mathcal{O}(n)
4: \text{split } B \text{ into } B_0 \text{ and } B_1 \hfill \mathcal{O}(n)
5: Z_2 \leftarrow \text{mult}(A_1, B_1) \hfill T\left(\frac{n}{2}\right)
6: Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1) \hfill 2T\left(\frac{n}{2}\right) + \mathcal{O}(n)
7: Z_0 \leftarrow \text{mult}(A_0, B_0) \hfill T\left(\frac{n}{2}\right)
8: \textbf{return } Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0 \hfill \mathcal{O}(n)
Example: Multiplying Two Integers

Algorithm 3 $\text{mult}(A, B)$

1: if $|A| = |B| = 1$ then
2: return $a_0 \cdot b_0$
3: split A into A_0 and A_1
4: split B into B_0 and B_1
5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$
6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$
7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{n/2} + Z_0$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n).$$

6.2 Master Theorem
Example: Multiplying Two Integers

Master Theorem: Recurrence: \(T[n] = aT\left(\frac{n}{b}\right) + f(n) \).

- **Case 1:** \(f(n) = \Theta(n^{\log_b a - \epsilon}) \Rightarrow T(n) = \Theta(n^{\log_b a}) \)
- **Case 2:** \(f(n) = \Theta(n^{\log_b a \log^k n}) \Rightarrow T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
- **Case 3:** \(f(n) = \Omega(n^{\log_b a + \epsilon}) \Rightarrow T(n) = \Theta(f(n)) \)
Example: Multiplying Two Integers

Master Theorem: Recurrence: \(T[n] = aT\left(\frac{n}{b}\right) + f(n) \).

- **Case 1:** \(f(n) = \Theta(n^{\log_b a - \epsilon}) \) \(T(n) = \Theta(n^{\log_b a}) \)
- **Case 2:** \(f(n) = \Theta(n^{\log_b a \log^k n}) \) \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
- **Case 3:** \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) \(T(n) = \Theta(f(n)) \)

In our case \(a = 4, b = 2 \), and \(f(n) = \Theta(n) \). Hence, we are in Case 1, since \(n = \Theta(n^{2-\epsilon}) = \Theta(n^{\log_b a - \epsilon}) \).
Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n] = aT\left(\frac{n}{b}\right) + f(n)$.

- **Case 1:** $f(n) = \Theta(n^{\log_b a - \epsilon})$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$
- **Case 2:** $f(n) = \Theta(n^{\log_b a \log^k n})$ $\Rightarrow T(n) = \Theta(n^{\log_b a \log^{k+1} n})$
- **Case 3:** $f(n) = \Omega(n^{\log_b a + \epsilon})$ $\Rightarrow T(n) = \Theta(f(n))$

In our case $a = 4$, $b = 2$, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = \Theta(n^{2-\epsilon}) = \Theta(n^{\log_b a - \epsilon})$.

We get a running time of $\Theta(n^2)$ for our algorithm.
Example: Multiplying Two Integers

Master Theorem: Recurrence: \(T[n] = aT\left(\frac{n}{b}\right) + f(n) \).

- **Case 1:** \(f(n) = \Theta(n^{\log_b a - \epsilon}) \)
 \(T(n) = \Theta(n^{\log_b a}) \)
- **Case 2:** \(f(n) = \Theta(n^{\log_b a \log^k n}) \)
 \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
- **Case 3:** \(f(n) = \Omega(n^{\log_b a + \epsilon}) \)
 \(T(n) = \Theta(f(n)) \)

In our case \(a = 4 \), \(b = 2 \), and \(f(n) = \Theta(n) \). Hence, we are in Case 1, since \(n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon}) \).

We get a running time of \(O(n^2) \) for our algorithm.

\(\Rightarrow \) Not better then the “school method”.

6.2 Master Theorem

Ernst Mayr, Harald Räcke
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

$$Z_1 = A_1 B_0 + A_0 B_1 = (A_0 + A_1) (B_0 + B_1) - A_1 B_1 - A_0 B_0$$

Hence,

Algorithm 4 $\text{mult}(A, B)$

1. if $|A| = |B| = 1$
2. return $a_0 \cdot b_0$
3. split A into A_0 and A_1
4. split B into B_0 and B_1
5. $Z_2 \leftarrow \text{mult}(A_1, B_1)$
6. $Z_0 \leftarrow \text{mult}(A_0, B_0)$
7. $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$
8. return $Z_2 \cdot 2^n + Z_1 \cdot 2^{n-1} + Z_0$
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

$$Z_1 = A_1B_0 + A_0B_1$$
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

$$Z_1 = A_1B_0 + A_0B_1$$

$$= (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0$$
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

\[
Z_1 = A_1B_0 + A_0B_1 = Z_2 = Z_0
\]

\[
= (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0
\]
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

$$Z_1 = A_1B_0 + A_0B_1 \quad \Rightarrow \quad Z_2 = Z_0$$

$$\Rightarrow \quad (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0$$

Hence,
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

\[
Z_1 = A_1B_0 + A_0B_1 = Z_2 = Z_0
\]

\[
= (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0
\]

Hence,

```
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then
2: return $a_0 \cdot b_0$
3: split A into $A_0$ and $A_1$
4: split B into $B_0$ and $B_1$
5: $Z_2 \leftarrow$ mult($A_1, B_1$)
6: $Z_0 \leftarrow$ mult($A_0, B_0$)
7: $Z_1 \leftarrow$ mult($A_0 + A_1, B_0 + B_1$) − $Z_2$ − $Z_0$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{n/2} + Z_0$
```
Example: Multiplying Two Integers

We can use the following identity to compute \(Z_1 \):

\[
Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0
\
= (A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0
\]

Hence,

<table>
<thead>
<tr>
<th>Algorithm 4 (\text{mult}(A, B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: if (</td>
</tr>
<tr>
<td>2: return (a_0 \cdot b_0)</td>
</tr>
<tr>
<td>3: split (A) into (A_0) and (A_1)</td>
</tr>
<tr>
<td>4: split (B) into (B_0) and (B_1)</td>
</tr>
<tr>
<td>5: (Z_2 \leftarrow \text{mult}(A_1, B_1))</td>
</tr>
<tr>
<td>6: (Z_0 \leftarrow \text{mult}(A_0, B_0))</td>
</tr>
<tr>
<td>7: (Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0)</td>
</tr>
<tr>
<td>8: return (Z_2 \cdot 2^n + Z_1 \cdot 2^{n/2} + Z_0)</td>
</tr>
</tbody>
</table>

\[O(1) \]
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

$$Z_1 = A_1B_0 + A_0B_1 = Z_2 = Z_0$$

$$= (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0$$

Hence,

Algorithm 4 \texttt{mult}(A, B)

1: if $|A| = |B| = 1$ then \hspace{1cm} $O(1)$
2: \textbf{return} $a_0 \cdot b_0$ \hspace{1cm} $O(1)$
3: split A into A_0 and A_1
4: split B into B_0 and B_1
5: $Z_2 \leftarrow \texttt{mult}(A_1, B_1)$
6: $Z_0 \leftarrow \texttt{mult}(A_0, B_0)$
7: $Z_1 \leftarrow \texttt{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$
8: \textbf{return} $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

A more precise (correct) analysis would say that computing Z_1 needs time $T(n^2 + 1) + O(n)$.
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

$$ Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0 $$

$$ = (A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0 $$

Hence,

```
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then
2: return $a_0 \cdot b_0$
3: split A into $A_0$ and $A_1$
4: split B into $B_0$ and $B_1$
5: $Z_2 \leftarrow$ mult($A_1, B_1$)
6: $Z_0 \leftarrow$ mult($A_0, B_0$)
7: $Z_1 \leftarrow$ mult($A_0 + A_1, B_0 + B_1$) − $Z_2$ − $Z_0$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{n/2} + Z_0$
```

$\mathcal{O}(1)$

$\mathcal{O}(1)$

$\mathcal{O}(n)$
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

$$Z_1 = A_1B_0 + A_0B_1 = Z_2 = Z_0$$

$$= (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0$$

Hence,

Algorithm 4 \texttt{mult}(A, B)

1: if $|A| = |B| = 1$ then $O(1)$
2: return $a_0 \cdot b_0$ $O(1)$
3: split A into A_0 and A_1 $O(n)$
4: split B into B_0 and B_1 $O(n)$
5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$
6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

A more precise (correct) analysis would say that computing Z_1 needs time $T(n^2 + 1) + O(n)$. 6.2 Master Theorem
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

\[
Z_1 = A_1B_0 + A_0B_1 = \underbrace{Z_2}_\text{=} - A_1B_1 - A_0B_0
\]

\[
= (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0
\]

Hence,

\[
\text{Algorithm 4 } \text{mult}(A, B)
\]

1: if $|A| = |B| = 1$ then \(\mathcal{O}(1)\)
2: return \(a_0 \cdot b_0\) \(\mathcal{O}(1)\)
3: split A into A_0 and A_1 \(\mathcal{O}(n)\)
4: split B into B_0 and B_1 \(\mathcal{O}(n)\)
5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ \(T(\frac{n}{2})\)
6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

6.2 Master Theorem
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

\[
Z_1 = A_1B_0 + A_0B_1 = Z_2 = Z_0
\]

\[
= (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0
\]

Hence,

<table>
<thead>
<tr>
<th>Algorithm 4 $\text{mult}(A, B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: if $</td>
</tr>
<tr>
<td>2: return $a_0 \cdot b_0$ $\mathcal{O}(1)$</td>
</tr>
<tr>
<td>3: split A into A_0 and A_1 $\mathcal{O}(n)$</td>
</tr>
<tr>
<td>4: split B into B_0 and B_1 $\mathcal{O}(n)$</td>
</tr>
<tr>
<td>5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ $T\left(\frac{n}{2}\right)$</td>
</tr>
<tr>
<td>6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ $T\left(\frac{n}{2}\right)$</td>
</tr>
<tr>
<td>7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ $\mathcal{O}(n)$</td>
</tr>
<tr>
<td>8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $\mathcal{O}(n)$</td>
</tr>
</tbody>
</table>

6.2 Master Theorem

Ernst Mayr, Harald Räcke
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

$$Z_1 = A_1B_0 + A_0B_1 = Z_2 = Z_0$$

$$= (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0$$

Hence,

```
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then
2: return $a_0 \cdot b_0$
3: split A into $A_0$ and $A_1$
4: split B into $B_0$ and $B_1$
5: $Z_2 \leftarrow$ mult($A_1, B_1$)
6: $Z_0 \leftarrow$ mult($A_0, B_0$)
7: $Z_1 \leftarrow$ mult($A_0 + A_1, B_0 + B_1$) - $Z_2 - Z_0$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{n/2} + Z_0$
```

Algorithm complexity:

$\mathcal{O}(1)$

$\mathcal{O}(n)$

$\mathcal{T}(n^2) + \mathcal{O}(n)$
Example: Multiplying Two Integers

We can use the following identity to compute Z_1:

$$Z_1 = A_1B_0 + A_0B_1 = Z_2 = Z_0$$

$$= (A_0 + A_1) \cdot (B_0 + B_1) - A_1B_1 - A_0B_0$$

Hence,

Algorithm 4 $\text{mult}(A, B)$

1: if $|A| = |B| = 1$ then
2: \quad return $a_0 \cdot b_0$
3: split A into A_0 and A_1
4: split B into B_0 and B_1
5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$
6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{n \frac{n}{2}} + Z_0$

$O(1)$

$O(1)$

$O(n)$

$O(n)$

$T(\frac{n}{2})$

$T(\frac{n}{2})$

$T(\frac{n}{2}) + O(n)$

$O(n)$

6.2 Master Theorem
Ernst Mayr, Harald Räcke
Example: Multiplying Two Integers

We get the following recurrence:

\[T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) . \]

Master Theorem: Recurrence: \(T[n] = aT\left(\frac{n}{b}\right) + f(n) \).

- **Case 1:** \(f(n) = \mathcal{O}(n^{\log_b a - \epsilon}) \) \(T(n) = \Theta(n^{\log_b a}) \)
- **Case 2:** \(f(n) = \Theta(n^{\log_b a \log^k n}) \) \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
- **Case 3:** \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) \(T(n) = \Theta(f(n)) \)

Again we are in Case 1. We get a running time of \(\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59}) \).

A huge improvement over the “school method”.

6.2 Master Theorem
Example: Multiplying Two Integers

We get the following recurrence:

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) . \]

Master Theorem: Recurrence: \(T[n] = aT\left(\frac{n}{b}\right) + f(n). \)

- Case 1: \(f(n) = \Theta(n^{\log_b a - \epsilon}) \) \(T(n) = \Theta(n^{\log_b a}) \)
- Case 2: \(f(n) = \Theta(n^{\log_b a \log^k n}) \) \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
- Case 3: \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) \(T(n) = \Theta(f(n)) \)

Again we are in Case 1. We get a running time of \(\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59}) \).

A huge improvement over the “school method”.

6.2 Master Theorem
Example: Multiplying Two Integers

We get the following recurrence:

\[T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n). \]

Master Theorem: Recurrence: \(T[n] = aT\left(\frac{n}{b}\right) + f(n). \)

- Case 1: \(f(n) = \Theta(n^{\log_b a - \epsilon}) \quad T(n) = \Theta(n^{\log_b a}) \)
- Case 2: \(f(n) = \Theta(n^{\log_b a \log^k n}) \quad T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
- Case 3: \(f(n) = \Omega(n^{\log_b a + \epsilon}) \quad T(n) = \Theta(f(n)) \)

Again we are in Case 1. We get a running time of \(\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59}). \)

A huge improvement over the “school method”.

6.2 Master Theorem
Example: Multiplying Two Integers

We get the following recurrence:

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) . \]

Master Theorem: Recurrence: \(T[n] = aT\left(\frac{n}{b}\right) + f(n) . \)

- Case 1: \(f(n) = \Theta(n^{\log_b a - \epsilon}) \) \(T(n) = \Theta(n^{\log_b a}) \)
- Case 2: \(f(n) = \Theta(n^{\log_b a \log^k n}) \) \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
- Case 3: \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) \(T(n) = \Theta(f(n)) \)

Again we are in Case 1. We get a running time of \(\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59}) \).

A huge improvement over the “school method”.

6.2 Master Theorem