7.5 (a, b)-trees

Definition 1
For \(b \geq 2a - 1 \) an \((a, b)\)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex \(v \) has at least \(a \) and at most \(b \) children
3. the root has degree at least \(2 \) if the tree is non-empty
4. the internal vertices do not contain data, but only keys (external search tree)
5. there is a special dummy leaf node with key-value \(\infty \)

Example 2

```
    10 19
   /   \
  1   3  5
 / \ / \ / \ / \
14 28
```

Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which \(b = 2a \) are commonly referred to as \(B \)-trees.
- A \(B \)-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A \(B^+ \) tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A \(B^* \) tree requires that a node is at least \(2/3 \)-full as opposed to \(1/2 \)-full (the requirement of a \(B \)-tree).
Lemma 3
Let T be an (a,b)-tree for $n > 0$ elements (i.e., $n + 1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2a^{h-1} \leq n + 1 \leq b^h$
2. $\log_b(n + 1) \leq h \leq 1 + \log_a\left(\frac{n+1}{2}\right)$

Proof.

- If $n > 0$ the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.

Search

Search(8)

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $O(b \cdot h) = O(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Search

Search(19)

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $O(b \cdot h) = O(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Insert

Insert element x:

- Follow the path as if searching for key[x].
- If this search ends in leaf ℓ, insert x before this leaf.
- For this add key[x] to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance(v).
Insert

Rebalance(v):

- Let $k_i, i = 1,...,b$ denote the keys stored in v.
- Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- Create two nodes v_1 and v_2. v_1 gets all keys $k_1,...,k_{j-1}$ and v_2 gets keys $k_{j+1},...,k_b$.
- Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \geq a$ since $b \geq 2a - 1$.
- They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \leq b$ (since $b \geq 2$).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v_1, and a new pointer (to the right of k_j) in the parent is added to point to v_2.
- Then, re-balance the parent.
Insert

Insert(7)

Delete

Delete element \(x \) (pointer to leaf vertex):

- Let \(v \) denote the parent of \(x \). If \(\text{key}[x] \) is contained in \(v \), remove the key from \(v \), and delete the leaf vertex.
- Otherwise delete the key of the predecessor of \(x \) from \(v \); delete the leaf vertex; and replace the occurrence of \(\text{key}[x] \) in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- If now the number of keys in \(v \) is below \(a - 1 \) perform Rebalance'\((v)\).

Delete

Rebalance'\((v)\):

- If there is a neighbour of \(v \) that has at least \(a \) keys take over the largest (if right neighbour) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge \(v \) with one of its neighbours.
- The merged node contains at most \((a - 2) + (a - 1) + 1\) keys, and has therefore at most \(2a - 1 \leq b\) successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Animation for deleting in an \((a,b)\)-tree is only available in the lecture version of the slides.
There is a close relation between red-black trees and (2, 4)-trees:

First make it into an internal search tree by moving the satellite-data from the leaves to internal nodes. Add dummy leaves.

Then, color one key in each internal node \(v \) black. If \(v \) contains 3 keys you need to select the middle key otherwise choose a black key arbitrarily. The other keys are colored red.

Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2, 4)-tree.
Augmenting Data Structures

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

A description of B-trees (a specific variant of \((a,b)\)-trees) can be found in Chapter 18 of [CLRS90].
Chapter 7.2 of [MS08] discusses \((a,b)\)-trees as discussed in the lecture.