Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

Add an express lane:

Let $|L_1|$ denote the number of elements in the “express lane”, and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i+1}}{L_i}$-th item from list L_{i-1}.

Search(x) ($k + 1$ lists L_0, \ldots, L_k)

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lfloor \frac{|L_{k-1}|}{|L_k|} \right\rfloor + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lfloor \frac{|L_{k-2}|}{|L_{k-1}|} \right\rfloor + 2$ steps.
- \ldots
- At most $|L_k| + \sum_{i=1}^{k} \frac{L_{i+1}}{L_i} + 3(k + 1)$ steps.

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i+1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $O(r^{-k}n + kr)$.

Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$

$$= n^{1-k} + kn^{\frac{1}{k+1}}$$

$$= (k + 1)n^{\frac{1}{k+1}}.$$

Choosing $k = \Theta(\log n)$ gives a logarithmic running time.
7.6 Skip Lists

How to do insert and delete?

- If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number of trials needed.
- Insert x into lists L_0, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.

High Probability

Definition 1 (High Probability)

We say a randomized algorithm has running time $O(\log n)$ with high probability if for any constant α the running time is at most $O(\log n)$ with probability at least $1 - \frac{1}{n^\alpha}$.

Here the O-notation hides a constant that may depend on α.
High Probability

Suppose there are a polynomially many events E_1, E_2, \ldots, E_ℓ, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \land \cdots \land E_\ell] = 1 - \Pr[\bar{E}_1 \lor \cdots \lor \bar{E}_\ell] \geq 1 - n^c \cdot n^{-\alpha} = 1 - n^{c-\alpha}.$$

This means $\Pr[E_1 \land \cdots \land E_\ell]$ holds with high probability.

7.6 Skip Lists

Lemma 2

A search (and, hence, also insert and delete) in a skip list with n elements takes time $O(\log n)$ with high probability (w. h. p.).
Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k.

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

Pr[$E_{z,k}$] \leq Pr[at most k heads in z trials] $\leq \left(\frac{ez}{k} \right)^k 2^{-(z-k)}$ $\leq \left(\frac{2ez}{k} \right)^k 2^{-z}$

choosing $k = \gamma \log n$ with $\gamma \geq 1$ and $z = (\beta + \alpha) \gamma \log n$

$\leq \left(\frac{2e(\beta + \alpha)}{2^\beta} \right)^k n^{-\alpha}$

now choosing $\beta = 6\alpha$ gives

$\leq \left(\frac{42\alpha}{64\alpha} \right)^k n^{-\alpha} \leq n^{-\alpha}$

for $\alpha \geq 1$.

So far we fixed $k = \gamma \log n$, $\gamma \geq 1$, and $z = 7\alpha \gamma \log n$, $\alpha \geq 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$\Pr[A_{k+1}] \leq n2^{-(k+1)} \leq n^{-(\gamma-1)}$.

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold.

Hence,

$\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}]$

$\leq n^{-\alpha} + n^{-(\gamma-1)}$

This means, the search requires at most z steps, w.h.p.

Bibliography

[GT98] Michael T. Goodrich, Roberto Tamassia
Data Structures and Algorithms in JAVA,
John Wiley, 1998

Skip lists are covered in Chapter 7.5 of [GT98].