Splay Trees

Disadvantage of balanced search trees:
- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:
+ after access, an element is moved to the root; splay(x) repeated accesses are faster
- only amortized guarantee
- read-operations change the tree
Splay Trees

\textbf{find}(x)

- search for \(x \) according to a search tree
- let \(\tilde{x} \) be last element on search-path
- splay(\(\tilde{x} \))
Splay Trees

`insert(x)`

- search for `x`; `⇧x` is last visited element during search (successor or predecessor of `x`)
- `splay(⇧x)` moves `⇧x` to the root
- `insert x` as new root

The illustration shows the case when `⇧x` is the predecessor of `x`.
Splay Trees

def\text{delete}(x)\\
 \begin{itemize}
 \item search for \(x\); splay(\(x\)); remove \(x\)
 \item search largest element \(\tilde{x}\) in \(A\)
 \item splay(\(\tilde{x}\)) (on subtree \(A\))
 \item connect root of \(B\) as right child of \(\tilde{x}\)
 \end{itemize}
Move to Root

How to bring element to root?

- one (bad) option: moveToRoot(x)
- iteratively do rotation around parent of x until x is root
- if x is left child do right rotation otw. left rotation
Splay: Zig Case

better option splay(x):

- zig case: if x is child of root do left rotation or right rotation around parent

Note that moveToRoot(x) does the same.
better option splay(x):

- zigzag case: if x is right child and parent of x is left child (or x left child parent of x right child)
- do double right rotation around grand-parent (resp. double left left rotation)

Note that moveToRoot(x) does the same.
Double Rotations

Diagram showing the process of double rotations in a binary search tree. The tree structure is transformed through a sequence of left and right rotations to demonstrate the operation. The labels A, B, C, and D are used to illustrate the tree nodes at different stages of rotation.
Splay: Zigzig Case

better option splay(x):

- zigzig case: if x is left child and parent of x is left child (or x right child, parent of x right child)
- do right rotation around grand-parent followed by right rotation around parent (resp. left rotations)

This case is different between moveToRoot(x) and splay(x).
Splay vs. Move to Root

Input tree on which splay(x) and moveToRoot(x) is executed.
Splay vs. Move to Root

Result after moveToRoot(x).
Splay vs. Move to Root

Result after splay(x).
Static Optimality

Suppose we have a sequence of m find-operations. $\text{find}(x)$ appears h_x times in this sequence.

The cost of a static search tree T is:

$$\text{cost}(T) = m + \sum_x h_x \text{depth}_T(x)$$

The total cost for processing the sequence on a splay-tree is $O(\text{cost}(T_{min}))$, where T_{min} is an optimal static search tree.

$\text{depth}_T(x)$ is the number of edges on a path from the root of T to x. Theorem given without proof.
Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:

- the cost for accessing element x is $1 + \text{depth}(x)$;
- after accessing x the tree may be re-arranged through rotations;

Conjecture:

A splay tree that only contains elements from S has cost $\mathcal{O}(\text{cost}(A, S))$, for processing S.
Lemma 1

Splay Trees have an amortized running time of $O(\log n)$ for all operations.
Amortized Analysis

Definition 2
A data structure with operations $\text{op}_1(), \ldots, \text{op}_k()$ has amortized running times t_1, \ldots, t_k for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements, and let k_i denote the number of occurrences of $\text{op}_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i \cdot t_i(n)$.
Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) .$$

- Show that $\Phi(D_i) \geq \Phi(D_0)$.

Then

$$\sum_{i=1}^{k} c_i \leq \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.
Example: Stack

Stack

- **S. push()**
- **S. pop()**
- **S. multipop(k):** removes *k* items from the stack. If the stack currently contains less than *k* items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- **S. push():** cost 1.
- **S. pop():** cost 1.
- **S. multipop(k):** cost \(\min\{\text{size}, k\} = k\).
Example: Stack

Use potential function $\Phi(S) = \text{number of elements on the stack}$.

Amortized cost:

- **S. push()**: cost
 \[
 \hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \leq 2.
 \]

- **S. pop()**: cost
 \[
 \hat{C}_{\text{pop}} = C_{\text{pop}} + \Delta \Phi = 1 - 1 \leq 0.
 \]

- **S. multipop(k)**: cost
 \[
 \hat{C}_{\text{mp}} = C_{\text{mp}} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \leq 0.
 \]

Note that the analysis becomes wrong if pop() or multipop() are called on an empty stack.
Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:
- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is $k + 1$, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has $k = 1$).
Example: Binary Counter

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

- Changing bit from 0 to 1:

 $$\hat{C}_{0 \rightarrow 1} = C_{0 \rightarrow 1} + \Delta \Phi = 1 + 1 \leq 2.$$

- Changing bit from 1 to 0:

 $$\hat{C}_{1 \rightarrow 0} = C_{1 \rightarrow 0} + \Delta \Phi = 1 - 1 \leq 0.$$

- Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k $(1 \rightarrow 0)$-operations, and one $(0 \rightarrow 1)$-operation.

 Hence, the amortized cost is $k\hat{C}_{1 \rightarrow 0} + \hat{C}_{0 \rightarrow 1} \leq 2$.
potential function for splay trees:

- size \(s(x) = |T_x| \)
- rank \(r(x) = \log_2(s(x)) \)
- \(\Phi(T) = \sum_{v \in T} r(v) \)

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1 plus the number of rotations.
Splay: Zig Case

\[\Delta \Phi = r'(x) + r'(p) - r(x) - r(p) \]
\[= r'(p) - r(x) \]
\[\leq r'(x) - r(x) \]

\[\text{cost}_{\text{zig}} \leq 1 + 3(r'(x) - r(x)) \]
Splay: Zigzig Case

\[
\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)
\]

\[
= r'(p) + r'(g) - r(x) - r(p)
\]

\[
\leq r'(x) + r'(g) - r(x) - r(x)
\]

\[
= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x)
\]

\[
= -2r'(x) + r'(g) + r(x) + 3(r'(x) - r(x))
\]

\[
\leq -2 + 3(r'(x) - r(x)) \quad \Rightarrow \text{cost}_{\text{zigzag}} \leq 3(r'(x) - r(x))
\]

Last inequality follows from next slide.
Splay: Zigzag Case

\[
\frac{1}{2} \left(r(x) + r'(g) - 2r'(x) \right)
\]

\[
= \frac{1}{2} \left(\log(s(x)) + \log(s'(g)) - 2 \log(s'(x)) \right)
\]

\[
= \frac{1}{2} \log \left(\frac{s(x)}{s'(x)} \right) + \frac{1}{2} \log \left(\frac{s'(g)}{s'(x)} \right)
\]

\[
\leq \log \left(\frac{1}{2} s'(x) + \frac{1}{2} s'(g) \right) \leq \log \left(\frac{1}{2} \right) = -1
\]

The last inequality holds because \(\log\) is a concave function.
\[\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g) \]
\[= r'(p) + r'(g) - r(x) - r(p) \]
\[\leq r'(p) + r'(g) - r(x) - r(x) \]
\[= r'(p) + r'(g) - 2r'(x) + 2r'(x) - 2r(x) \]
\[\leq -2 + 2(r'(x) - r(x)) \Rightarrow \text{cost}_{\text{zigzag}} \leq 3(r'(x) - r(x)) \]
Splay: Zigzag Case

\[
\frac{1}{2} \left(r'(p) + r'(g) - 2r'(x) \right) \\
= \frac{1}{2} \left(\log(s'(p)) + \log(s'(g)) - 2 \log(s'(x)) \right) \\
\leq \log \left(\frac{1}{2} \frac{s'(p)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)} \right) \leq \log \left(\frac{1}{2} \right) = -1
\]
Amortized cost of the whole splay operation:

\[
\leq 1 + 1 + \sum_{\text{steps } t} 3(r_t(x) - r_{t-1}(x)) \\
= 2 + r(\text{root}) - r_0(x) \\
\leq O(\log n)
\]

The first one is added due to the fact that so far for each step of a splay-operation we have only counted the number of rotations, but the cost is 1+#rotations.

The second one comes from the zig-operation. Note that we have at most one zig-operation during a splay.
Splay Trees

Bibliography

???????????????????????????????????????