Matching
- Input: undirected graph $G = (V,E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching
- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Maxflow Formulation
- Input: undirected, bipartite graph $G = (L \cup R \cup \{s,t\}, E')$.
- Direct all edges from L to R.
- Add source s and connect it to all nodes on the left.
- Add t and connect all nodes on the right to t.
- All edges have unit capacity.
Proof

Max cardinality matching in $G \leq$ value of maxflow in G'

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

G G'

12.1 Matching

Which flow algorithm to use?

- Generic augmenting path: $O(m \text{val}(f^*)) = O(mn)$.
- Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- Shortest augmenting path: $O(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $O(m\sqrt{n})$.

Baseball Elimination

Which team can end the season with most wins?

- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?
Baseball Elimination

Formal definition of the problem:
- Given a set S of teams, and one specific team $z \in S$.
- Team x has already won w_x games.
- Team x still has to play team y, r_{xy} times.
- Does team z still have a chance to finish with the most number of wins.

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

$w(T) := \sum_{i \in T} w_i$, \hspace{1cm} $r(T) := \sum_{i,j \in T, i<j} r_{ij}$

If $\frac{w(T)+r(T)}{|T|} > M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

Theorem 1

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i\in S\setminus\{z\}, i<j} r_{ij}$.

Proof (\Rightarrow)
- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node $x\cdot y$ not both team-nodes x and y are in T, then $x\cdot y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don’t find a flow that saturates all source edges:

$$r(S \setminus \{z\}) \geq \sum_{i<j; i\notin T \land j\notin T} r_{ij} + \sum_{i\in T} (M - w_i) \geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

- This gives $M < (w(T) + r(T))/|T|$, i.e., z is eliminated.
Baseball Elimination

Proof (\Rightarrow)
- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x \cdot y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M - w_x$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team z is not eliminated.

Project Selection

Project selection problem:
- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u,v) means “can’t do project u without also doing project v.”
- A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.

Project Selection

The prerequisite graph:
- $\{x,a,z\}$ is a feasible subset.
- $\{x,a\}$ is infeasible.

MinCut formulation:
- Edges in the prerequisite graph get infinite capacity.
- Add edge (s,v) with capacity p_v for nodes v with positive profit.
- Create edge (v,t) with capacity $-p_v$ for nodes v with negative profit.
Theorem 2

A is a mincut if \(A \setminus \{s\} \) is the optimal set of projects.

Proof.

- \(A \) is feasible because of capacity infinity edges.
- \(\text{cap}(A, V \setminus A) = \sum_{v \in A : p_v > 0} p_v + \sum_{v \in A : p_v < 0} (-p_v) \)

For the formula we define \(p_s := 0 \).

The step follows by adding \(\sum_{v \in A : p_v > 0} p_v \sum_{v \in A : p_v > 0} p_v = 0 \).

Note that minimizing the capacity of the cut \((A, V \setminus A) \) corresponds to maximizing profits of projects in \(A \).