13.2 Relabel to Front

**Algorithm 21** relabel-to-front\((G, s, t)\)

1: initialize preflow
2: initialize node list \(L\) containing \(V \setminus \{s, t\}\) in any order
3: **foreach** \(u \in V \setminus \{s, t\}\) **do**
4: \(u\.current\)-neighbour \(\leftarrow u\.neighbour\)-list-head\)
5: \(u \leftarrow L\.head\)
6: **while** \(u \neq \) null **do**
7: \(old\)-height \(\leftarrow \ell(u)\)
8: discharge\((u)\)
9: **if** \(\ell(u) > old\)-height **then** // relabel happened
10: move \(u\) to the front of \(L\)
11: \(u \leftarrow u\.next\)
13.2 Relabel to Front

**Lemma 1 (Invariant)**

*In Line 6 of the relabel-to-front algorithm the following invariant holds.*

1. **The sequence** $L$ **is topologically sorted w.r.t. the set of admissible edges; this means for an admissible edge $(x, y)$ the node $x$ appears before $y$ in sequence $L$.**

2. **No node before** $u$ **in the list** $L$ **is active.**
Proof:

- Initialization:
  1. In the beginning $s$ has label $n \geq 2$, and all other nodes have label 0. Hence, no edge is admissible, which means that any ordering $L$ is permitted.
  2. We start with $u$ being the head of the list; hence no node before $u$ can be active

- Maintenance:
  1. Pushes do no create any new admissible edges. Therefore, if discharge() does not relabel $u$, $L$ is still topologically sorted. After relabeling, $u$ cannot have admissible incoming edges as such an edge $(x,u)$ would have had a difference $\ell(x) - \ell(u) \geq 2$ before the re-labeling (such edges do not exist in the residual graph).

Hence, moving $u$ to the front does not violate the sorting property for any edge; however it fixes this property for all admissible edges leaving $u$ that were generated by the relabeling.
13.2 Relabel to Front

Proof:

- Maintenance:

  2. If we do a relabel there is nothing to prove because the only node before $u'$ ($u$ in the next iteration) will be the current $u$; the discharge($u$) operation only terminates when $u$ is not active anymore.

  For the case that we do not relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissible arc. However, all admissible arc point to successors of $u$.

Note that the invariant means that for $u = \text{null}$ we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.
Lemma 2

There are at most $O(n^3)$ calls to discharge($u$).

Every discharge operation without a relabel advances $u$ (the current node within list $L$). Hence, if we have $n$ discharge operations without a relabel we have $u = \text{null}$ and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\#\text{relabels} + 1) = O(n^3)$. 
Lemma 3

The cost for all relabel-operations is only $O(n^2)$.

A relabel-operation at a node is constant time (increasing the label and resetting $u.current-neighbour$). In total we have $O(n^2)$ relabel-operations.
13.2 Relabel to Front

Note that by definition a saturating push operation \( \min\{c_f(e), f(u)\} = c_f(e) \) can at the same time be a non-saturating push operation \( \min\{c_f(e), f(u)\} = f(u) \).

**Lemma 4**

*The cost for all saturating push-operations that are not also non-saturating push-operations is only \( \Theta(mn) \).*

Note that such a push-operation leaves the node \( u \) active but makes the edge \( e \) disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer \( u\.current-neighbour \). This pointer can traverse the neighbour-list at most \( \Theta(n) \) times (upper bound on number of relabels) and the neighbour-list has only \( \text{degree}(u) + 1 \) many entries (\(+1\) for null-entry).
13.2 Relabel to Front

Lemma 5
The cost for all non-saturating push-operations is only $O(n^3)$.

A non-saturating push-operation takes constant time and ends the current call to $\text{discharge}()$. Hence, there are only $O(n^3)$ such operations.

Theorem 6
The push-relabel algorithm with the rule relabel-to-front takes time $O(n^3)$. 