7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ©(1) if we are given a handle to the object,
otw. O(n)
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7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

EHE
EX] g EX g UE] g 3

Let |L| denote the number of elements in the “express lane”,
and |Lg| = n the number of all elements (ignoring dummy
elements).

Worst case search time: [L1] + % (ignoring additive constants)

Choose |[L1| = \/n. Then search time ©(,/n).



7.6 Skip Lists

Add more express lanes. Lane L; contains roughly every L’L"—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

>

Find the largest item in list Ly that is smaller than x. At
most |Ly| + 2 steps.

Find the largest item in list Ly _; that is smaller than x. At

most [\lLLfﬁH + 2 steps.

Find the largest item in list Ly_» that is smaller than x. At

Li_-
most [‘L‘kf] fl]] + 2 steps.

At most |Li| + Z'le Lfil + 3(k + 1) steps.
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7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., ‘L‘fi‘” =7, and,
hence, Ly ~ v *n.
Worst case running time is: O(r %n + kr).
1
Choose v = n%1., Then
—k 1~k 1
r “n+kr= (nkﬂ) n + knka
1_L 1
=Nk I 4+ RNkl
1
= (k+ 1)nkt

Choosing k = ©(logn) gives a logarithmic running time.
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7.6 Skip Lists

How to do insert and delete?

» If we want that in L; we always skip over roughly the same
number of elements in L; 1 an insert or delete may require
a lot of re-organisation.

Use randomization instead!
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7.6 Skip Lists

Insert:

» A search operation gives you the insert position for element
X in every list.

> Flip a coin until it shows head, and record the number
t e {1,2,...} of trials needed.

» Insert x into lists Lo,...,Li—1.

Delete:

» You get all predecessors via backward pointers.

» Delete x in all lists it actually appears in.

The time for both operations is dominated by the search
time.
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7.6 Skip Lists

Insert (35):
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High Probability

Definition 1 (High Probability)

We say a randomized algorithm has running time O (logn) with
high probability if for any constant « the running time is at most
O(logn) with probability at least 1 — 11]7

Here the O-notation hides a constant that may depend on «.
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High Probability

Suppose there are a polynomially many events Eq, Eo, ..., Ep,
£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A---AEpl=1-Pr[Ey Vv ---VEy]
>1-n‘-n*

=1-n¢

This means Pr[E; A - - - A Ep] holds with high probability.
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7.6 Skip Lists

Lemma 2
A search (and, hence, also insert and delete) in a skip list with n
elements takes time O (logn) with high probability (w. h. p.).
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7.6 Skip Lists

Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.
We show that w.h.p:

> A “long” search path must also go very high.

» There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
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7.6 Skip Lists

Let E, x denote the event that a search path is of length z
(number of edges) but does not visit a list above Ly.

In particular, this means that during the construction in the
backward analysis we see at most k heads (i.e., coin flips that
tell you to go up) in z trials.
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7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) (232> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn
2ez\k 2ez\k
cbe —Bk | -y« 22 o«
S(k) a2 S<25k> "
2e(B + )\ K .
S( 28 ) "
now choosing B = 6 gives
<42a
<
64«

k
) n%<n«

for ¢ = 1.
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7.6 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

Pr(A. ] < n2~ kD < ==

For the search to take at least z = 7y logn steps either the
event E,  or the event Ay, 1 must hold.
Hence,

Pr[search requires z steps] < Pr[E, x] + Pr[Ak.1]

<n % yn D

This means, the search requires at most z steps, w. h. p.



Skip Lists
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