SS 2017

Efficient Algorithms and Data Structures II

Harald Räcke

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2017SS/ea/

Summer Term 2017

Organizational Matters

Organizational Matters

► Modul: IN2004

Name: "Efficient Algorithms and Data Structures II"
 "Effiziente Algorithmen und Datenstrukturen II"

ECTS: 8 Credit points

Lectures

4 SWS Wed 12:15–13:45 (Room 00.13.009A) Fri 10:15–11:45 (MS HS3)

▶ Webpage: http://www14.in.tum.de/lehre/2017SS/ea/

Organizational Matters

► Modul: IN2004

Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"

- ECTS: 8 Credit points
- Lectures:
 - 4 SWS Wed 12:15–13:45 (Room 00.13.009A) Fri 10:15–11:45 (MS HS3)
- ▶ Webpage: http://www14.in.tum.de/lehre/2017SS/ea/

Organizational Matters

► Modul: IN2004

Name: "Efficient Algorithms and Data Structures II"

"Effiziente Algorithmen und Datenstrukturen II"

► ECTS: 8 Credit points

Lectures

4 SWS Wed 12:15-13:45 (Room 00.13.009A) Fri 10:15-11:45 (MS HS3)

▶ Webpage: http://www14.in.tum.de/lehre/2017SS/ea/

Organizational Matters

► Modul: IN2004

► Name: "Efficient Algorithms and Data Structures II"

"Effiziente Algorithmen und Datenstrukturen II"

► ECTS: 8 Credit points

Lectures:

4 SWS

Wed 12:15-13:45 (Room 00.13.009A)

Fri 10:15-11:45 (MS HS3)

▶ Webpage: http://www14.in.tum.de/lehre/2017SS/ea/

Organizational Matters

► Modul: IN2004

Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"

- ► ECTS: 8 Credit points
- Lectures:
 - ► 4 SWS Wed 12:15–13:45 (Room 00.13.009A)

Fri 10:15-11:45 (MS HS3)

Webpage: http://www14.in.tum.de/lehre/2017SS/ea/

The Lecturer

Part I

Organizational Matters

- Harald Räcke
- Email: raecke@in.tum.de
- ► Room: 03.09.044
- Office hours: (per appointment)

- ► Modul: IN2004
- ► Name: "Efficient Algorithms and Data Structures II"

 "Effiziente Algorithmen und Datenstrukturen II"
- ► ECTS: 8 Credit points
- ► Lectures:
 - ► 4 SWS

Wed 12:15-13:45 (Room 00.13.009A)

Fri 10:15-11:45 (MS HS3)

► Webpage: http://www14.in.tum.de/lehre/2017SS/ea/

Tutorials

- ► Tutor:
 - ----
 - ► Richard Stotz
 - stotz@tum.deRoom: 03.09.057
 - per appointment

► Time: Wed 16:00-17:30

- . Doom: 02 11 01
- ▶ Room: 03.11.018

The Lecturer

□ EADS II

- ► Harald Räcke
- ► Email: raecke@in.tum.de
- ► Room: 03.09.044
- Office hours: (per appointment)

- In order to pass the module you need to pass an exam.
- ▶ Fyan

Tutorials

- ► Tutor:
 - ► Richard Stotz

► Time: Wed 16:00-17:30

- ► stotz@tum.de
- ► Room: 03.09.057
- per appointment
- ► Room: 03.11.018
- ► Room: 03.11.01

In order to pass the module you need to pass an exam.

Exam:

- 2 5 hour
- ▶ Date will be announced shortly
- There are no resources allowed, apart from a hand-writter piece of paper (A4).
- Answers should be given in English, but German is also accepted

- ► Tutor:
 - ► Richard Stotz
 - ▶ stotz@tum.de
 - ► Room: 03.09.057
 - per appointment
- ► Room: 03.11.018
- ► Time: Wed 16:00-17:30

- In order to pass the module you need to pass an exam.
- Exam:
 - 2.5 hours

- ► Tutor:
 - ► Richard Stotz
 - ► stotz@tum.de
 - ► Room: 03.09.057
- per appointment ► Room: 03.11.018
- ► Time: Wed 16:00-17:30

- In order to pass the module you need to pass an exam.
- Exam:
 - ▶ 2.5 hours
 - Date will be announced shortly.
 - ► There are no resources allowed, apart from a hand-writter piece of paper (A4).
 - Answers should be given in English, but German is also accepted

- ► Tutor:
 - ► Richard Stotz
 - stotz@tum.de
 - ► Room: 03.09.057
 - per appointment
- ► Room: 03.11.018
- ► Time: Wed 16:00-17:30

- In order to pass the module you need to pass an exam.
- Exam:
 - ▶ 2.5 hours
 - Date will be announced shortly.
 - ► There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also

- ► Tutor:
 - ► Richard Stotz
 - ▶ stotz@tum.de
 - ► Room: 03.09.057
- per appointmentRoom: 03.11.018
- ► Time: Wed 16:00-17:30

- In order to pass the module you need to pass an exam.
- Exam:
 - ▶ 2.5 hours
 - Date will be announced shortly.
 - ▶ There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also accepted.

Tutorials

- ► Tutor:
 - ► Richard Stotz
 - ► stotz@tum.de
 - ► Room: 03.09.057
 - per appointment

► Room: 03.11.018

► Time: Wed 16:00-17:30

Assignment Sheets:

- An assignment sheet is usually made available of Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Wednesday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.020
- Solutions have to be given in English
- Solutions will be discussed in the subsequent tutoria
- The first one will be out on Wednesday 3 May

Assessment

► In order to pass the module you need to pass an exam.

- ► 2.5 hours
- ► Date will be announced shortly.
- ► There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

Assignment Sheets:

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Wednesday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.020.
- Solutions have to be given in English
- Solutions will be discussed in the subsequent tutoria
- ► The first one will be out on Wednesday 3 May

Assessment

► In order to pass the module you need to pass an exam.

► Fxam:

- ► 2.5 hours
- Date will be announced shortly.
- ► There are no resources allowed, apart from a hand-written piece of paper (A4).
- ► Answers should be given in English, but German is also accepted.

- Assignment Sheets:
 - An assignment sheet is usually made available on Wednesday on the module webpage.
 - Solutions have to be handed in in the following week before the lecture on Wednesday.
 - You can hand in your solutions by putting them in the right folder in front of room 03.09.020.
 - Solutions have to be given in English.
 - Solutions will be discussed in the subsequent tutorial
 - ► The first one will be out on Wednesday 3 May

Assessment

- ► In order to pass the module you need to pass an exam.
- ► Fxam:
 - ► 2.5 hours
 - Date will be announced shortly.
 - ► There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also accepted.

Assignment Sheets:

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Wednesday.
- ► You can hand in your solutions by putting them in the right folder in front of room 03.09.020.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial
- ► The first one will be out on Wednesday 3 May

Assessment

► In order to pass the module you need to pass an exam.

- ► 2.5 hours
- Date will be announced shortly.
- ► There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

Assignment Sheets:

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Wednesday.
- ► You can hand in your solutions by putting them in the right folder in front of room 03.09.020.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial
- ► The first one will be out on Wednesday 3 May

Assessment

▶ In order to pass the module you need to pass an exam.

- ► 2.5 hours
- Date will be announced shortly.
- ► There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

Assignment Sheets:

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Wednesday.
- ► You can hand in your solutions by putting them in the right folder in front of room 03.09.020.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial.
- ► The first one will be out on Wednesday 3 May

Assessment

▶ In order to pass the module you need to pass an exam.

- ► 2.5 hours
- Date will be announced shortly.
- ► There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

Assignment Sheets:

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Wednesday.
- ► You can hand in your solutions by putting them in the right folder in front of room 03.09.020.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial.
- ► The first one will be out on Wednesday, 3 May.

Assessment

▶ In order to pass the module you need to pass an exam.

► Fxam:

- ▶ 2.5 hours
- Date will be announced shortly.
- ► There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

1 Contents

Part 1: Linear Programming

Part 2: Approximation Algorithms

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Wednesday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.020.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial.
- ► The first one will be out on Wednesday, 3 May.

2 Literatur

- V. Chvatal:
 - Linear Programming, Freeman, 1983
- R. Seidel:
 - Skript Optimierung, 1996
- D. Bertsimas and J.N. Tsitsiklis:

 Introduction to Linear Optimization,
- Athena Scientific, 1997

 Vijay V. Vazirani:

 Approximation Algorithms,
 Springer 2001

1 Literatur

Part 1: Linear Programming

Part 2: Approximation Algorithms

David P. Williamson and David B. Shmoys: The Design of Approximation Algorithms, Cambridge University Press 2011

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi:

Complexity and Approximation,
Springer, 1999

2 Literatur

V. Chvatal:

Linear Programming,
Freeman, 1983

R. Seidel:

Skript Optimierung, 1996

D. Bertsimas and J.N. Tsitsiklis:

Introduction to Linear Optimization,
Athena Scientific, 1997

Vijay V. Vazirani:

**Approximation Algorithms,

Springer 2001

Linear Programming

2 Literatur

- V. Chvatal:
 - Linear Programming, Freeman, 1983
- R. Seidel:
 - Skript Optimierung, 1996
- D. Bertsimas and J.N. Tsitsiklis:

 Introduction to Linear Optimization,
- Athena Scientific, 1997

 Vijay V. Vazirani:
 - Approximation Algorithms,
 - Springer 2001

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- ► Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale

3 Introduction to Linear Programming

Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- ▶ Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

▶ only brew beer: 32 barrels of beer

▶ 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 barrels ale. 28 barrels beer ⇒ 800 €

3 Introduction to Linear Programming

Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

▶ only brew beer: 32 barrels of beer ⇒ 736 €

▶ 12 barrels ale. 28 barrels beer → 800 €

Brewery Problem

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

▶ only brew ale: 34 barrels of ale ⇒ 442€

only brew beer: 32 barrels of beer

⇒ 736€

Brewery Problem

- ► Production limited by supply of corn, hops and barley malt
- ► Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale ⇒ 442€

only brew beer: 32 barrels of beer

⇒ 736€

▶ 7.5 barrels ale, 29.5 barrels beer

Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- ► Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

► 7.5 barrels ale, 29.5 barrels beer ⇒ 776€

▶ 12 harrels ale 28 harrels heer

Brewery Problem

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

► 12 barrels ale, 28 barrels beer \Rightarrow 800 €

Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

•	only brew ale:	34 barrels of ale	⇒ 442€

only brew beer: 32 barrels of beer ⇒ 736€

► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 barrels ale, 28 barrels beer ⇒ 800€

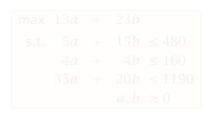
Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Linear Program



Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
 ⇒ 442 €
- ▶ only brew beer: 32 barrels of beer ⇒ 736 €
- ► 7.5 barrels ale, 29.5 barrels beer \Rightarrow 776 €
- ► 12 barrels ale, 28 barrels beer ⇒ 800 €

Linear Program

- ▶ Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale
 ⇒ 442 €
- ▶ only brew beer: 32 barrels of beer ⇒ 736 €
- ► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €
- ► 12 barrels ale, 28 barrels beer ⇒ 800€

Linear Program

- ▶ Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ▶ Make sure that no constraints (due to limited supply) are violated

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale
 ⇒ 442 €
- ▶ only brew beer: 32 barrels of beer ⇒ 736 €
- ► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €
- ► 12 barrels ale, 28 barrels beer ⇒ 800€

Linear Program

- ▶ Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max 13a + 23bs.t. $5a + 15b \le 480$ $4a + 4b \le 160$ $35a + 20b \le 1190$ $a, b \ge 0$

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale
 ⇒ 442 €
- ▶ only brew beer: 32 barrels of beer ⇒ 736 €
- ► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €
- ► 12 barrels ale, 28 barrels beer ⇒ 800 €

Linear Program

- ▶ Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale
 ⇒ 442 €
- ▶ only brew beer: 32 barrels of beer ⇒ 736 €
- ► 7.5 barrels ale, 29.5 barrels beer ⇒ 776€
- ► 12 barrels ale, 28 barrels beer ⇒ 800€

LP in standard form:

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

LP in standard form:

- ▶ input: numbers a_{ij} , c_j , b_i
- ightharpoonup output: numbers x
- $\rightarrow n = \#$ decision variables, m = #constraint
- maximize linear objective function subject to linear (in)equalities

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

LP in standard form:

- ▶ input: numbers a_{ij} , c_j , b_i
- \triangleright output: numbers x_i
- \triangleright n = #decision variables. m = #constraints
- (in)equalities

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- \triangleright output: numbers x_i
- n =#decision variables, m =#constraints
- (in)equalities

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

LP in standard form:

- ▶ input: numbers a_{ij} , c_i , b_i
- \triangleright output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$

 $x c^{T} x$ Ax = b $x \ge 0$

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

LP in standard form:

- ▶ input: numbers a_{ij} , c_j , b_i
- \triangleright output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

3 Introduction to Linear Programming

$$\max \sum_{\substack{j=1\\n}}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ 1 \le i \le m$$

$$x_j \ge 0 \ 1 \le j \le n$$

 $\max c^T x$ s.t. Ax = b $x \ge 0$

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

LP in standard form:

- ightharpoonup input: numbers a_{ii} , c_i , b_i
- \triangleright output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{\substack{j=1\\n\\j=1}}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ 1 \le i \le m$$

$$x_j \ge 0 \ 1 \le j \le n$$

s.t.

Brewery Problem

Linear Program

- ▶ Introduce variables a and b that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

```
\max 13a +
             15b \le 480
               4b \le 160
             20b \le 1190
              a,b \geq 0
```

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Standard Form

Add a slack variable to every constraint

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 $a + b + s_c + s_h + s_m \ge 0$

Standard Form LPs

LP in standard form:

- ► input: numbers a_{ij} , c_j , b_i
- \blacktriangleright output: numbers x_i
 - n = # decision variables, m = # constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \quad 1 \le i \le m$$

$$x_{j} \ge 0 \quad 1 \le j \le n$$

$$1 \le t \le m$$

$$x \ge 0$$

 $\max c^T x$

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Standard Form

Add a slack variable to every constraint.

Standard Form LPs

LP in standard form:

- \blacktriangleright input: numbers a_{ij} , c_i , b_i
- \blacktriangleright output: numbers x_i
- n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \quad 1 \le i \le m$$

$$x_{j} \ge 0 \quad 1 \le j \le n$$

 $\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$

There are different standard forms:

standard form

standard form
$$\max c^{T}x$$
s.t. $Ax = b$

$$x \ge 0$$

s.t.
$$Ax \leq A$$

i.
$$Ax \ge b$$

Standard Form LPs

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Standard Form

Add a slack variable to every constraint.

There are different standard forms:

standard form

standard form
$$\max c^{T}x$$
s.t. $Ax = b$

$$x \ge 0$$

$$\max c^T x$$

$$Ax \leq b$$

Ax =s.t. $\chi \geq$

 $\min c^T x$

$$C^{1}X$$
 $\Delta x > 0$

t.
$$Ax \ge t$$

 $x > 0$

Standard Form LPs

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Standard Form

Add a slack variable to every constraint.

There are different standard forms:

standard form

$$\begin{array}{rcl} \text{max} & c^T x \\ \text{s.t.} & Ax & = & b \\ & x & \geq & 0 \end{array}$$

standard

$$\begin{array}{ll} \text{maximization form} \\ \text{max} \quad c^T x \\ \text{s.t.} \quad Ax \quad \leq \quad b \end{array}$$

$\chi \geq$

 $\min c^T x$

s.t.

Ax =

$$Ax \geq b$$

Standard Form LPs

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Standard Form

Add a slack variable to every constraint.

 $x \geq 0$

There are different standard forms:

standard form

standard form
$$\max c^{T}x$$
s.t. $Ax = b$

$$x \ge 0$$

standard maximization form

max
$$c^T x$$

s.t. $Ax \le b$
 $x \ge 0$

$\chi \geq$

 $\min c^T x$

s.t.

standard minimization form

Ax =

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

Standard Form LPs

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Standard Form

Add a slack variable to every constraint.

It is easy to transform variants of LPs into (any) standard form:

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax & = & b \\
& x & \ge & 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$\begin{array}{rcl} \min & c^T x \\ \text{s.t.} & Ax &= b \\ & x & \ge 0 \end{array}$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 1$$
$$s \ge 0$$

greater or equal to equality

▶ min to may

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

▶ less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

min to max:

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{cases} \min & c^T x \\ \text{s.t.} & Ax = b \\ & x \ge 0 \end{cases}$$

standard minimization form

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& & x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 1$$

 $s \ge 0$

min to max:

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{cases}
\max & c^T x \\
\text{s.t.} & Ax \leq b \\
& x \geq 0
\end{cases}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

EADS II

Harald Räcke

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

► min to may:

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{cases}
\max & c^T x \\
\text{s.t.} & Ax \leq b \\
& x \geq 0
\end{cases}$$

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

▶ less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

min to max:

 $\min a - 3b + 5c \implies \max -a + 3b - 5c$

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{cases}
\max & c^T x \\
\text{s.t.} & Ax \leq b \\
& x \geq 0
\end{cases}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

min
$$c^T x$$

s.t. $Ax \ge b$
 $x \ge 0$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

 $\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal

unrestricted to nonnegative

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

unrestricted to nonnegative

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

► min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

► unrestricted to nonnegative

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

► unrestricted to nonnegative

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

$$s \ge 0$$

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

$$s \ge 0$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

$$x$$
 unrestricted $\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

• greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

Observations:

- ▶ a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Observations:

- ▶ a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{O}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization I Ps we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

Is LP in co-NP?

Innut size

ightharpoonup n number of variables, m constraints, L number of bits to

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- ► transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is I P in NP?
- ► Is I P in co-NP?
- ▶ Is I P in P?

Input size

ightharpoonup n number of variables, m constraints, L number of bits to

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is I P in NP?
- ► Is I P in co-NP?
- ▶ Ic I D in D?

Input size

ightharpoonup n number of variables, m constraints, L number of bits to encode the input

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is I P in NP?
- ▶ Is LP in co-NP?
- ► Is I P in P?

Input size

n number of variables, m constraints, L number of bits to encode the input

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is I P in NP?
- ▶ Is LP in co-NP?
- ► Is I P in P?

Input size:

ightharpoonup n number of variables, m constraints, L number of bits to

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is I P in NP?
- ► Is I P in co-NP?
- ► Is I P in P?

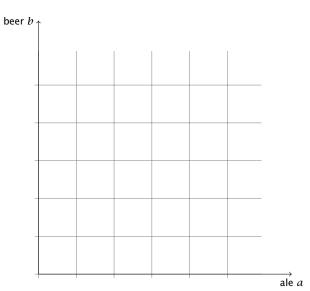
Input size:

 n number of variables, m constraints, L number of bits to encode the input

Standard Form LPs

Observations:

- ▶ a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form



Fundamental Questions

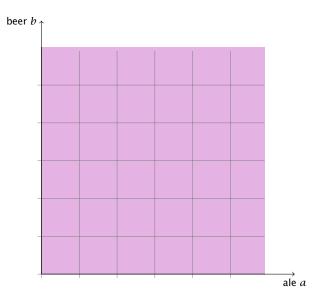
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

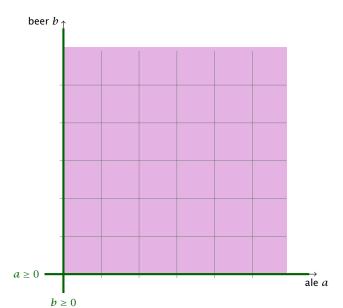
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

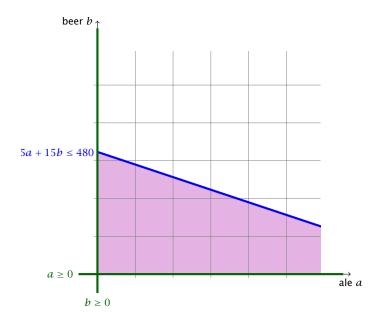
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

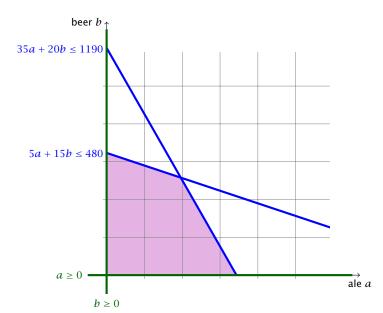
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

n number of variables, m constraints, L number of bits to encode the input



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

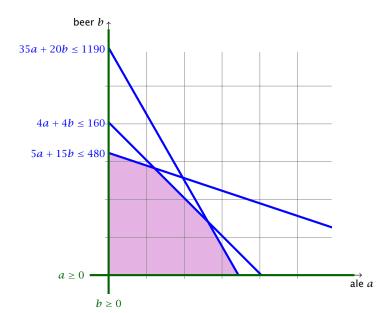
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

▶ n number of variables, m constraints, L number of bits to encode the input



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

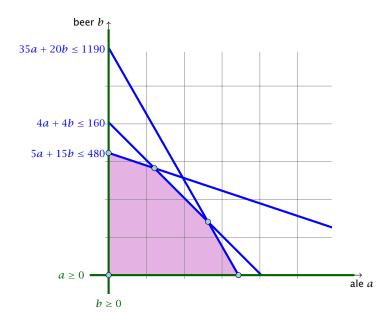
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

▶ n number of variables, m constraints, L number of bits to encode the input



Fundamental Questions

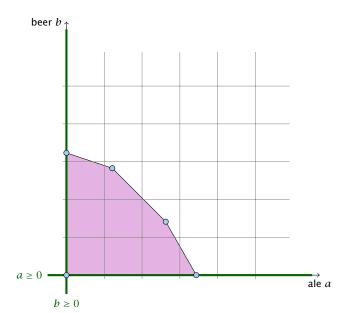
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

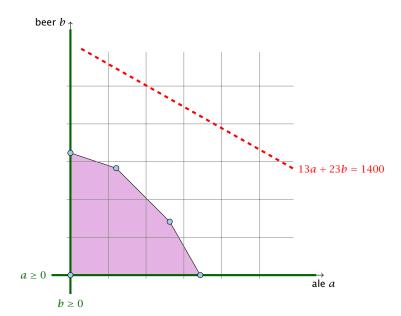
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

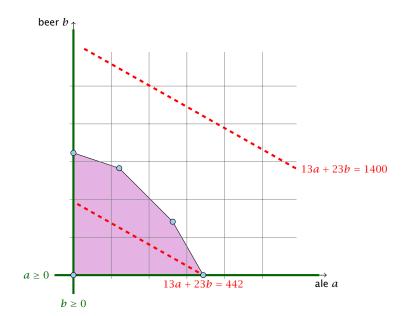
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

▶ n number of variables, m constraints, L number of bits to encode the input



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

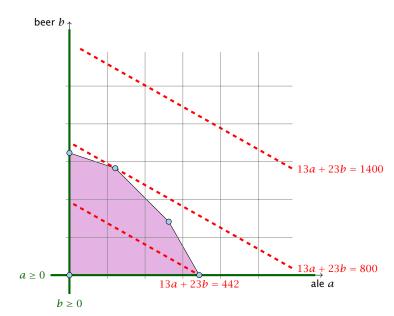
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

► *n* number of variables, *m* constraints, *L* number of bits to encode the input



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

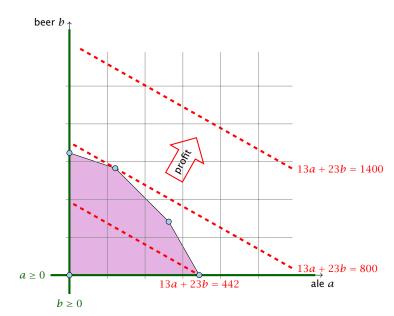
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

▶ n number of variables, m constraints, L number of bits to encode the input



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

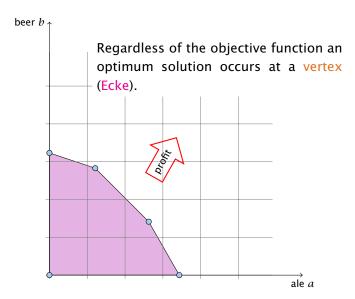
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

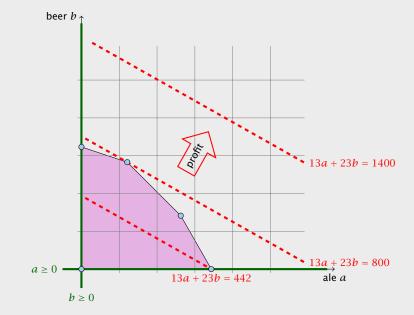
Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

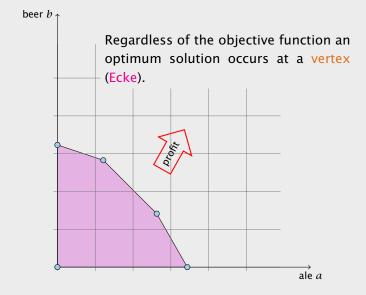
Input size:

▶ n number of variables, m constraints, L number of bits to encode the input





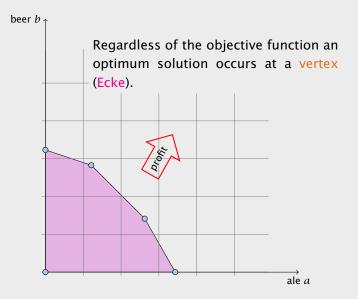
Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$



Let for a Linear Program in standard form

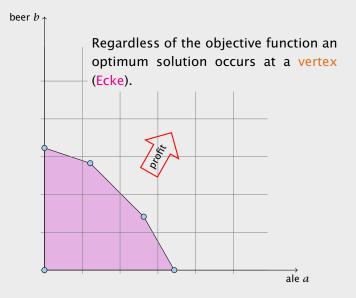
$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung)
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar)
- ► An LP is bounded (beschränkt) if it is feasible and
 - for all x = 2 (for minimization problems)



Let for a Linear Program in standard form

- $P = \{x \mid Ax = b, x \ge 0\}.$
 - ▶ *P* is called the feasible region (Lösungsraum) of the LP.
 - ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
 - ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar)
 - ► An LP is bounded (beschränkt) if it is feasible and
 - for all $s \in \mathbb{R}$ (for minimization problem)

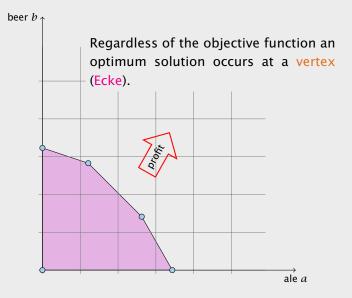


Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

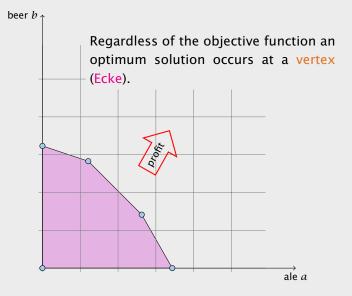
(for maximization problems)



Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

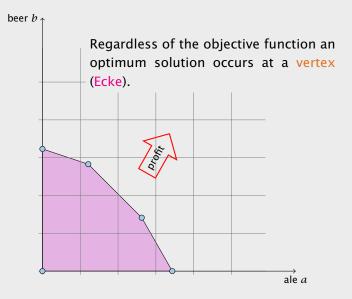
- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- ► An LP is bounded (beschränkt) if it is feasible and



Let for a Linear Program in standard form

- $P = \{x \mid Ax = b, x \ge 0\}.$
 - ▶ P is called the feasible region (Lösungsraum) of the LP.
 - ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
 - ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
 - An LP is bounded (beschränkt) if it is feasible and

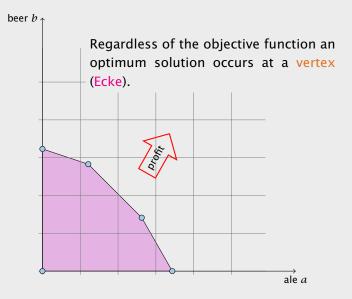
▶ $c^T x < \infty$ for all $x \in P$ (for maximization problems) ▶ $c^T x > -\infty$ for all $x \in P$ (for minimization problems)



Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

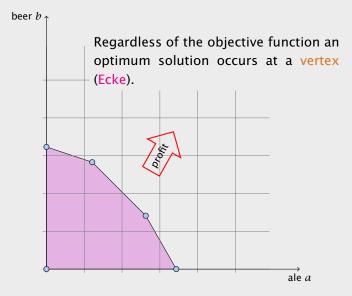
- ▶ P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)

 $ightharpoonup c^T x > -\infty$ for all $x \in P$ (for minimization problems)



Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- ► An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)



Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- ▶ linear combination if $\lambda_i \in \mathbb{R}$.
- ▶ affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \geq 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \geq 0$.

Note that a combination involves only finitely many vectors.

Definitions

Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ P is called the feasible region (Lösungsraum) of the LP.
- ightharpoonup A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfullbar). Otherwise. it is called infeasible (unerfüllbar).
- ► An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

A set $X \subseteq \mathbb{R}^n$ is called

- ▶ a linear subspace if it is closed under linear combinations.
- ▶ an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

3 Introduction to Linear Programming

Note that an affine subspace is **not** a vector space

Definition 2

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- ▶ linear combination if $\lambda_i \in \mathbb{R}$.
- ▶ affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \geq 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \geq 0$.

Note that a combination involves only finitely many vectors.

Given a set $X \subseteq \mathbb{R}^n$.

- ▶ span(X) is the set of all linear combinations of X (linear hull, span)
- ▶ aff(X) is the set of all affine combinations of X (affine hull)
- conv(X) is the set of all convex combinations of X
 (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

Definition 3

A set $X \subseteq \mathbb{R}^n$ is called

- ► a linear subspace if it is closed under linear combinations.
- ► an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- ► a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Lemma 6

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

$$Q = \{x \in P \mid f(x) \le t\}$$

Definition 4

Given a set $X \subseteq \mathbb{R}^n$.

- ► span(X) is the set of all linear combinations of X (linear hull, span)
- ▶ aff(X) is the set of all affine combinations of X (affine hull)
- ► conv(X) is the set of all convex combinations of X (convex hull)
- ► cone(X) is the set of all conic combinations of X (conic hull)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)\gamma) \le \lambda f(x) + (1 - \lambda)f(\gamma)$$

Lemma 6

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

$$Q = \{x \in P \mid f(x) \le t\}$$

Definition 4

Given a set $X \subseteq \mathbb{R}^n$.

- ► span(X) is the set of all linear combinations of X (linear hull, span)
- ▶ aff(X) is the set of all affine combinations of X (affine hull)
- ► conv(X) is the set of all convex combinations of X (convex hull)
- ► cone(X) is the set of all conic combinations of X (conic hull)

Dimensions

Definition 7

The dimension $\dim(A)$ of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull $\operatorname{aff}(X)$.

Definition 5

A function $f:\mathbb{R}^n\to\mathbb{R}$ is convex if for $x,y\in\mathbb{R}^n$ and $\lambda\in[0,1]$ we have

$$f(\lambda x + (1 - \lambda)\gamma) \le \lambda f(x) + (1 - \lambda)f(\gamma)$$

Lemma 6

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

$$Q = \{ x \in P \mid f(x) \le t \}$$

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Dimensions

Definition 7

The dimension $\dim(A)$ of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

30/571

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull aff(X).

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \leq b\}$, for $a \neq 0$.

Dimensions

Definition 7

The dimension $\dim(A)$ of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

30/571

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull aff(X).

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., $P = \operatorname{conv}(X)$ where |X| = c.

Definition 9

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10

31/571

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^Tx \leq b\}$, for $a \neq 0$.

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces

$$\{H(a_1,b_1),\ldots,H(a_m,b_m)\}$$
, where

$$H(a_i, b_i) = \{ x \in \mathbb{R}^n \mid a_i x \le b_i \} .$$

Definition 11

A polyhedron P is bounded if there exists B s.t. $||x||_2 \le B$ for all

Definitions

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., $P = \operatorname{conv}(X)$ where |X| = c.

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces

$$\{H(a_1,b_1),\ldots,H(a_m,b_m)\}$$
, where

$$H(a_i, b_i) = \{ x \in \mathbb{R}^n \mid a_i x \le b_i \} .$$

Definition 13 A polyhedron P is bounded if there exists B s.t. $||x||_2 \le B$ for all

Definitions

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where |X| = c.

 $x \in P$.

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1,b_1),...,H(a_m,b_m)\}\$, where

$$H(a_i,b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$$

Definition 13

A polyhedron P is bounded if there exists B s.t. $||x||_2 \le B$ for all $x \in P$.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 1

- \blacktriangleright a face v is a vertex of P if $\{v\}$ is a face of P
- \triangleright a face a is an edge of P if a is a face and dim(a) =
- \blacktriangleright a face F is a facet of P if F is a face an

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

3 Introduction to Linear Programming

Definition 17

EADS II

Harald Räcke

- Let $P \subseteq \mathbb{R}^n$.
- \blacktriangleright a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1. a face F is a facet of P if F is a face and

 $\dim(F) = \dim(P) - 1$.

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Equivalent definition for vertex:

Definition 18

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x$, $a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Definition 15

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- \blacktriangleright a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and dim(F) = dim(P) 1.

Equivalent definition for vertex:

Definition 18

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x$, $a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Definition 15

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- \blacktriangleright a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and dim(F) = dim(P) 1.

Observation

The feasible region of an LP is a Polyhedron.

Equivalent definition for vertex:

Definition 18

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ▶ Consider $x + \lambda d$, $\lambda > 0$

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- $\blacktriangleright Ad = 0$ because A(x + d) = b
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d
- Consider $x + \lambda d$, $\lambda > 0$

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$. $\lambda > 0$

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Observation

The feasible region of an LP is a Polyhedron.

Case 1. $[\exists j \text{ s.t. } d_j < ($

Case 2. $[d_i > 0 \text{ for all } i \text{ and } c^T d > 0]$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ► suppose *x* is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 2 Id > 0 for all i and aTd > 0

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ► suppose *x* is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $\triangleright x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $\triangleright x + \lambda' d$ has one more zero-component $(d_k = 0 \text{ for } x_k = 0 \text{ as } x + d \in P)$
- $ightharpoonup c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ▶ suppose *x* is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x + d \in P$)
- $ightharpoonup c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ► suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $ightharpoonup c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ► suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $\rightarrow x + \lambda' d$ has one more zero-component $(d_k = 0 \text{ for } x_k = 0 \text{ as } x_k = 0)$ $x \pm d \in P$
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d > c^T x$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- \triangleright suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $ightharpoonup c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ► suppose *x* is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $\rightarrow x + \lambda' d$ has one more zero-component $(d_k = 0 \text{ for } x_k = 0 \text{ as } x_k = 0)$ $x \pm d \in P$
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d > c^T x$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

 \triangleright suppose x is optimal solution that is not extreme point

3 Introduction to Linear Programming

- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $\rightarrow x + \lambda' d$ has one more zero-component $(d_k = 0 \text{ for } x_k = 0 \text{ as } x_k = 0)$ $x \pm d \in P$
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d > c^T x$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- \rightarrow as $\lambda \to \infty$. $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

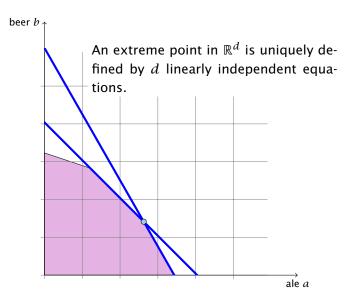
Proof

 \triangleright suppose x is optimal solution that is not extreme point

3 Introduction to Linear Programming

- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Algebraic View



Convex Sets

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

 $x \pm d \in P$

 $x + \lambda d \ge x \ge 0$

• increase λ to λ' until first component of $x + \lambda d$ hits 0

 $ightharpoonup c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d > c^T x$

 \blacktriangleright as $\lambda \to \infty$. $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

 \blacktriangleright $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$

• $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and

3 Introduction to Linear Programming

 \rightarrow $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as

38

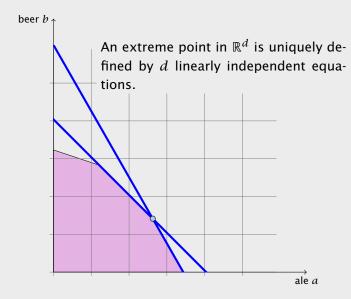
Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns

Algebraic View



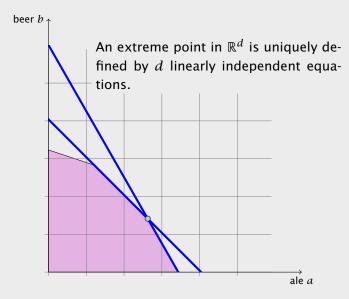
Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Algebraic View



Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x + d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- \triangleright define $B' = \{j \mid d_i \neq 0\}$
- $ightharpoonup A_{R'}$ has linearly dependent columns as Ad=0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- define $B' = \{i \mid d_i \neq 0\}$
- $ightharpoonup A_{R'}$ has linearly dependent columns as Ad=0
- $ightharpoonup d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{i \mid d_i \neq 0\}$
- \blacktriangleright $A_{B'}$ has linearly dependent columns as Ad=0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_i \neq 0 \}$
- $ightharpoonup A_{R'}$ has linearly dependent columns as Ad=0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_j \neq 0 \}$
- $A_{R'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

41/571

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- ▶ assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ► define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- ► $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_R d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ightharpoonup now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme poin

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ► define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $ightharpoonup d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now. Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \triangleright hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{j \mid d_i \neq 0\}$
- $A_{R'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ► Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- ▶ now. Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

EADS II

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{R'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x + \lambda d \in P$
- \triangleright hence. x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_i \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ► Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- \triangleright assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- \triangleright hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ► define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ► Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, *x* is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- ▶ assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

$$\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ightharpoonup assume $c^T \gamma = 0$; then $\gamma_i = 0$ for all $i \notin E$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- \blacktriangleright hence, x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- \blacktriangleright extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- $\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T v = 0$; then $v_i = 0$ for all $i \notin B$
- $\blacktriangleright b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $\blacktriangleright b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- \blacktriangleright hence, x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- $\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- \blacktriangleright hence. x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- \blacktriangleright extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- $\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = A\gamma = A_B\gamma_B = Ax = A_Bx_B$ gives that $A_B(x_B \gamma_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- \blacktriangleright hence. x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_R d = 0$
- \blacktriangleright extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- $\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = A\gamma = A_B\gamma_B = Ax = A_Bx_B$ gives that $A_B(x_B \gamma_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- ▶ hence, x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, *x* is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- ▶ hence, *x* is a vertex of *P*

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ► there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

Theorem 23

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent
- we get y = x

columns

 \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog, that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all with the we all have
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all a with
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- ► hence, *x* is a vertex of *P*

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all λ_1 that fulfill constraints A_2, \ldots, A_m we have

Theorem 23

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \dots, A_m we have

Theorem 23

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1x = \sum_{i=2}^m \lambda_i \cdot A_ix = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 \mathbf{x} = \sum_{i=1}^m \lambda_i \cdot A_i \mathbf{x} = \sum_{i=1}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- ightharpoonup assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i = b_i$$

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- ightharpoonup assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 23

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- ightharpoonup assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \dots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 23

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- ▶ hence, x is a vertex of P

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- ▶ assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_R$ is non-singular
- $x_B = A_R^{-1}b \ge 0$
- $x_N = 0$

where $N = \{1, \dots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $x_B = A_R^{-1}b \ge 0$
- $x_N = 0$

where $N = \{1, \dots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

3 Introduction to Linear Programming

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_I) = |J|$ where $J = \{j \mid x_i \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_I) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition x > 0.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösune

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $X_B = A_B^{-1}b \ge 0$
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

47/571

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_I) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

47/571

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $rank(A_I) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B\subseteq\{1,\ldots,n\}$ with $\mathrm{rank}(A_B)=m$ and |B|=m.

 $x\in\mathbb{R}^n$ with $A_Bx_B=b$ and $x_j=0$ for all $j\notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösun

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $X_B = A_B^{-1}b \ge 0$
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

47/571

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $rank(A_I) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $X_B = A_B^{-1}b \ge 0$
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

47/571

A BFS fulfills the m equality constraints.

In addition, at least n-m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact: In a BFS at least n constraints are fulfilled with equality.

Basic Feasible Solutions

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_I) = |J|$ where $J = \{j \mid x_i \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\mathrm{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Definition 25For a general LP $(\max\{c^Tx \mid Ax \leq b\})$ with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Basic Feasible Solutions

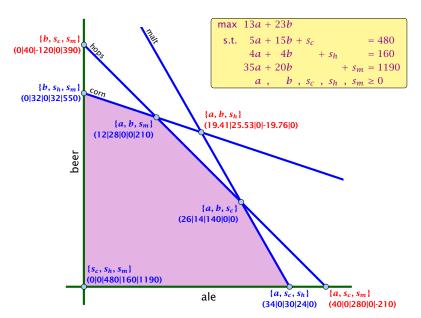
A BFS fulfills the m equality constraints.

In addition, at least n-m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.

Algebraic View



Basic Feasible Solutions

Definition 25

For a general LP $(\max\{c^Tx \mid Ax \leq b\})$ with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

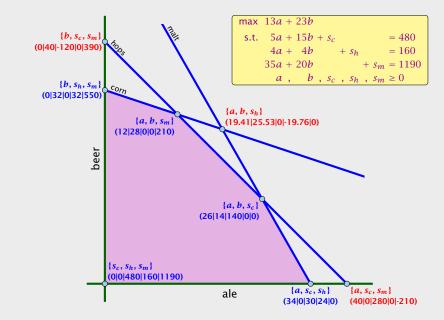
Questions

- ► Is LP in NP? yes
- ▶ Is LP in co-NP?
- ► Is LP in P?

Proof

▶ Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

Algebraic View



Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

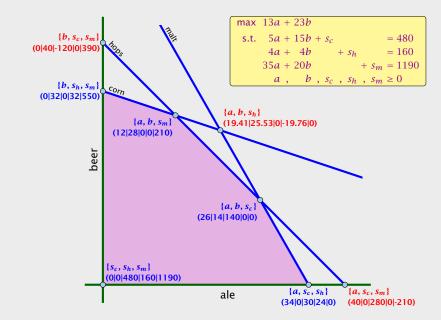
Questions:

- ► Is LP in NP? yes!
- ▶ Is LP in co-NP?
- ► Is LP in P?

Proof:

▶ Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

Algebraic View



Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m}\cdot\operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP? ves!
- ► Is I P in co-NP?
- ► Is I P in P?

Proof:

• Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

52/571

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 $a + b + s_c + s_h + s_m \ge 0$

```
basis = \{s_c, s_h, s_m\}

A = B = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

54/571

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 $a + b + s_c + s_h + s_m \ge 0$

basis =
$$\{s_c, s_h, s_m\}$$

 $A = B = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

54/571

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

4 Simplex Algorithm

basis =
$$\{s_c, s_h, s_m\}$$

 $A = B = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

choose variable to bring into the basis

- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

4 Simplex Algorithm

basis =
$$\{s_c, s_h, s_m\}$$

 $A = B = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 a , b , s_c , s_h , $s_m \ge 0$

basis =
$$\{s_c, s_h, s_m\}$$

 $A = B = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 a , b , s_c , s_h , $s_m \ge 0$

basis =
$$\{s_c, s_h, s_m\}$$

 $A = B = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

$$\max Z$$

$$13a + 23b \qquad -Z = 0$$

$$5a + 15b + s_c \qquad = 480$$

$$4a + 4b \qquad + s_h \qquad = 160$$

$$35a + 20b \qquad + s_m \qquad = 1190$$

$$a , b , s_c , s_h , s_m \geq 0$$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 a , b , s_c , s_h , $s_m \ge 0$

basis =
$$\{s_c, s_h, s_m\}$$

 $A = B = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

basis =
$$\{s_c, s_h, s_m\}$$

 $A = B = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$


```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- ► the existing basis variable in this row leaves the basis

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

► Choose variable with coefficient > 0 as entering variable.

```
\max Z
13a + 23b \qquad -Z = 0
5a + 15b + s_c \qquad = 480
4a + 4b \qquad + s_h \qquad = 160
35a + 20b \qquad + s_m \qquad = 1190
a , b , s_c , s_h , s_m \geq 0
```

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- ► the existing basis variable in this row leaves the basis

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- ► Choose variable with coefficient > 0 as entering variable.
- If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b,x\geq 0$) are still fulfilled the objective value Z will strictly increase.

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- ► the existing basis variable in this row leaves the basis

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- Choose variable with coefficient > 0 as entering variable.
- ▶ If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b, x\geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- ► the existing basis variable in this row leaves the basis

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- Choose variable with coefficient > 0 as entering variable.
- ▶ If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b, x\geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- ► Choosing $\theta = \min\{480/15, 160/4, 1190/20\}$ ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- ► the existing basis variable in this row leaves the basis

basis =
$$\{s_c, s_h, s_m\}$$

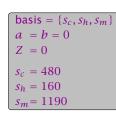
 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

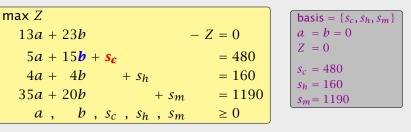
- Choose variable with coefficient > 0 as entering variable.
- If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b,x\geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- ► Choosing $\theta = \min\{480/15, 160/4, 1190/20\}$ ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- ► The basic variable in the row that gives min{480/15, 160/4, 1190/20} becomes the leaving variable.

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- ► the existing basis variable in this row leaves the basis





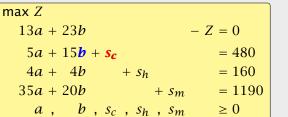
- ▶ If we keep a = 0 and increase b from 0 to $\theta > 0$ s.t. all
- constraints ($Ax = b, x \ge 0$) are still fulfilled the objective value Z will strictly increase.

► Choose variable with coefficient > 0 as entering variable.

- ▶ For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing $\theta = \min\{480/15, 160/4, 1190/20\}$ ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- ► The basic variable in the row that gives $\min\{480/15, 160/4, 1190/20\}$ becomes the leaving variable.

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$



- basis = $\{s_c, s_h, s_m\}$ a = b = 0 Z = 0 $s_c = 480$ $s_h = 160$ $s_m = 1190$
- ► Choose variable with coefficient > 0 as entering variable.
- ▶ If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b,x\geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- ► Choosing $\theta = \min\{480/15, 160/4, 1190/20\}$ ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- ► The basic variable in the row that gives min{480/15, 160/4, 1190/20} becomes the leaving variable.

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

 $a = s_c = 0$ Z = 736

b = 32

 $s_h = 32$

 $s_m = 550$

$$\max Z$$

$$\frac{16}{3}a - \frac{23}{15}s_{c} - Z = -736$$

$$\frac{1}{3}a + b + \frac{1}{15}s_{c} = 32$$

$$\frac{8}{3}a - \frac{4}{15}s_{c} + s_{h} = 32$$

$$\frac{85}{3}a - \frac{4}{3}s_{c} + s_{m} = 550$$

$$a, b, s_{c}, s_{h}, s_{m} \ge 0$$

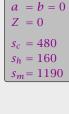
basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- ► Choose variable with coefficient > 0 as entering variable.
- ▶ If we keep a = 0 and increase b from 0 to $\theta > 0$ s.t. all constraints ($Ax = b, x \ge 0$) are still fulfilled the objective value Z will strictly increase.
- ▶ For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing $\theta = \min\{480/15, 160/4, 1190/20\}$ ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- ► The basic variable in the row that gives $\min\{480/15, 160/4, 1190/20\}$ becomes the leaving variable.



-Z = 0

= 1190

 ≥ 0

 ≥ 0

basis = $\{s_c, s_h, s_m\}$

Substitute
$$b = \frac{1}{15}(480 - 5a - s_c)$$
.

13a + 23b

 $5a + 15b + s_c$

 $35a + 20b + s_m$

a, b, s_c , s_h , s_m

 $4a + 4b + s_h = 160$

 $\max Z$

$$\begin{array}{rcl}
\text{max } Z \\
\frac{16}{3}a & -\frac{23}{15}s_c & -Z = -736 \\
\frac{1}{3}a + b + \frac{1}{15}s_c & = 32 \\
\frac{8}{3}a & -\frac{4}{15}s_c + s_h & = 32 \\
\frac{85}{3}a & -\frac{4}{3}s_c & +s_m & = 550
\end{array}$$

 a, b, s_c, s_h, s_m

basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

$$\max Z$$

$$\frac{16}{3}a - \frac{23}{15}s_{c} - Z = -736$$

$$\frac{1}{3}a + b + \frac{1}{15}s_{c} = 32$$

$$\frac{8}{3}a - \frac{4}{15}s_{c} + s_{h} = 32$$

$$\frac{85}{3}a - \frac{4}{3}s_{c} + s_{m} = 550$$

$$a, b, s_{c}, s_{h}, s_{m} \ge 0$$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

$$\max Z$$

$$\frac{16}{3}a - \frac{23}{15}s_{c} - Z = -736$$

$$\frac{1}{3}a + b + \frac{1}{15}s_{c} = 32$$

$$\frac{8}{3}a - \frac{4}{15}s_{c} + s_{h} = 32$$

$$\frac{85}{3}a - \frac{4}{3}s_{c} + s_{m} = 550$$

$$a, b, s_{c}, s_{h}, s_{m} \ge 0$$

Computing $min{3 \cdot 32, 3\cdot 32/8, 3\cdot 550/85}$ means pivot on line 2.

$$\max Z$$

$$13a + 23b \qquad -Z = 0$$

$$5a + 15b + s_c \qquad = 480$$

$$4a + 4b \qquad + s_h \qquad = 160$$

$$35a + 20b \qquad + s_m \qquad = 1190$$

$$a , b , s_c , s_h , s_m \geq 0$$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

$$\max Z$$

$$\frac{16}{3}a - \frac{23}{15}s_{c} - Z = -736$$

$$\frac{1}{3}a + b + \frac{1}{15}s_{c} = 32$$

$$\frac{8}{3}a - \frac{4}{15}s_{c} + s_{h} = 32$$

$$\frac{85}{3}a - \frac{4}{3}s_{c} + s_{m} = 550$$

$$a, b, s_{c}, s_{h}, s_{m} \ge 0$$

Computing $\min\{3 \cdot 32, \frac{3 \cdot 32}{8}, \frac{3 \cdot 550}{85}\}$ means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

$$\{b, s_h, s_m\} = 0$$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

$$a = b = 0$$

$$Z = 0$$

$$s_c = 480$$

$$s_h = 160$$

$$s_m = 1190$$

basis = $\{b, s_h, s_m\}$

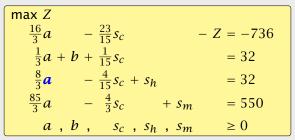
basis = $\{s_c, s_h, s_m\}$

Substitute $b = \frac{1}{15}(480 - 5a - s_c)$.

 $\max Z$

 a, b, s_c, s_h, s_m

Pivoting stops when all coefficients in the objective function are non-positive.



basis = $\{b, s_h, s_m\}$ $a = s_c = 0$ Z = 736b = 32 $s_h = 32$ $s_m = 550$

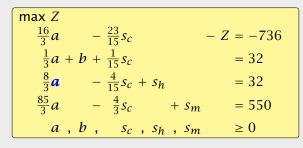
Choose variable *a* to bring into basis.

Computing $\min\{3 \cdot 32, 3 \cdot 32/8, 3 \cdot 550/85\}$ means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

basis = $\{a, b, s_m\}$ $s_c = s_h = 0$

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:



basis = $\{b, s_h, s_m\}$ $a = s_c = 0$ Z = 736b = 32 $s_h = 32$ $s_m = 550$

Choose variable *a* to bring into basis.

Computing $\min\{3 \cdot 32, \frac{3 \cdot 32}{8}, \frac{3 \cdot 550}{85}\}$ means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

basis = $\{a, b, s_m\}$ $s_c = s_h = 0$

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- ▶ in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- ▶ hence optimum solution value is at most 800
- ▶ the current solution has value 800



basis = $\{b, s_h, s_m\}$ $a = s_c = 0$ Z = 736 b = 32 $s_h = 32$ $s_m = 550$

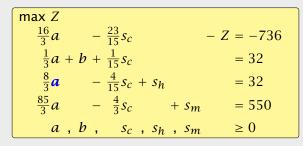
Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- ▶ hence optimum solution value is at most 800
- ▶ the current solution has value 800



basis = $\{b, s_h, s_m\}$ $a = s_c = 0$ Z = 736 b = 32 $s_h = 32$ $s_m = 550$

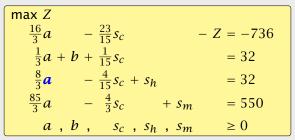
Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- ▶ hence optimum solution value is at most 800
- ▶ the current solution has value 800



basis = $\{b, s_h, s_m\}$ $a = s_c = 0$ Z = 736 b = 32 $s_h = 32$ $s_m = 550$

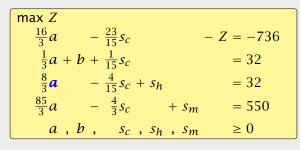
Choose variable *a* to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- ▶ in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- ▶ hence optimum solution value is at most 800
- ▶ the current solution has value 800



basis = $\{b, s_h, s_m\}$ $a = s_c = 0$ Z = 736 b = 32 $s_h = 32$ $s_m = 550$

Choose variable a to bring into basis.

Computing $\min_{3} \{3 \cdot 32, \frac{3 \cdot 32}{4}/8, \frac{3 \cdot 550}{85}\}$ means pivot on line 2.

Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$\begin{array}{rclcrcl} (c_N^T - c_B^T A_B^{-1} A_N) x_N & = & Z - c_B^T A_B^{-1} b \\ + & A_B^{-1} A_N x_N & = & A_B^{-1} b \\ , & & x_N & \geq & 0 \end{array}$$

The BFS is given by $x_N = 0$, $x_R = A_R^{-1}h$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- ► any feasible solution satisfies all equations in the tableaux
- ▶ in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- ► hence optimum solution value is at most 800
 - ▶ the current solution has value 800

4 Simplex Algorithm

FADS II 4 Simplex Algorithm

59

Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_M = 0$, $x_R = A_R^{-1}h$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- ► any feasible solution satisfies all equations in the tableaux
- ▶ in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- ► hence optimum solution value is at most 800
 - ► the current solution has value 800

60/571

Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- ► any feasible solution satisfies all equations in the tableaux
- ▶ in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- ► hence optimum solution value is at most 800
 - ► the current solution has value 800

60/571

Matrix View Let our linear program be

 $c_R^T x_B + c_N^T x_N = Z$ $A_R x_R + A_N x_N = b$

 x_B , $x_N \geq 0$

The simplex tableaux for basis B is

 $(c_N^T - c_R^T A_R^{-1} A_N) x_N = Z - c_R^T A_R^{-1} b$ $Ix_B + A_R^{-1}A_Nx_N = A_R^{-1}b$ x_B , $x_N \geq 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$. If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum

4 Simplex Algorithm

non-positive.

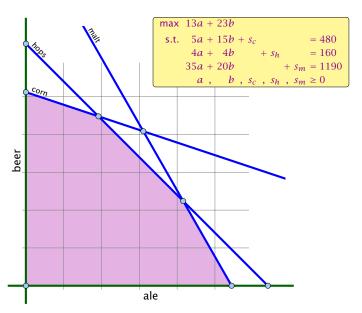
Pivoting stops when all coefficients in the objective function are

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
 - ▶ hence optimum solution value is at most 800

solution.

▶ the current solution has value 800



Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

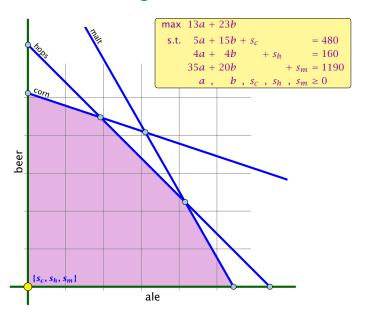
$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.



Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

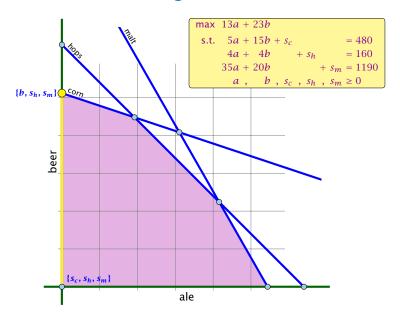
$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.



Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

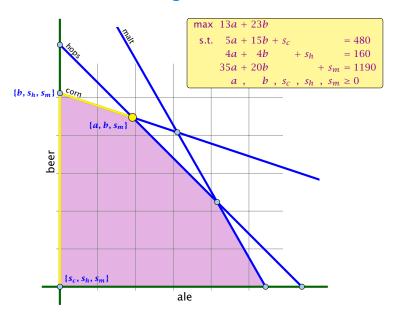
$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.



Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

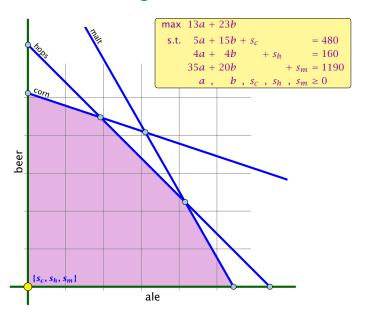
$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.



Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

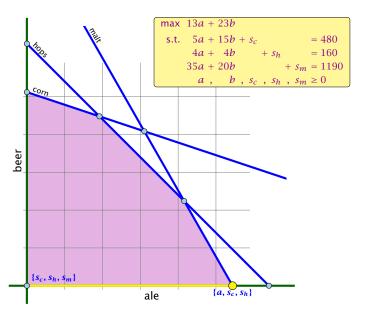
$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.



Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

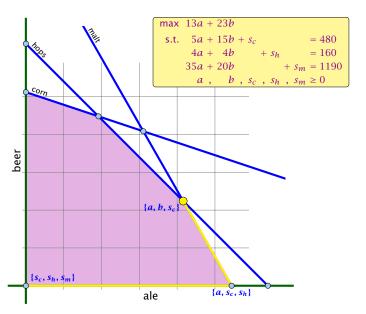
$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.



Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

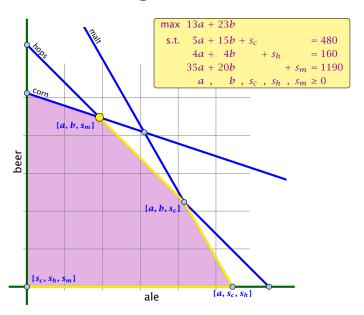
$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.



Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

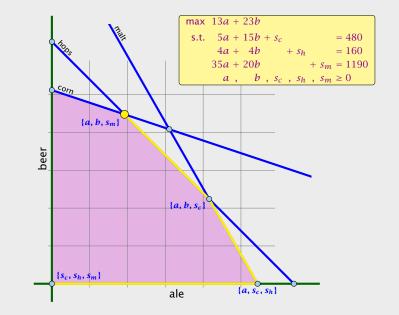
$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_j^* from 0 to $\theta > 0$
- ▶ Go from x^* to $x^* + \theta \cdot d$.

Requirements for d

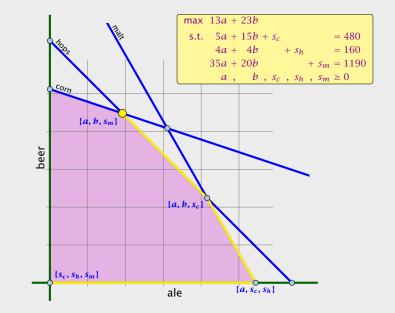
- d, 1 (normalization)
- Alx Alx must hold. Hence
- Altogether: And and Add 0, which gives



- Given basis B with BFS x^* .
- ▶ Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0
 - Basis variables change to maintain feasibility
- ightharpoonup Go from x^* to $x^* + \theta \cdot d$.

Requirements for d

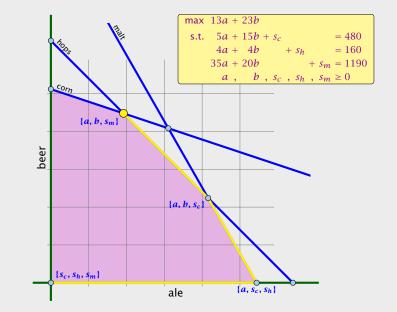
- (normalization)
- Aux Aux Aux Amust hold. Hence
- Altogether: And Annual Annual Which gives
- Altogether: And a 1, which gives



- Given basis B with BFS x^* .
- ▶ Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility
- ▶ Go from x^* to $x^* + \theta \cdot d$.

Requirements for d

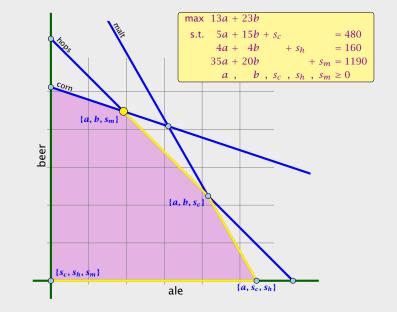
- $\omega_{+}=1$ (normalization)
- must hold. Hence
- Altogether: And An Ad 1), which gives



- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- ► Go from x^* to $x^* + \theta \cdot d$.

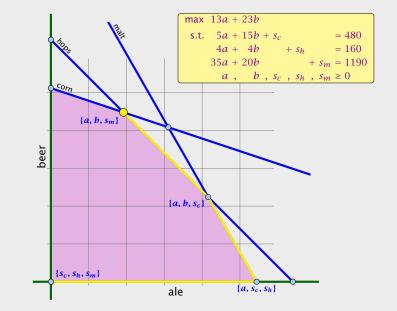
Requirements for d

- must hold. Hencee
- Altogether: And the state of th



- Given basis B with BFS x^* .
- ▶ Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

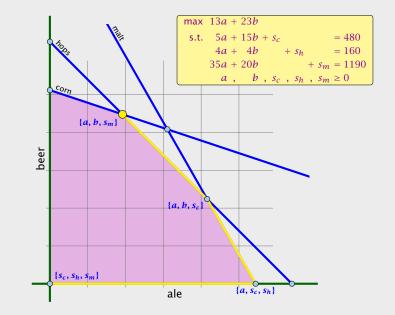
Requirements for d



- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - ▶ Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

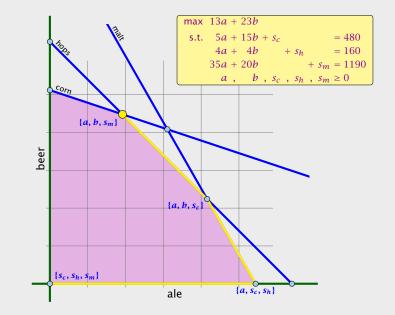
- $d_i = 1$ (normalization)
- $d_{\ell} = 0, \ \ell \notin B, \ \ell \neq j$
- $\blacktriangleright A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.



- Given basis B with BFS x^* .
- ▶ Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

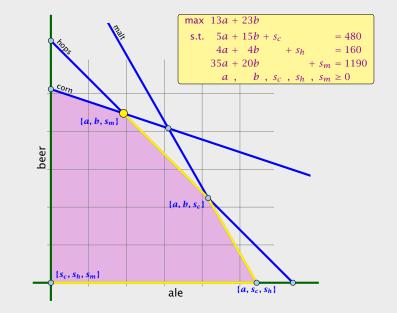
- $d_i = 1$ (normalization)
- $\blacktriangleright A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.



- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

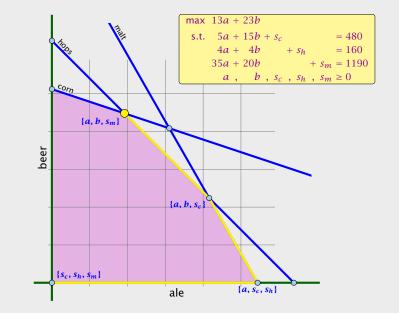
- $\rightarrow d_i = 1$ (normalization)
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which give: $d_B = -A_B^{-1} A_{*j}$.



- Given basis B with BFS x^* .
- ▶ Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - ▶ Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

- $d_i = 1$ (normalization)
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.



Definition 26 (j-th basis direction)

Let B be a basis, and let $j \notin B$. The vector d with $d_j = 1$ and $d_\ell = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the j-th basis direction for B.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^T d = \theta (c_i - c_p^T A_p^{-1} A_{*i})$$

Algebraic Definition of Pivoting

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - ▶ Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

- ► $d_i = 1$ (normalization)
- $\blacktriangleright A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- ► Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.

Definition 26 (*j*-th basis direction)

Let B be a basis, and let $j \notin B$. The vector d with $d_j = 1$ and $d_\ell = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the j-th basis direction for B.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^T d = \theta (c_i - c_R^T A_R^{-1} A_{*i})$$

Algebraic Definition of Pivoting

- Given basis B with BFS x^* .
 - ► Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
 - Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

- ► $d_i = 1$ (normalization)
- ► $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- ► Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.

Definition 27 (Reduced Cost)

For a basis B the value

$$\tilde{c}_i = c_i - c_R^T A_R^{-1} A_{*i}$$

is called the reduced cost for variable x_i .

Note that this is defined for every j. If $j \in B$ then the above term

Algebraic Definition of Pivoting

Definition 26 (j-th basis direction)

Let B be a basis, and let $j \notin B$. The vector d with $d_j = 1$ and $d_\ell = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the j-th basis direction for B.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^T d = \theta (c_i - c_R^T A_R^{-1} A_{*i})$$

is ().

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$x_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x_N \ge 0$$

Harald Räcke

Algebraic Definition of Pivoting

Definition 27 (Reduced Cost)

For a basis B the value

$$\tilde{c}_i = c_i - c_R^T A_R^{-1} A_{*i}$$

Note that this is defined for every j. If $j \in B$ then the above term

is called the reduced cost for variable x_i .

is 0.

Let our linear program be

Harald Räcke

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

Algebraic Definition of Pivoting

Definition 27 (Reduced Cost)

For a basis B the value

$$\tilde{c}_i = c_i - c_R^T A_R^{-1} A_{*i}$$

is called the reduced cost for variable x_i .

Note that this is defined for every j. If $j \in B$ then the above term is 0.

EADS II 4 Simplex Algorithm

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

Algebraic Definition of Pivoting

Definition 27 (Reduced Cost) For a basis B the value

$$\tilde{c}_i = c_i - c_R^T A_R^{-1} A_{*i}$$

is called the reduced cost for variable x_i .

Note that this is defined for every j. If $j \in B$ then the above term is 0.

 $c_R^T x_B + c_N^T x_N = Z$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis
$$\it B$$
 is

The simplex tableaux for basis
$$B$$
 is

$$(c_N^T - c_R^T A_R^{-1} A_N) x_N = Z -$$

 $(c_N^T - c_R^T A_R^{-1} A_N) x_N = Z - c_R^T A_R^{-1} b$ $Ix_B + A_R^{-1}A_Nx_N = A_R^{-1}b$

4 Simplex Algorithm

$$T = T A = 1 A$$

65/571

is 0.

$$\tilde{c}_j = c_j - c_B^T z$$

Algebraic Definition of Pivoting

Definition 27 (Reduced Cost)

For a basis B the value

4 Simplex Algorithm

$$\tilde{c}_j = c_j - c_B^T A_B^{-1} A_{*j}$$

$$C_B A_B A_{*j}$$

is called the reduced cost for variable
$$x_i$$
.

riable
$$x_j$$
.

Note that this is defined for every
$$j$$
. If $j \in B$ then the above term is 0

64

- x_B , $x_N \geq 0$ The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

Let our linear program be

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum

EADS II

Questions:

EADS II

4 Simplex Algorithm

66/571

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum solution.

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

The simplex tableaux for basis B is $(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$ $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$ x_B , $x_N \geq 0$

Algebraic Definition of Pivoting

Let our linear program be

 $A_B x_B + A_N x_N = b$ x_B , $x_N \geq 0$

4 Simplex Algorithm

 $c_R^T x_B + c_N^T x_N = Z$

65

Ouestions:

- \triangleright What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?

$$(c^T - c^T A^{-1} A_{-1}) < 0$$

Algebraic Definition of Pivoting Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$

$$x_B$$
 , $x_N \geq 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If
$$(c_N^T - c_R^T A_R^{-1} A_N) \le 0$$
 we know that we have

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum solution.

65

Ouestions:

- \triangleright What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?

$$(c^T - c^T A^{-1} A B) < 0$$

Algebraic Definition of Pivoting

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum solution.

 $Ix_B + A_R^{-1}A_Nx_N = A_R^{-1}b$ x_B , $x_N \geq 0$

Ouestions:

- \triangleright What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^T - c_R^T A_R^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is

4 Simplex Algorithm

optimal.

Algebraic Definition of Pivoting

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum solution.

 x_B , $x_N \geq 0$

66/571

4 Simplex Algorithm

Ouestions:

- \triangleright What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?

$$T = T - 1$$

▶ Is there always a basis *B* such that

 $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

Algebraic Definition of Pivoting Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x_B$$
 , $x_N \geq 0$

The BFS is given by
$$x_N = 0$$
, $x_B = A_B^{-1}b$.

If
$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$$
 we know that we have an optimum

EADS II

4 Simplex Algorithm

66/571

solution. 4 Simplex Algorithm

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

4 Simplex Algorithm

Ouestions:

- \blacktriangleright What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- ▶ How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

▶ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase it we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Questions:

- ▶ What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- ► How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

▶ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase it we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if all b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Questions:

- ▶ What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- ► How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

▶ If yes how do we make sure that we reach such a basis?

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if all b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Questions:

- ▶ What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- ► How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

▶ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Questions:

- ▶ What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- ► How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^T - c_R^T A_R^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

▶ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- ► How do we find the initial basic feasible solution?
- ► Is there always a basis *B* such that

$$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

► If yes how do we make sure that we reach such a basis?

EADS II 4 Simplex Algorithm

Min Ratio Test

the minimum positive value.

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative. For this, one computes b_i/A_{ie} for all constraints i and calculates

What does it mean that the ratio $b_i/A_{i\rho}$ (and hence $A_{i\rho}$) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** $b_i/A_{i\rho}$ are negative? Then we do not have a leaving variable. Then the LP is unbounded!

The objective function does not decrease during one iteration of

4 Simplex Algorithm

EADS II

the simplex-algorithm.

Min Ratio Test

the entering variable to θ the leaving variable becomes 0 and all

The min ratio test computes a value $\theta \geq 0$ such that after setting

other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable

What happens if **all** $b_i/A_{i\rho}$ are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

What does it mean that the ratio $b_i/A_{i\rho}$ (and hence $A_{i\rho}$) is

the minimum positive value.

negative for a constraint?

becoming negative

EADS II

the simplex-algorithm.

Min Ratio Test

The objective function does not decrease during one iteration of

4 Simplex Algorithm

68/571

Does it always increase?

For this, one computes b_i/A_{ie} for all constraints i and calculates

other variables stay non-negative.

the entering variable to θ the leaving variable becomes 0 and all

The min ratio test computes a value $\theta \geq 0$ such that after setting

the minimum positive value.

negative for a constraint?

becoming negative

What does it mean that the ratio $b_i/A_{i\rho}$ (and hence $A_{i\rho}$) is

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable

What happens if **all** $b_i/A_{i\rho}$ are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

The objective function may not increase!

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

4 Simplex Algorithm

68

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

Does it always increase?

Termination

the simplex-algorithm.

The objective function does not decrease during one iteration of

EADS II 4 Simplex Algorithm

69/571

4 Simplex Algorithm

Harald Räcke

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_i^* > 0\}$ fulfills

|J| < m.

Termination

The objective function does not decrease during one iteration of

Does it always increase?

the simplex-algorithm.

EADS II Harald Räcke

4 Simplex Algorithm

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_i^* > 0\}$ fulfills

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens,

Termination

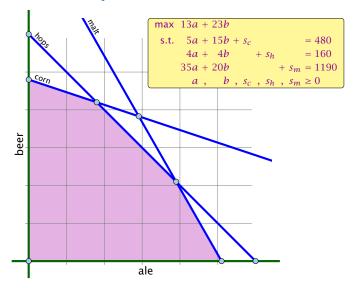
The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

69/571

|J| < m.

Non Degenerate Example



Termination

The objective function may not increase!

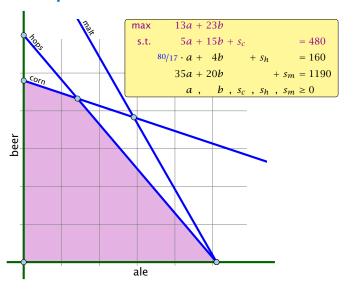
Because a variable x_{ℓ} with $\ell \in B$ is already 0.

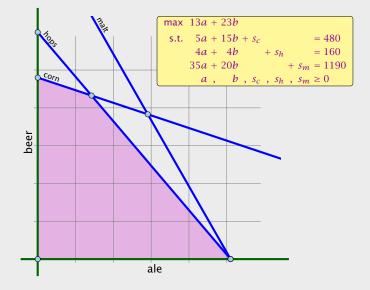
The set of inequalities is degenerate (also the basis is degenerate).

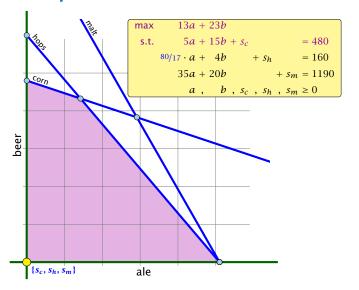
Definition 28 (Degeneracy)

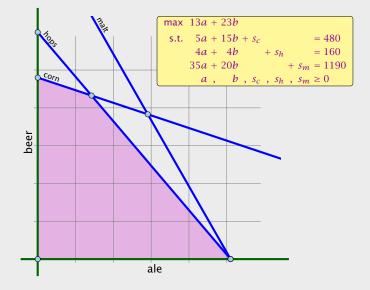
A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

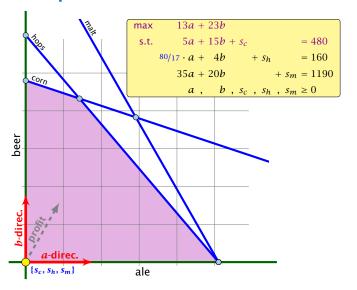
It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

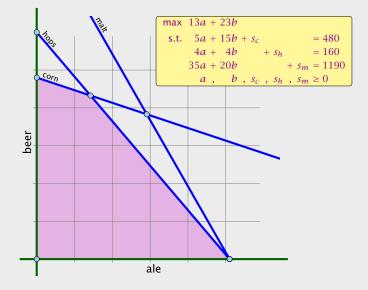


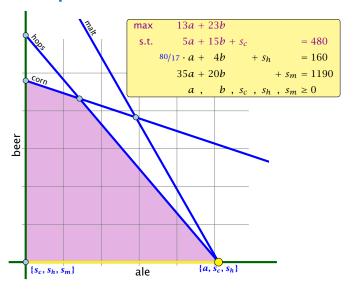


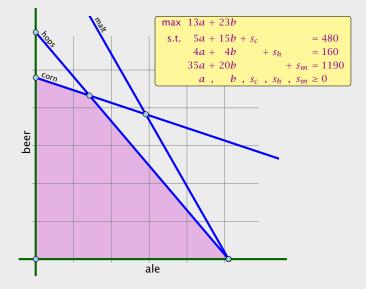


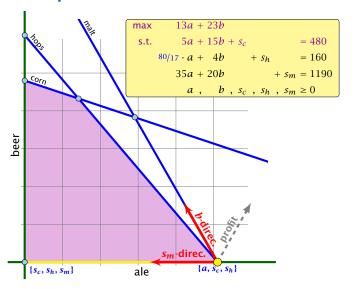


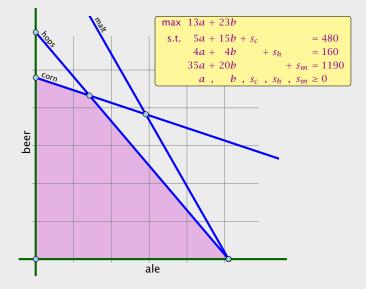


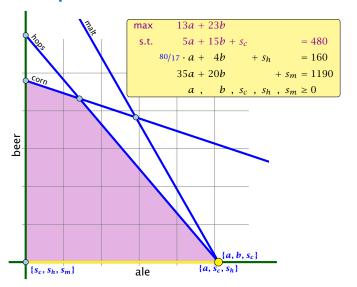


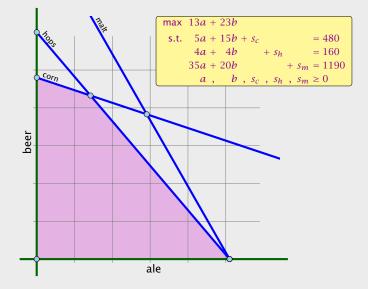


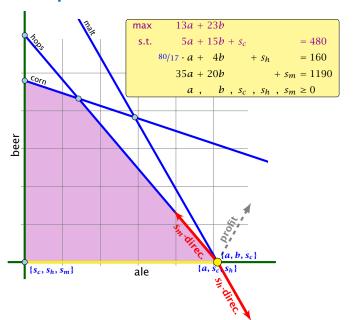


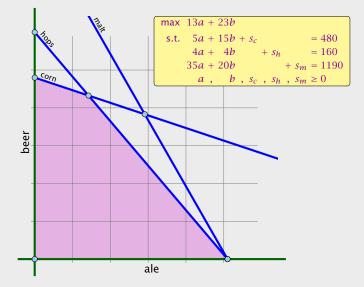


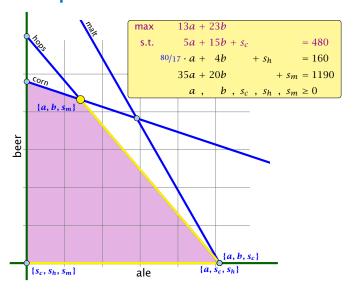


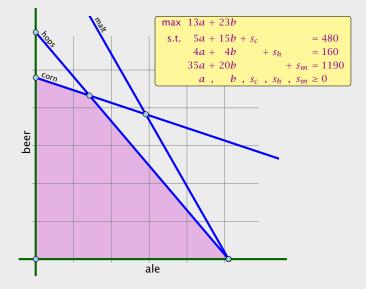


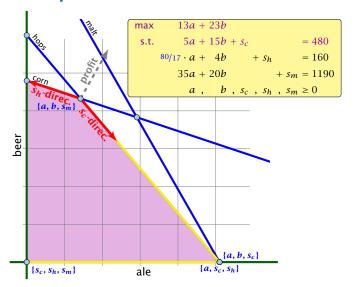


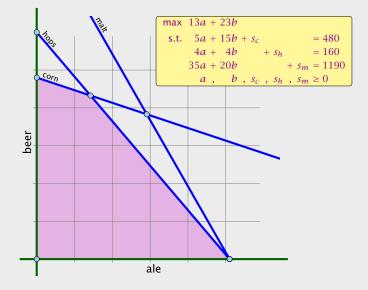




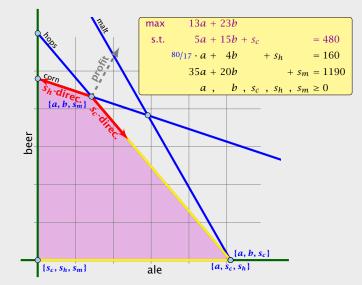




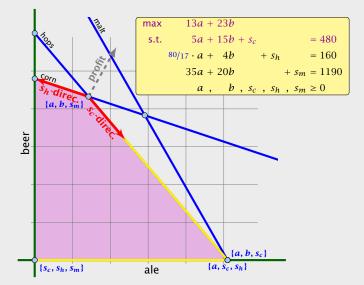




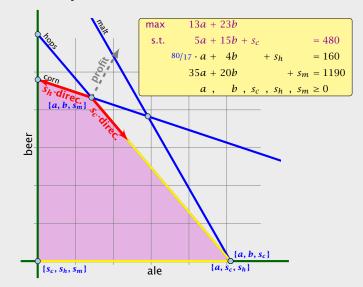
- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_{ρ} .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- ▶ If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.



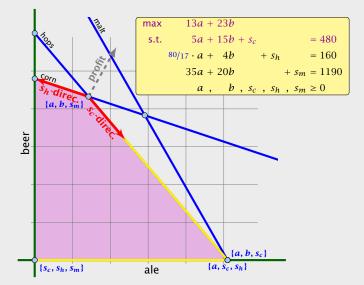
- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_{ρ} .
- ▶ If $A_{ie} \leq 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- ▶ If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.



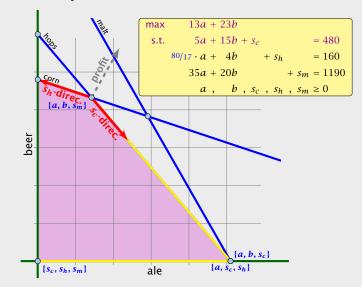
- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_e .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- ▶ If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.



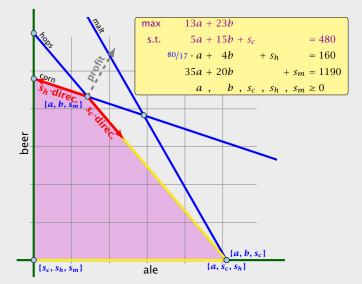
- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_{ρ} .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- ▶ If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of \(\ell \) it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex



- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_{ρ} .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- If several variables have minimum $b_\ell/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.



- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_{ρ} .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- If several variables have minimum $b_\ell/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.



What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ► The standard choice is the column that maximizes \tilde{c}_o .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- ► If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ightharpoonup Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ▶ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b. x = 0 is a basic feasible solution (how?).
- ▶ We directly can start the simplex algorithm

How do we find an initial basic feasible solution for an arbitrary

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ► We directly can start the simplex algorithm

How do we find an initial basic feasible solution for an arbitrary

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ▶ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

Suppose we want to maximize $c^T x$ s.t. $Ax = b, x \ge 0$.

How do we come up with an initial solution?

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ► We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Suppose we want to maximize $c^T x$ s.t. $Ax = b, x \ge 0$.

- 1. Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. vou have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution
- 6. Now you can start the Simplex for the original problem.

How do we come up with an initial solution?

- $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ▶ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Suppose we want to maximize $c^T x$ s.t. $Ax = b, x \ge 0$.

- 1. Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution
- 6. Now you can start the Simplex for the original problem.

How do we come up with an initial solution?

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ▶ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Suppose we want to maximize c^Tx s.t. $Ax = b, x \ge 0$.

- 1. Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution
- 6. Now you can start the Simplex for the original problem.

How do we come up with an initial solution?

- $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ▶ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

74

Suppose we want to maximize c^Tx s.t. $Ax = b, x \ge 0$.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution
- 6. Now you can start the Simplex for the original problem.

How do we come up with an initial solution?

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ▶ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Suppose we want to maximize $c^T x$ s.t. $Ax = b, x \ge 0$.

- 1. Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem

How do we come up with an initial solution?

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ▶ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

74

Suppose we want to maximize c^Tx s.t. Ax = b, $x \ge 0$.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

How do we come up with an initial solution?

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ► We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Optimality

Lemma 29

Let B be a basis and x^* a BFS corresponding to basis B. $\tilde{c} \le 0$ implies that x^* is an optimum solution to the LP.

Two phase algorithm

Suppose we want to maximize $c^T x$ s.t. Ax = b, $x \ge 0$.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a.b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a,b \ge 0$ gives us a lower bound (e.g. a=12,b=28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a.b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

Definition 30 Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

is called the dual problem.

 $w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$

Duality How do we get an upper bound to a maximization LP?

 $\max 13a + 23b$

s.t. $5a + 15b \le 480$ $4a + 4b \le 160$ $35a + 20b \le 1190$ $a,b \geq 0$

 $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800). If you take a conic combination of the rows (multiply the i-th row

with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_i$ then $\sum_i y_i b_i$ will be an upper bound.

Note that a lower bound is easy to derive. Every choice of

Lemma 31

The dual of the dual problem is the primal problem.

Proof

The dual problem i

Duality

Definition 30

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

$$w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$$

The dual problem is

Duality

Definition 30

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

5.1 Weak Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

Duality

Definition 30

Let $z = \max\{c^Tx \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

$$w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$$

The dual problem is

$$z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$$

$$\triangleright$$
 7 - may $\int c^T x \mid Ax < h, x > 0$

Duality

Definition 30

Let $z = \max\{c^Tx \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

$$w = -\max\{-b^T v \mid -A^T v \le -c, v \ge 0\}$$

The dual problem is

$$z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$$

$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

Duality

Definition 30

Let $z = \max\{c^Tx \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

Let
$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$
 and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$y$$
 is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^T \hat{x} < z < w < h^T \hat{v}$$

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T v \mid A^T v \ge c, v \ge 0\}$$

•
$$w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$$

The dual problem is

$$z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$$

$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^T \hat{x} \le z \le w \le b^T \hat{v}$$
.

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$
- $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

- $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
- $ightharpoonup z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc \ (\hat{x} \geq 0)$$

$$\hat{\mathbf{x}} < \mathbf{h} \Rightarrow \mathbf{v}^T A \hat{\mathbf{x}} < \hat{\mathbf{v}}^T \mathbf{h} (\hat{\mathbf{v}} > 0)$$

This give

$$c^T \hat{x} \le \hat{y}^T A \hat{x} \le b^T \hat{y}$$

5.1 Weak Duality

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dua

If D is supposed at the D is infectible

Weak Duality

Let
$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$
 and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$y$$
 is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality)

$$c^T \hat{x} \le z \le w \le b^T \hat{v}$$
.

$$A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{x} \leq b \Rightarrow v^T A \hat{x} \leq \hat{v}^T b \ (\hat{v} \geq 0)$$

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$$

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$\gamma$$
 is dual feasible, iff $\gamma \in \{\gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$.

Theorem 32 (Weak Duality)

$$c^T \hat{x} \le z \le w \le b^T \hat{y}$$
.

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^T A^T \hat{y} \geq \hat{x}^T c \ (\hat{x} \geq 0)$$

$$A\hat{x} \leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0)$$

$$c^T \hat{x} \leq \hat{v}^T A \hat{x} \leq b^T \hat{v}$$

Weak Duality

Let
$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$
 and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$\gamma$$
 is dual feasible, iff $\gamma \in \{\gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$.

Theorem 32 (Weak Duality)

$$c^T \hat{x} \le z \le w \le b^T \hat{v}$$
.

$$A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{\mathbf{x}} \leq \mathbf{b} = \mathbf{v}^T A\hat{\mathbf{x}} \leq \hat{\mathbf{v}}^T b \ (\hat{\mathbf{v}} \geq 0)$$

$$c^T \hat{x} \leq \hat{v}^T A \hat{x} \leq b^T \hat{v}$$

5.1 Weak Duality

Weak Duality

Let
$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$
 and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$\gamma$$
 is dual feasible, iff $\gamma \in \{ \gamma \mid A^T \gamma \ge c, \gamma \ge 0 \}$.

Theorem 32 (Weak Duality)

$$c^T \hat{x} \leq z \leq w \leq b^T \hat{v}$$
.

$$A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{x} \leq b \Rightarrow v^T A\hat{x} \leq \hat{v}^T b \ (\hat{v} \geq 0)$$

This give

$$c^T \hat{x} \leq \hat{v}^T A \hat{x} \leq b^T \hat{v}$$

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dua

If D is unhounded than D is infeasible

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$\gamma$$
 is dual feasible, iff $\gamma \in \{ \gamma \mid A^T \gamma \ge c, \gamma \ge 0 \}$.

Theorem 32 (Weak Duality)

$$c^T \hat{x} \leq z \leq w \leq b^T \hat{y}$$
.

$$A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{x} \leq b \Rightarrow v^T A \hat{x} \leq \hat{v}^T b \ (\hat{v} \geq 0)$$

This give

$$c^T \hat{x} \leq \hat{v}^T A \hat{x} \leq b^T \hat{v}$$

5.1 Weak Duality

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual

If D is unhounded than D is infeasible

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$\gamma$$
 is dual feasible, iff $\gamma \in \{ \gamma \mid A^T \gamma \ge c, \gamma \ge 0 \}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^T \hat{x} \le z \le w \le b^T \hat{y}$$
.

5.1 Weak Duality

$$A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{x} \leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0)$$

This gives

$$c^T \hat{x} \leq \hat{v}^T A \hat{x} \leq b^T \hat{v}$$
.

5.1 Weak Duality

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

 γ is dual feasible, iff $\gamma \in \{\gamma \mid A^T \gamma \geq c, \gamma \geq 0\}$.

Theorem 32 (Weak Duality)

$$c^T\hat{x} \le z \le w \le b^T\hat{y} .$$

$$A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{x} \leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0)$$

This gives

$$c^T \hat{x} \leq \hat{v}^T A \hat{x} \leq b^T \hat{v}$$
.

5.1 Weak Duality

Since, there exists primal feasible \hat{x} with $c^T\hat{x} = z$, and dual feasible $\hat{\gamma}$ with $b^T \gamma = w$ we get $z \leq w$.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T v \mid A^T v \ge c, v \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$\gamma$$
 is dual feasible, iff $\gamma \in \{\gamma \mid A^T \gamma \geq c, \gamma \geq 0\}$.

Theorem 32 (Weak Duality)

$$c^T\hat{x} \le z \le w \le b^T\hat{y} .$$

$$A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{x} \leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0)$$

This gives

$$c^T \hat{x} \leq \hat{v}^T A \hat{x} \leq b^T \hat{v}$$
.

5.1 Weak Duality

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible $\hat{\gamma}$ with $b^T \gamma = w$ we get $z \leq w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T v \mid A^T v \ge c, v \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$\gamma$$
 is dual feasible, iff $\gamma \in \{\gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^T \hat{x} \le z \le w \le b^T \hat{v}$$
.

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$

$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Weak Duality

$$A^T \hat{\mathcal{V}} \ge c \Rightarrow \hat{x}^T A^T \hat{\mathcal{V}} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{x} \le b \Rightarrow \gamma^T A\hat{x} \le \hat{\gamma}^T b \ (\hat{\gamma} \ge 0)$$

This gives

$$c^T \hat{x} \le \hat{v}^T A \hat{x} \le b^T \hat{v} .$$

Since, there exists primal feasible \hat{x} with $c^T\hat{x} = z$, and dual

If D is unbounded then D is infeasible

feasible \hat{y} with $b^T y = w$ we get $z \leq w$.

If ${\it P}$ is unbounded then ${\it D}$ is infeasible.

$$\max\{c^Tx\mid Ax=b,x\geq 0\}$$

The following linear programs form a primal dual pair:

5.2 Simplex and Duality

 $z = \max\{c^T x \mid Ax = b, x \ge 0\}$ $w = \min\{b^T \gamma \mid A^T \gamma \ge c\}$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Primal:

Proof

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do

EADS II

5.2 Simplex and Duality

83/571

5.2 Simplex and Duality

not have non-negativity constraints for the dual variables.

Primal:

Proof

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^T x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

5.2 Simplex and Duality

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$

$$w = \min\{b^T y \mid A^T y \ge c\}$$

The following linear programs form a primal dual pair:

not have non-negativity constraints for the dual variables.

This means for computing the dual of a standard form LP, we do

EADS II

5.2 Simplex and Duality

Primal:

Proof

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^T x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{[b^T - b^T]y \mid [A^T - A^T]y \ge c, y \ge 0\}$$

not have non-negativity constraints for the dual variables.

The following linear programs form a primal dual pair:

5.2 Simplex and Duality

 $z = \max\{c^T x \mid Ax = h, x > 0\}$

This means for computing the dual of a standard form LP, we do

5.2 Simplex and Duality

 $w = \min\{b^T v \mid A^T v \ge c\}$

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^T x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\inf[[b^T - b^T]y \mid [A^T - A^T]]$$

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min \left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

not have non-negativity constraints for the dual variables.

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

min{
$$[b^T - b^T]y \mid [A^T - A^T]y \ge c, y \ge 0$$
}
$$= \min \left\{ [b^T - b^T] \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid [A^T - A^T] \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$= \min \left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$

5.2 Simplex and Duality

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^T x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:
$$\min\{[b^T - b^T]y \mid [A^T - A^T]y \ge c, y \ge 0\}$$

$$\begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \geq c, y \geq 0$$

$$\min \begin{cases} \begin{bmatrix} h^T - h^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \end{bmatrix}$$

$$= \min \left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \middle| \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min \left\{ \begin{bmatrix} b^T - (x^+ - x^-) & A^T - (x^+ - x^-)$$

$$= \min \left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y \\ y^- \end{bmatrix} \middle| \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \\ = \min \left\{ b^T \cdot (y^+ - y^-) \middle| A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min \left\{ b^T y' \mid A^T y' \ge c \right\}$$

5.2 Simplex and Duality

$z = \max\{c^T x \mid Ax = b, x \ge 0\}$ $w = \min\{h^T v \mid A^T v > c\}$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

The following linear programs form a primal dual pair:

83/571

5.2 Simplex and Duality

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T y' \mid A^T y' \ge c \right\}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_R^{-1})^T c_R \ge c$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T y' \mid A^T y' \ge c \right\}$$

5.2 Simplex and Duality

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_R^{-1})^T c_R \ge c$

$$v^* = (A_R^{-1})^T c_R$$
 is solution to the dual $\min\{b^T v | A^T v \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T y' \mid A^T y' \ge c \right\}$$

5.2 Simplex and Duality

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_R^{-1})^T c_R \ge c$

$$v^* = (A_R^{-1})^T c_R$$
 is solution to the dual $\min\{b^T v | A^T v \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Proof

Primal:

$$\begin{aligned} \max\{c^T x \mid Ax &= b, x \ge 0\} \\ &= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\} \\ &= \max\{c^T x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\} \end{aligned}$$

Dual:

$$\min\{ [b^{T} - b^{T}] y \mid [A^{T} - A^{T}] y \ge c, y \ge 0 \}$$

$$= \min \left\{ [b^{T} - b^{T}] \cdot \begin{bmatrix} y^{+} \\ y^{-} \end{bmatrix} \mid [A^{T} - A^{T}] \cdot \begin{bmatrix} y^{+} \\ y^{-} \end{bmatrix} \ge c, y^{-} \ge 0, y^{+} \ge 0 \right\}$$

$$= \min \left\{ b^{T} \cdot (y^{+} - y^{-}) \mid A^{T} \cdot (y^{+} - y^{-}) \ge c, y^{-} \ge 0, y^{+} \ge 0 \right\}$$

$$= \min \left\{ b^{T} y' \mid A^{T} y' \ge c \right\}$$

5.2 Simplex and Duality

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_R^{-1})^T c_R \ge c$

$$v^* = (A_R^{-1})^T c_R$$
 is solution to the dual $\min\{b^T v | A^T v \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T y' \mid A^T y' \ge c \right\}$$

5.2 Simplex and Duality

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_R^{-1})^T c_R \ge c$

$$v^* = (A_R^{-1})^T c_R$$
 is solution to the dual $\min\{b^T v | A^T v \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$

Proof

Primal:

$$\begin{aligned} \max\{c^T x \mid Ax &= b, x \ge 0\} \\ &= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\} \\ &= \max\{c^T x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\} \end{aligned}$$

Dual:

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T y' \mid A^T y' \ge c \right\}$$

5.2 Simplex and Duality

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_R^{-1})^T c_R \ge c$

$$\gamma^* = (A_R^{-1})^T c_R$$
 is solution to the dual $\min\{b^T \gamma | A^T \gamma \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$

Proof

Primal:

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^T x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{ [b^{T} - b^{T}]y \mid [A^{T} - A^{T}]y \geq c, y \geq 0 \}$$

$$= \min \left\{ [b^{T} - b^{T}] \cdot \begin{bmatrix} y^{+} \\ y^{-} \end{bmatrix} \mid [A^{T} - A^{T}] \cdot \begin{bmatrix} y^{+} \\ y^{-} \end{bmatrix} \geq c, y^{-} \geq 0, y^{+} \geq 0 \right\}$$

$$= \min \left\{ b^{T} \cdot (y^{+} - y^{-}) \mid A^{T} \cdot (y^{+} - y^{-}) \geq c, y^{-} \geq 0, y^{+} \geq 0 \right\}$$

$$= \min \left\{ b^{T}y' \mid A^{T}y' \geq c \right\}$$

5.2 Simplex and Duality

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_R^{-1})^T c_R \ge c$

$$v^* = (A_R^{-1})^T c_R$$
 is solution to the dual $\min\{b^T v | A^T v \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Hence, the solution is optima

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T y' \mid A^T y' \ge c \right\}$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_R^{-1})^T c_R \ge c$

$$y^* = (A_R^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

5.2 Simplex and Duality

Hence, the solution is optimal.

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^T y' \mid A^T y' \ge c \right\}$$

5.3 Strong Duality

$$P = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

 n_A : number of variables, m_A : number of constraints

5.3 Strong Duality

We can put the non-negativity constraints into A (which gives us

unrestricted variables):
$$\bar{P} = \max\{c^T x \mid \bar{A}x \leq \bar{b}\}$$

 $n_{\bar{A}} = n_A, m_{\bar{A}} = m_A + n_A$

Dual $D = \min\{\bar{b}^T \gamma \mid \bar{A}^T \gamma = c, \gamma \ge 0\}.$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

Proof of Optimality Criterion for Simplex

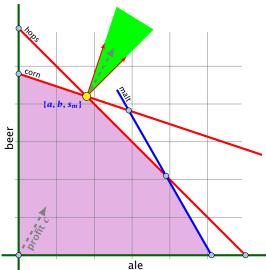
This is equivalent to $A^T(A_R^{-1})^T c_R \ge c$

 $\gamma^* = (A_R^{-1})^T c_R$ is solution to the dual $\min\{b^T \gamma | A^T \gamma \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Hence, the solution is optimal.

5.3 Strong Duality



The profit vector c lies in the cone generated by the normals for the hops and the corn constraint (the tight constraints).

5.3 Strong Duality

$$P = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

 n_A : number of variables, m_A : number of constraints

We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P} = \max\{c^Tx \mid \bar{A}x \leq \bar{b}\}$

$$n_{\bar{A}}=n_A$$
, $m_{\bar{A}}=m_A+n_A$

Dual
$$D = \min\{\bar{b}^T y \mid \bar{A}^T y = c, y \ge 0\}.$$

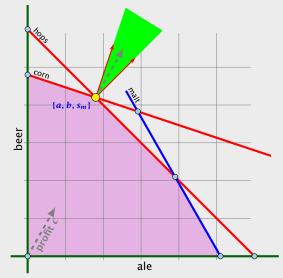
Strong Duality

Theorem 33 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

$$z^* = w^*$$

5.3 Strong Duality



The profit vector c lies in the cone generated by the normals for the hops and the corn constraint (the tight constraints).

Strong Duality

Lemma 34 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on *X*. Then $\min\{f(x): x \in X\}$ exists.

5.3 Strong Duality

(without proof)

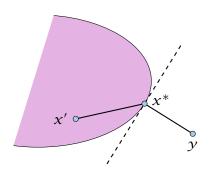
Theorem 33 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

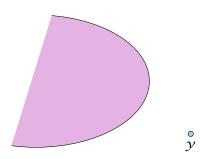


Lemma 34 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x):x\in X\}$ exists.

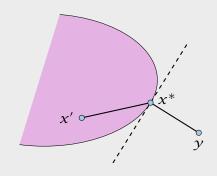
(without proof)

- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded
- Applying Weierstrass gives the existence.

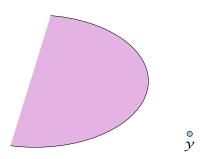


Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

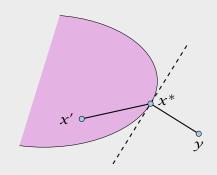


- ▶ Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$ Hence there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded
- Applying Weierstrass gives the existence.

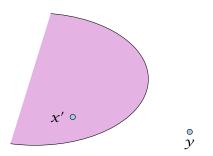


Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

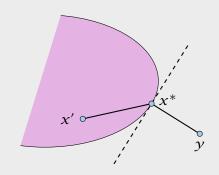


- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded
- Applying Weierstrass gives the existence.



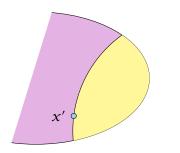
Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.



5.3 Strong Duality

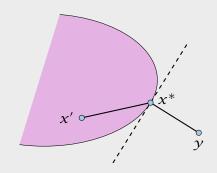
- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence



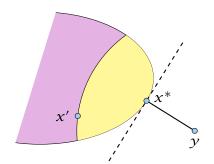
v

Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

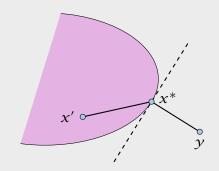


- ▶ Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



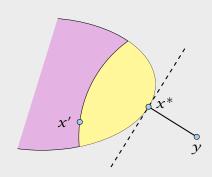
Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.



Proof of the Projection Lemma

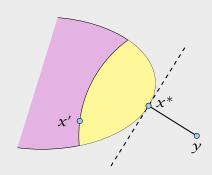
- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ► $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ► We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.

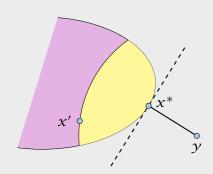


 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



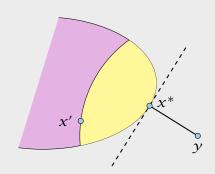
$$x^*$$
 is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity:
$$x \in X$$
 then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2$$

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



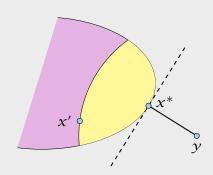
$$x^*$$
 is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity:
$$x \in X$$
 then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

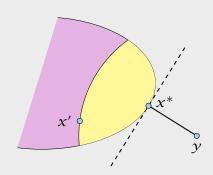
By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Proof of the Projection Lemma

- ▶ Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



$$x^*$$
 is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

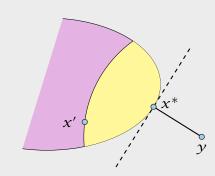
$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Hence,
$$(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$$
.

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ► $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

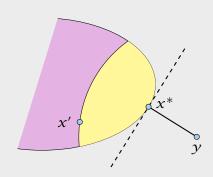
$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \to 0$ gives the result.

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ► $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $\gamma \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates γ from X. ($a^T \gamma < \alpha$) $a^T x \ge \alpha$ for all $x \in X$)

5.3 Strong Duality

Proof of the Projection Lemma (continued)

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

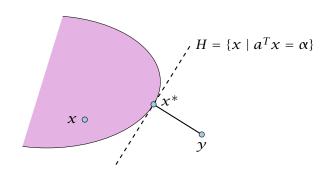
$$\|y - x^*\|^2 \le \|y - x^* - \epsilon(x - x^*)\|^2$$

$$= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \to 0$ gives the result.

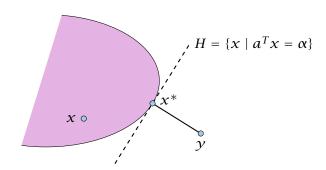
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^T x^*$
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^Tx = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^Ty < \alpha; a^Tx \ge \alpha \text{ for all } x \in X)$

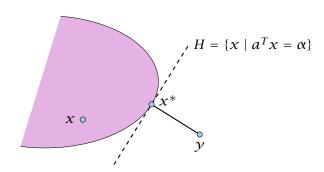
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^T x^*$
- For $x \in X$: $a^T(x x^*) > 0$, and, hence, $a^Tx > \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^Tx = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^Ty < \alpha; a^Tx \ge \alpha \text{ for all } x \in X)$

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$. and, hence, $a^Tx \ge \alpha$.
- ► Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

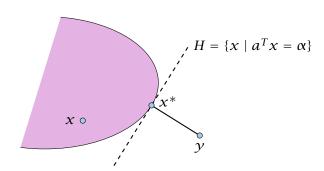


Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha; a^T x \ge \alpha \text{ for all } x \in X)$

- Let $x^* \in X$ be closest point to γ in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.

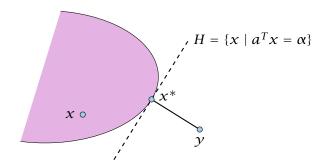
► Also, $a^T y = a^T (x^* - a) = \alpha - ||a||^2 < \alpha$



Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha; a^T x \ge \alpha \text{ for all } x \in X)$

- Let $x^* \in X$ be closest point to γ in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



5.3 Strong Duality

Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha; a^T x \ge \alpha \text{ for all } x \in X)$

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \geq 0$, $b^T \gamma < 0$

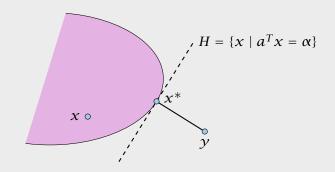
Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^T b = y^T A x \ge 0$$

Hence, at most one of the statements can hold.

Proof of the Hyperplane Lemma

- ▶ Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b. $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

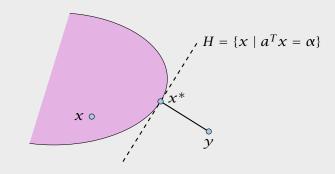
Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > v^T b = v^T A x \ge 0$$

Hence, at most one of the statements can hold.

Proof of the Hyperplane Lemma

- ▶ Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b. $x \ge 0$
- **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \geq 0$, $b^T \gamma < 0$

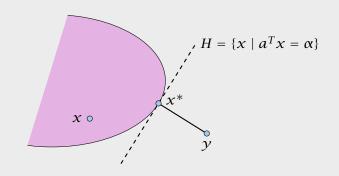
Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > v^T b = v^T A x \ge 0$$

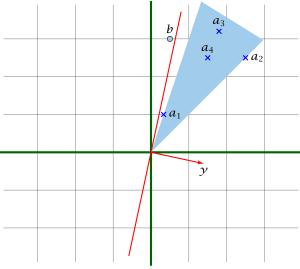
Hence, at most one of the statements can hold.

Proof of the Hyperplane Lemma

- ▶ Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Farkas Lemma



If b is not in the cone generated by the columns of A, there exists a hyperplane γ that separates b from the cone.

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^T b = y^T A x \ge 0$$

Hence, at most one of the statements can hold.

Now, assume that 1. does not hold

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$

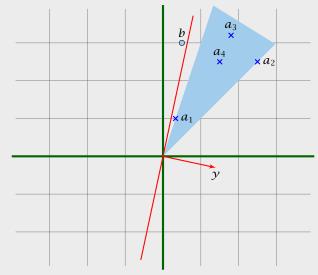
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < o$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$

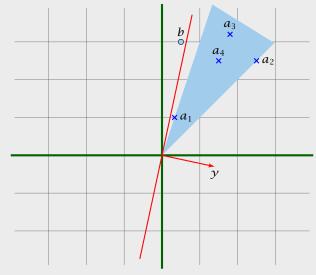
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < o$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

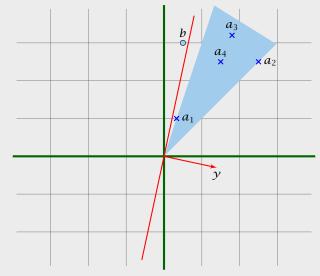
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < c$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

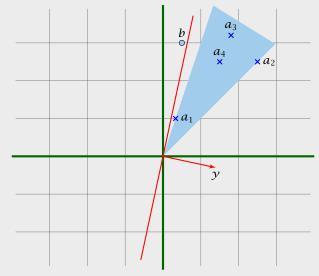
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < c$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

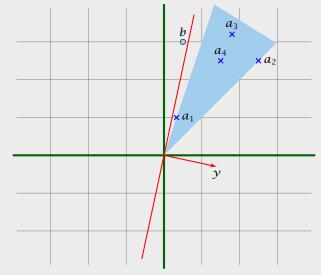
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

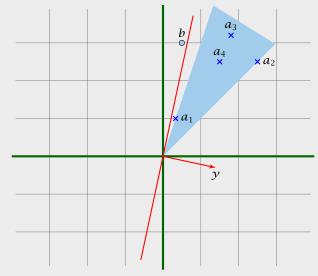
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

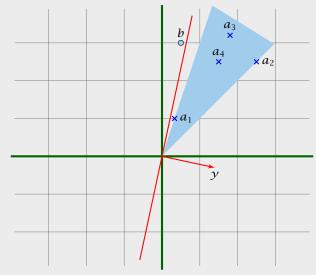
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

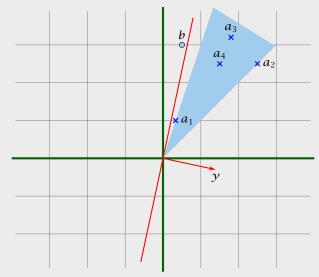
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Lemma 38 (Farkas Lemma; different version)

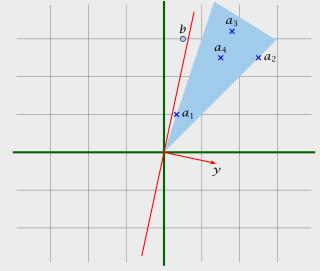
Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions

- 1. $\exists x \in \mathbb{R}^n$ with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b$, $x \ge 0$, $s \ge 0$
- 2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0$, $b^T y < 0$

Farkas Lemma



Lemma 38 (Farkas Lemma; different version)

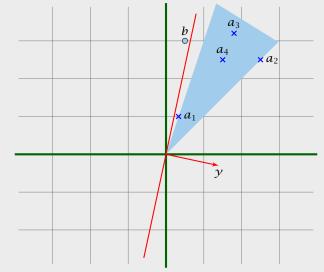
Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

- 1. $\exists x \in \mathbb{R}^n \text{ with } [A \ I] \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
- **2.** $\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

Farkas Lemma



$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

D:
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with $Ax \leq b$, $x \geq 0$
- **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \geq 0$, $b^T \gamma < 0$, $\gamma \geq 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, \ x \ge 0, \ s \ge 0$$

2.
$$\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

5.3 Strong Duality

 $z \le w$: follows from weak duality

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.

 $z \le w$: follows from weak duality

 $z \geq w$:

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.

5.3 Strong Duality

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \geq 0$

$$b^{T}y - \alpha v < 0$$

$$y, v \geq 0$$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

5.3 Strong Duality

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \ge 0$

$$b^{T}y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible.

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Proof of Strong Duality

P:
$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

D: $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

Hence, there exists a solution v, v with v > 0.

We can rescale this solution (scaling both γ and v) s.t. v=1.

Then y is feasible for the dual but $b^T y < \alpha$. This means that

Proof of Strong Duality

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \ge 0$

$$b^{T}y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution γ , ν has $\nu = 0$ we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge b^T y < b^T y < b^T y \ge b^T y < b^T y$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and v) s.t. v=1.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that

Proof of Strong Duality

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \geq 0$

$$b^T y < 0$$

$$y \geq 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and ν) s.t. $\nu = 1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that

Proof of Strong Duality

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and ν) s.t. $\nu=1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that $w < \alpha$.

Proof of Strong Duality

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^{m}$$
s.t. $A^{T}y \geq 0$

$$b^{T}y < 0$$

$$y \geq 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Ouestions:

- ► Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Droo

Proof of Strong Duality

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and ν) s.t. $\nu = 1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that $w < \alpha$.

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Ouestions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is I P in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dua
- A verifier can check that the associated dual solution fulfills
 all dual constraints and that it has dual cost

Proof of Strong Duality

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and ν) s.t. $\nu=1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that $w < \alpha$.

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Ouestions:

- ► Is LP in NP?
- ► Is LP in co-NP? ves!
- ► Is I P in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \text{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills

Proof of Strong Duality

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and ν) s.t. $\nu = 1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that $w < \alpha$.

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{O}^{m \times n}$, $b \in \mathbb{O}^m$, $c \in \mathbb{O}^n$, $\alpha \in \mathbb{O}$. Does there exist $x \in \mathbb{O}^n$ s.t. Ax = b. $x \ge 0$. $c^T x \ge \alpha$?

Ouestions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is I P in P?

- Proof: • Given a primal maximization problem P and a parameter α .
- Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual. A verifier can check that the associated dual solution fulfills

all dual constraints and that it has dual cost $< \alpha$.

Proof of Strong Duality

Hence, there exists a solution v, v with v > 0.

We can rescale this solution (scaling both ν and ν) s.t. $\nu = 1$.

Then γ is feasible for the dual but $b^T \gamma < \alpha$. This means that $w < \alpha$.

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^Tx \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^Ty \mid A^Ty \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^Tx \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^Ty \mid A^Ty \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = \gamma^{*T} A x^* = b^T \gamma^*$$

This gives e.g.

$$\sum_{i} (y^T A - c^T)_j x_j^* = 0$$

5.4 Interpretation of Dual Variables

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^Tx \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^Ty \mid A^Ty \ge c; y \ge 0\}$ has solution y^* .

- 1. If $x_i^* > 0$ then the j-th constraint in D is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{i} (y^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^TA \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^TA - c^T)_j > 0$ (the j-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^Tx \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^Ty \mid A^Ty \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ $(y_i^* > 0)$, (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint and its corresponding (dual) variable has slack.

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M$ ≥ 13
 $15C$ + $4H$ + $20M$ ≥ 23
 C,H,M ≥ 0

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = \gamma^{*T} A x^* = b^T \gamma^*$$

This gives e.g.

$$\sum_{j} (y^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^TA \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^TA - c^T)_j > 0$ (the j-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

► Entrepeneur: buy resources from brewer at minimum cost *C*, *H*, *M*: unit price for corn, hops and malt.

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (y^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^TA \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^TA - c^T)_j > 0$ (the j-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

► Entrepeneur: buy resources from brewer at minimum cost *C*, *H*, *M*: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C+4H+35M<13 as then brewing ale would be advantageous.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = \gamma^{*T} A x^* = b^T \gamma^*$$

This gives e.g.

$$\sum_{j} (y^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^TA \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^TA - c^T)_j > 0$ (the j-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{lll}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}$$

Interpretation of Dual Variables

► Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

► Entrepeneur: buy resources from brewer at minimum cost *C*, *H*, *M*: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

Interpretation of Dual Variables

► Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

► Entrepeneur: buy resources from brewer at minimum cost *C*, *H*, *M*: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx \mid Ax \leq b + \varepsilon; x \geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{lll}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}$$

Interpretation of Dual Variables

► Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

► Entrepeneur: buy resources from brewer at minimum cost *C*, *H*, *M*: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{cccc}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}$$

Interpretation of Dual Variables

► Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

► Entrepeneur: buy resources from brewer at minimum cost *C*, *H*, *M*: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices

Note that with this interpretation, complementary slackness becomes obvious.

Interpretation of Dual Variables

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{cccc}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq & c \\
& y & \geq & 0
\end{array}$$

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

Interpretation of Dual Variables

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\epsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{cccc}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}$$

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

Interpretation of Dual Variables

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\epsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{cccc}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}$$

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- ▶ If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ▶ If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer.
 Hence, it makes no sense to have left-overs of this resource.
 Therefore its slack must be zero.

Interpretation of Dual Variables

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{cases}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y \ge c \\
y \ge 0
\end{cases}$$

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- ▶ If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ► If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

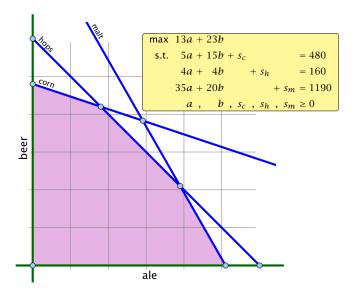
Interpretation of Dual Variables

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{cccc}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq & c \\
& y & \geq & 0
\end{array}$$

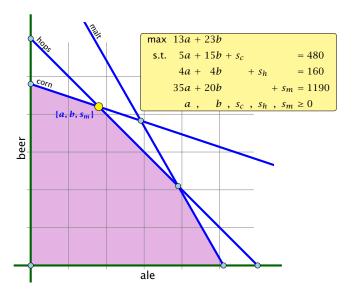


Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- ► If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ► If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

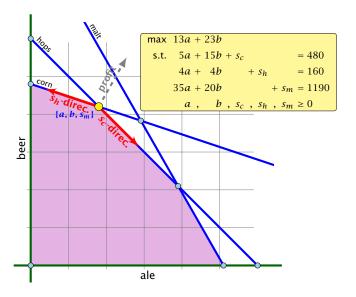


Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- ► If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ► If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

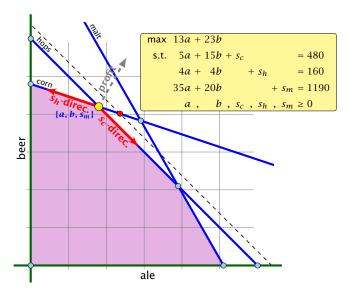


Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- ► If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ► If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

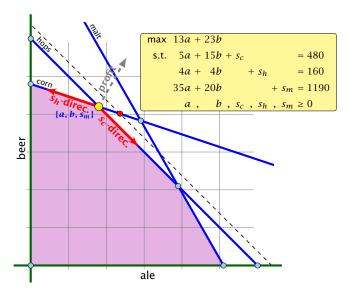


Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- ► If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ► If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

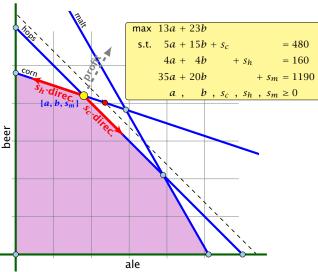


Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- ► If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ► If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.



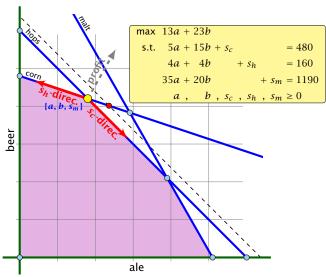
The change in profit when increasing hops by one unit is $= c_R^T A_R^{-1} e_h$.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- ► If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ► If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.



The change in profit when increasing hops by one unit is

$$=\underbrace{c_B^T A_B^{-1}}_{\mathcal{N}^*} e_h$$

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

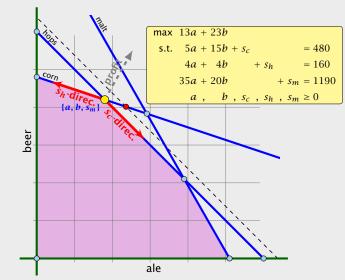
Therefore we can interpret the dual variables as marginal prices.

- ► If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ► If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Example



The change in profit when increasing hops by one unit is

$$=\underbrace{c_B^T A_B^{-1}}_{\mathcal{V}^*} e_h.$$

Flows

Definition 42

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{XY} \le c_{XY}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv}$$

Flows

Definition 42

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{XY} \le c_{XY}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

Flows

Definition 43

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flour Broblem

Find an (c t) flow with maximum value

Flows

Definition 42

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy} .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

Definition 43

The value of an (s,t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s,t)-flow with maximum value.

Flows

Definition 42

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy} .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

Flows

Definition 43

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

$$\begin{array}{lll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \left(x, y \neq s, t \right) \colon & 1 \ell_{xy} - 1 p_x + 1 p_y \; \geq \; 0 \\ & f_{sy} \left(y \neq s, t \right) \colon & 1 \ell_{sy} \; + 1 p_y \; \geq \; 1 \\ & f_{xs} \left(x \neq s, t \right) \colon & 1 \ell_{xs} - 1 p_x \; & \geq \; -1 \\ & f_{ty} \left(y \neq s, t \right) \colon & 1 \ell_{ty} \; + 1 p_y \; \geq \; 0 \\ & f_{xt} \left(x \neq s, t \right) \colon & 1 \ell_{xt} - 1 p_x \; & \geq \; 0 \\ & f_{st} \colon & 1 \ell_{st} \; & \geq \; 1 \\ & f_{ts} \colon & 1 \ell_{ts} \; & \geq \; -1 \\ & \ell_{xy} \; & \geq \; 0 \end{array}$$

Flows

Definition 43

The value of an (s,t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

$\begin{array}{llll} & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \ (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \ \geq & 0 \\ & f_{sy} \ (y \neq s,t) \colon & 1\ell_{sy} - & 1 + 1p_y \ \geq & 0 \\ & f_{xs} \ (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + & 1 \ \geq & 0 \\ & f_{ty} \ (y \neq s,t) \colon & 1\ell_{ty} - & 0 + 1p_y \ \geq & 0 \\ & f_{xt} \ (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + & 0 \ \geq & 0 \\ & f_{st} \colon & 1\ell_{st} - & 1 + & 0 \ \geq & 0 \\ & f_{ts} \colon & 1\ell_{ts} - & 0 + & 1 \ \geq & 0 \\ & \ell_{xy} \ \geq & 0 \end{array}$

LP-Formulation of Maxflow

```
\begin{array}{llll} & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \left( x, y \neq s, t \right) \colon & 1 \ell_{xy} - 1 p_x + 1 p_y \; \geq \; 0 \\ & f_{sy} \left( y \neq s, t \right) \colon & 1 \ell_{sy} + 1 p_y \; \geq \; 1 \\ & f_{xs} \left( x \neq s, t \right) \colon & 1 \ell_{xs} - 1 p_x \; & \geq \; -1 \\ & f_{ty} \left( y \neq s, t \right) \colon & 1 \ell_{ty} + 1 p_y \; \geq \; 0 \\ & f_{xt} \left( x \neq s, t \right) \colon & 1 \ell_{xt} - 1 p_x \; & \geq \; 0 \\ & f_{st} \colon & 1 \ell_{st} \; & \geq \; 1 \\ & f_{ts} \colon & 1 \ell_{ts} \; & \geq \; -1 \\ & \ell_{xy} \; & \geq \; 0 \end{array}
```

$\begin{array}{lll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \; (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) \colon & 1\ell_{sy} - \; p_s + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + \; p_s \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) \colon & 1\ell_{ty} - \; p_t + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + \; p_t \; \geq \; 0 \\ & f_{st} \colon & 1\ell_{st} - \; p_s + \; p_t \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{ts} - \; p_t + \; p_s \; \geq \; 0 \\ & \ell_{xy} \; \geq \; 0 \end{array}$

with $p_t = 0$ and $p_s = 1$.

LP-Formulation of Maxflow

```
\begin{array}{llll} & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \; (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) \colon & 1\ell_{sy} - \; 1 + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + \; 1 \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) \colon & 1\ell_{ty} - \; 0 + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + \; 0 \; \geq \; 0 \\ & f_{st} \colon & 1\ell_{st} - \; 1 + \; 0 \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{ts} - \; 0 + \; 1 \; \geq \; 0 \\ & \ell_{xy} \; \geq \; 0 \end{array}
```

5.5 Computing Duals

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the $\ell_{\rm rev}$ value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to (where the distance from s to t is required to be 1 since $p_x = 1$)

The constraint $p_X \le \ell_{XY} + p_Y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{XY} + d(y,t))$.

LP-Formulation of Maxflow

$$\begin{array}{llll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \ (x,y \neq s,t) : & 1\ell_{xy} - 1p_x + 1p_y \ \geq & 0 \\ & f_{sy} \ (y \neq s,t) : & 1\ell_{sy} - p_s + 1p_y \ \geq & 0 \\ & f_{xs} \ (x \neq s,t) : & 1\ell_{xs} - 1p_x + p_s \ \geq & 0 \\ & f_{ty} \ (y \neq s,t) : & 1\ell_{ty} - p_t + 1p_y \ \geq & 0 \\ & f_{xt} \ (x \neq s,t) : & 1\ell_{xt} - 1p_x + p_t \ \geq & 0 \\ & f_{st} : & 1\ell_{st} - p_s + p_t \ \geq & 0 \\ & f_{ts} : & 1\ell_{ts} - p_t + p_s \ \geq & 0 \\ & \ell_{xy} \ \geq & 0 \end{array}$$

5.5 Computing Duals

with $p_t = 0$ and $p_s = 1$.

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to (where the distance from s to t is required to be 1 since $p_x = 1$).

The constraint $p_X \le \ell_{XY} + p_Y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{XY} + d(y,t))$.

LP-Formulation of Maxflow

$$\begin{array}{llll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \; (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) \colon & 1\ell_{sy} - p_s + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + \; p_s \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) \colon & 1\ell_{ty} - \; p_t + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + \; p_t \; \geq \; 0 \\ & f_{st} \colon & 1\ell_{st} - \; p_s + \; p_t \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{ts} - \; p_t + \; p_s \; \geq \; 0 \\ & \ell_{xy} \; \geq \; 0 \end{array}$$

with $p_t = 0$ and $p_s = 1$.

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

LP-Formulation of Maxflow

$$\begin{array}{llll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \; (x,y \neq s,t) : & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) : & 1\ell_{sy} - \; p_s + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) : & 1\ell_{xs} - 1p_x + \; p_s \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) : & 1\ell_{ty} - \; p_t + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) : & 1\ell_{xt} - 1p_x + \; p_t \; \geq \; 0 \\ & f_{st} : & 1\ell_{st} - \; p_s + \; p_t \; \geq \; 0 \\ & f_{ts} : & 1\ell_{ts} - \; p_t + \; p_s \; \geq \; 0 \\ & \ell_{xy} \; \geq \; 0 \end{array}$$

with $p_t = 0$ and $p_s = 1$.

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$
 $\ell_{xy} \ge 0$
 $p_s = 1$
 $p_t = 0$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t)$).

LP-Formulation of Maxflow

$$\begin{array}{llll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \; (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) \colon & 1\ell_{sy} - \; p_s + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + \; p_s \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) \colon & 1\ell_{ty} - \; p_t + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + \; p_t \; \geq \; 0 \\ & f_{st} \colon & 1\ell_{st} - \; p_s + \; p_t \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{ts} - \; p_t + \; p_s \; \geq \; 0 \\ & \ell_{xy} \; \geq \; 0 \end{array}$$

with $p_t = 0$ and $p_s = 1$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_X=1$ or $p_X=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality

LP-Formulation of Maxflow

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_X \le \ell_{XY} + p_Y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{XY} + d(y,t))$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x=1$ or $p_x=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

LP-Formulation of Maxflow

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_X \le \ell_{XY} + p_Y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{XY} + d(y,t))$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

LP-Formulation of Maxflow

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

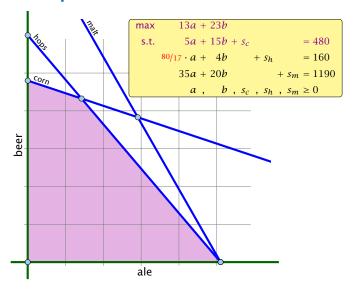
We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

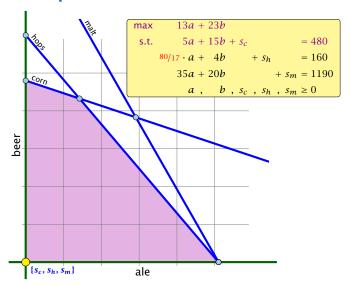
The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

Degeneracy Revisited

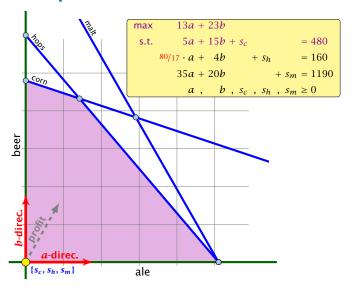
Degeneracy Revisited



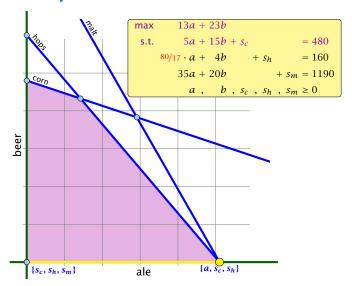
Degeneracy Revisited



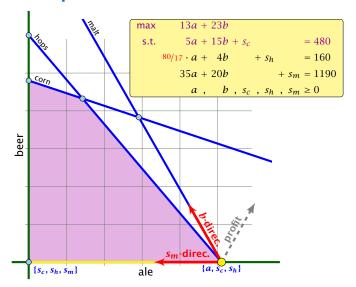
Degeneracy Revisited



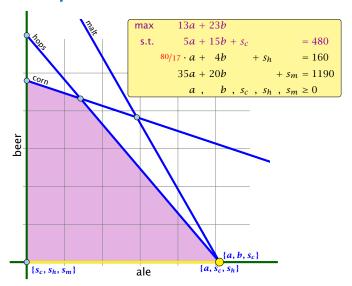
Degeneracy Revisited



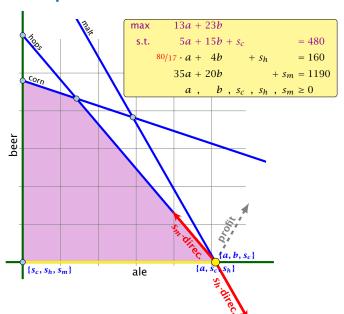
Degeneracy Revisited



Degeneracy Revisited

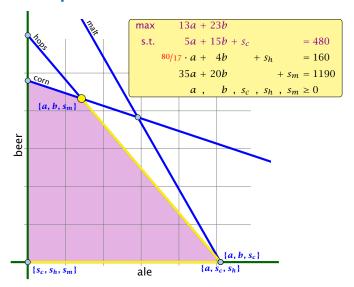


Degeneracy Revisited



Degeneracy Revisited

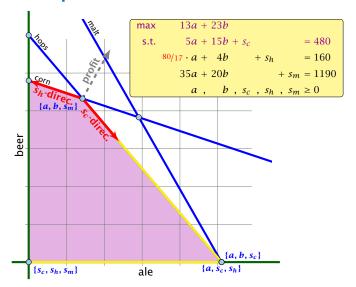
Degenerate Example



Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degenerate Example



Degeneracy Revisited

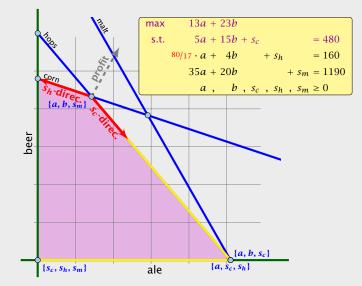
If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

```
If a set wof basis variables corresponds to
```



basis (i.e. %, % = 0) then a corresponds to an infeasible

basis in 12' (note that columns in 43 are linearly

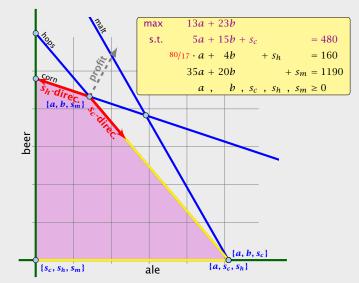
independen

[&]quot; has no degenerate basic solutions

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

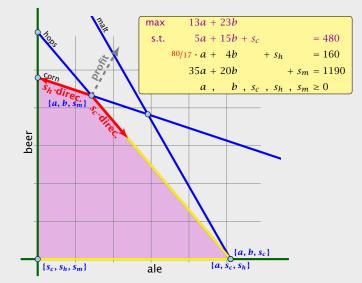


If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \equiv 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent)
- III. LP' has no degenerate basic solutions



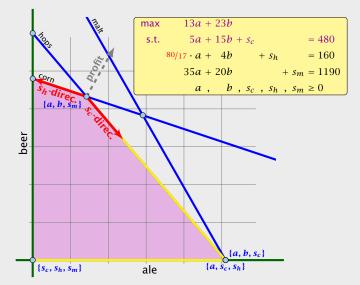
If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

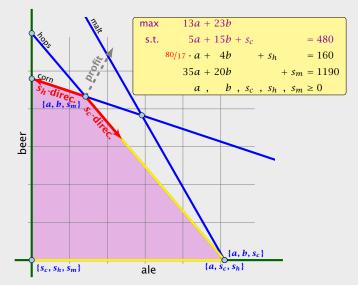


If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions



Perturbation

Let B be index set of some basis with basic solution

$$\chi_{B}^{*} = A_{B}^{-1}b \ge 0, \chi_{N}^{*} = 0$$
 (i.e. *B* is feasible)

Fix

$$b':=b+A_Begin{pmatrix}arepsilon\ arepsilon\ arepsilon m\end{pmatrix}$$
 for $arepsilon>0$.

This is the perturbation that we are using

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

120/571

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Perturbation

Let B be index set of some basis with basic solution

$$\chi_{R}^{*} = A_{R}^{-1}b \ge 0, \chi_{N}^{*} = 0$$
 (i.e. *B* is feasible)

Fix

$$b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$
 for $\varepsilon > 0$.

This is the perturbation that we are using.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

The new LP is feasible because the set B of basis variables provides a feasible basis:

$$A_B^{-1}\left(b + A_B\begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right) = x_B^* + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix} \ge 0 .$$

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

The new LP is feasible because the set B of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=\chi_B^*+\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0.$$

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

121/571

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx.Ax = b: x \ge 0\}$. Change it into $LP' := \max\{c^Tx, Ax = b', x \ge 0\}$ such that

- **I.** LP' is feasible
- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_R^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_R are linearly independent).
- **III.** LP' has no degenerate basic solutions

II e

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i<0$ for some row i.

Then for small enough $\epsilon > 0$

$$\left(A_{ ilde{B}}^{-1}\left(b+A_{B}\left(egin{array}{c}arepsilon\ arepsilon\ arepsilon^{m}\end{array}
ight)
ight)_{i}$$

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

122/571

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i<0$ for some row i.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i} < 0$$

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i<0$ for some row i.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i} < 0$$

Hence. \tilde{B} is not feasible.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

122/571

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{B} \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\bar{p}}^{-1}A_{\bar{B}}$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- **III.** LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{B} \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{g}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{p}}^{-1}A_{B}$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- **III.** LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{\tilde{B}}\begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{p}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b: x \ge 0\}$. Change it into $LP' := \max\{c^Tx, Ax = b', x \ge 0\}$ such that

- **I.** LP' is feasible
- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_R^{-1}b \not\geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_R are linearly independent).
- **III.** LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{p}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b: x \ge 0\}$. Change it into $LP' := \max\{c^Tx, Ax = b', x \ge 0\}$ such that

- **I.** LP' is feasible
- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_R^{-1}b \not\geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_R are linearly independent).
- **III.** LP' has no degenerate basic solutions

Since, there are no degeneracies Simplex will terminate when run on LP^{\prime} .

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Since, there are no degeneracies Simplex will terminate when run on LP^\prime .

▶ If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_B^T A_B^{-1} A) \le 0$$

then we have found an optimal basis.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Since, there are no degeneracies Simplex will terminate when run on LP'.

▶ If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_B^T A_B^{-1} A) \le 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Since, there are no degeneracies Simplex will terminate when run on LP'.

▶ If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_B^T A_B^{-1} A) \le 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the j-th basis direction d, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on b. Hence, we also know that LP is unbounded.

6 Degeneracy Revisited

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Since, there are no degeneracies Simplex will terminate when run on LP'.

▶ If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_R^T A_R^{-1} A) \le 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

▶ If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the j-th basis direction d, fulfills $d \geq 0$ we know that LP' is unbounded. The basis direction does not depend on b. Hence, we also know that LP is unbounded.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation

Since, there are no degeneracies Simplex will terminate when run on LP'.

► If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_B^T A_B^{-1} A) \le 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

▶ If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the j-th basis direction d, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on b. Hence, we also know that LP is unbounded.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Since, there are no degeneracies Simplex will terminate when run on LP'.

▶ If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_R^T A_R^{-1} A) \le 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

▶ If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the j-th basis direction d, fulfills $d \geq 0$ we know that LP' is unbounded. The basis direction does not depend on b. Hence, we also know that LP is unbounded.

We choose the entering variable arbitrarily as before $(\tilde{c}_e > 0)$, of

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable)

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' an

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP^\prime without explicitly doing a perturbation.

We choose the entering variable arbitrarily as before ($\tilde{c}_e>0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP^\prime without explicitly doing a perturbation.

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP^\prime and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon m \end{pmatrix}$$

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP^\prime and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Matrix View Let our linear program be

program

 $c_B^T x_B + c_N^T x_N = Z$ $A_B x_B + A_N x_N = b$

 x_B + $A_N x_N$ - D x_B , $x_N \ge 0$

The simplex tableaux for basis B is

 $(a^T - a^T A^{-1} A + a^T A^{1} A + a^T A^{-1} A + a^T A^{-1} A + a^T A^{-1} A + a^T A^{-1} A$

 $(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$ $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$

-

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum

3 . **3**

Lexicographic Pivoting

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

Harald Räcke

6 Degeneracy Revisited

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell\rho} > 0$ and

$$oldsymbol{ heta_{oldsymbol{\ell}}} = rac{\hat{b}_{oldsymbol{\ell}}}{\hat{A}_{oldsymbol{\ell}_{oldsymbol{q}}}} = rac{(A_{oldsymbol{B}}^{-1}b)_{oldsymbol{\ell}}}{(A_{oldsymbol{B}}^{-1}A_{oldsymbol{q}}a_{oldsymbol{q}})_{oldsymbol{\ell}}}$$

Let our linear program be

Matrix View

 $A_B x_B + A_N x_N = b$ x_B , $x_N \geq 0$

The simplex tableaux for basis B is

 $(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$ $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$

 $c_R^T x_B + c_N^T x_N = Z$

 x_R , $x_N \geq 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II

minimizes

6 Degeneracy Revisited 128

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell\rho} > 0$ and

$$heta_\ell = rac{\hat{b}_\ell}{\hat{A}_{\ell a}} = rac{(A_B^{-1}b)_\ell}{(A_B^{-1}A_{\ell a})_\ell}$$

Let our linear program be $c_R^T x_B + c_N^T x_N = Z$

$$A_B x_B + A_N x_N = b$$

 $x_B , x_N \ge 0$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

solution.

Matrix View

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum

minimizes

128

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell\rho} > 0$ and

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell a}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{+a})_{\ell}} \ .$$

Let our linear program be

Matrix View

 $c_R^T x_B + c_N^T x_N = Z$

$$A_B x_B + A_N x_N = b$$

 x_B , $x_N \ge 0$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum solution.

minimizes

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell\rho} > 0$ and

$$heta_\ell = rac{\hat{b}_\ell}{\hat{A}_{\ell,o}} = rac{(A_B^{-1}b)_\ell}{(A_P^{-1}A_{\star,o})_\ell} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g.

 $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

129/571

Matrix View

Let our linear program be

 $A_B x_B + A_N x_N = b$ x_R , $x_N \geq 0$

 $c_R^T x_B + c_N^T x_N = Z$

The simplex tableaux for basis B is

 $(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$ $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II

minimizes

Lexicographic Pivoting

Definition 44 $u \leq_{\text{lex}} v$ if and only if the first component in which u and v differ fulfills $u_i \leq v_i$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes $\theta_\ell=\frac{\hat{b}_\ell}{\hat{A}_{\ell e}}=\frac{(A_B^{-1}b)_\ell}{(A_B^{-1}A_{+e})_\ell} \ .$

$$\ell$$
 is the index of a leaving variable within B . This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP' chooses an index that minimizes

$$heta_\ell$$

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has
$$\hat{A}_{\ell e} > 0$$
 and minimizes $\hat{h}_{\ell e} = (A_n^{-1}h)_{\ell e}$

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} .$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1} \left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}}$$

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell\rho} > 0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1} \left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}} = \frac{\left(A_{B}^{-1} (b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}}$$

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell a}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*\ell})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1}\begin{pmatrix}b+\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1}A_{*e})_{\ell}} = \frac{\left(A_{B}^{-1}(b\mid I)\begin{pmatrix}1\\\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{\ell}}{(A_{B}^{-1}A_{*e})_{\ell}}$$

$$= \frac{\ell\text{-th row of }A_{B}^{-1}(b\mid I)}{(A_{B}^{-1}A_{*e})_{\ell}}\begin{pmatrix}1\\\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}$$

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell \alpha}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{+\alpha})_{\ell}}.$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

This means you can choose the variable/row $\boldsymbol{\ell}$ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*\ell})_{\ell}}$$

is lexicographically minimal.

Of course only including rows with $(A_n^{-1}A_{*a})_n > 0$

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

Lexicographic Pivoting

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1} \left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}} = \frac{\left(A_{B}^{-1} (b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)}{(A_{B}^{-1} A_{*e})_{\ell}}$$

$$= \frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*e})_{\ell}} \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{r} \end{pmatrix}$$

This means you can choose the variable/row ℓ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*\ell})_{\ell}}$$

is lexicographically minimal.

Of course only including rows with $(A_R^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur

Lexicographic Pivoting

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1} \left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}} = \frac{\left(A_{B}^{-1} (b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}}$$

$$= \frac{\ell\text{-th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_{\ell}} \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^n \end{pmatrix}$$

This means you can choose the variable/row ℓ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*e})_{\ell}}$$

is lexicographically minimal.

Of course only including rows with $(A_R^{-1}A_{*\ell})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

Lexicographic Pivoting

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1} \left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}} = \frac{\left(A_{B}^{-1} (b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}}$$

$$=\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*e})_\ell}\begin{pmatrix}1\\\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$$

Each iteration of Simplex can be implemented in polynomial time.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

7 Klee Minty Cube

Number of Simplex Iterations

time.

Observation
Simplex visits every feasible basis at most once.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

Each iteration of Simplex can be implemented in polynomial

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?

01 ...

Observation
Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

Number of Simplex Iterations

time.

Each iteration of Simplex can be implemented in polynomial

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables,

m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a

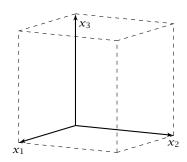
Communication between the tra

Can we obtain a better analysis?

polynomial time algorithm.

Example

 $\max c^T x$ s.t. $0 \le x_1 \le 1$ $0 \le x_2 \le 1$ \vdots $0 \le x_n \le 1$



2n constraint on n variables define an n-dimensional hypercube as feasible region.

The feasible region has 2^n vertices.

Number of Simplex Iterations

Observation

Simplex visits every feasible basis at most once.

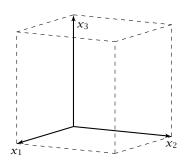
However, also the number of feasible bases can be very large.

135/571

EADS II

Example

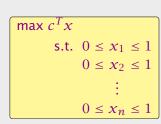
$\max c^T x$ s.t. $0 \le x_1 \le 1$ $0 \le x_2 \le 1$ \vdots $0 \le x_n \le 1$

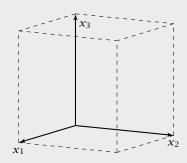


However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

Example





2n constraint on n variables define an n-dimensional hypercube as feasible region.

The feasible region has 2^n vertices.

136/571

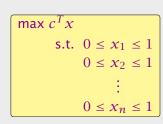
EADS II

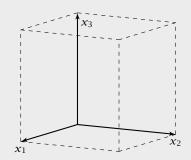
Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable the leaving variable is unique.

Example





However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

Klee Minty Cube

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

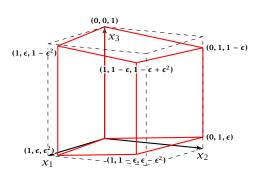
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

$$\vdots$$

$$\epsilon x_{n-1} \le x_n \le 1 - \epsilon x_{n-1}$$

$$x_i \ge 0$$



Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable the leaving variable is unique.

- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables
- ► There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

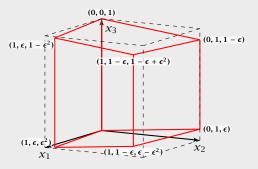
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

$$\vdots$$

$$\epsilon x_{n-1} \le x_n \le 1 - \epsilon x_{n-1}$$

$$x_i \ge 0$$



- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

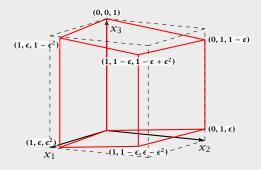
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

$$\vdots$$

$$\epsilon x_{n-1} \le x_n \le 1 - \epsilon x_{n-1}$$

$$x_i \ge 0$$



- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

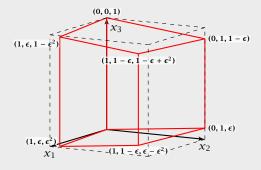
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

$$\vdots$$

$$\epsilon x_{n-1} \le x_n \le 1 - \epsilon x_{n-1}$$

$$x_i \ge 0$$



- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

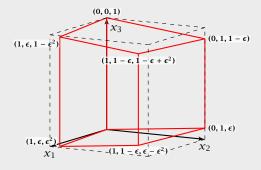
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

$$\vdots$$

$$\epsilon x_{n-1} \le x_n \le 1 - \epsilon x_{n-1}$$

$$x_i \ge 0$$



- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

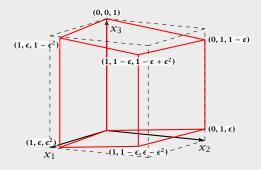
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

$$\vdots$$

$$\epsilon x_{n-1} \le x_n \le 1 - \epsilon x_{n-1}$$

$$x_i \ge 0$$



- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

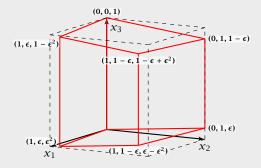
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

$$\vdots$$

$$\epsilon x_{n-1} \le x_n \le 1 - \epsilon x_{n-1}$$

$$x_i \ge 0$$



- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times.
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

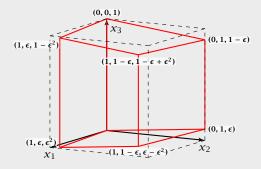
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

$$\vdots$$

$$\epsilon x_{n-1} \le x_n \le 1 - \epsilon x_{n-1}$$

$$x_i \ge 0$$



- ▶ In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ▶ An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- ► Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times.
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times.
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

- ▶ In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- ▶ Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times.
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

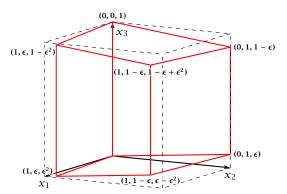
- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- ▶ Every basis is defined by 2n variables, and n non-basic variables.
- ► There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times.
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

Klee Minty Cube

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Analysis

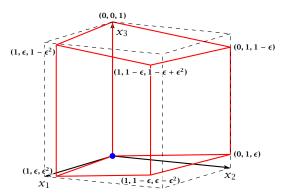
- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

Klee Minty Cube

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



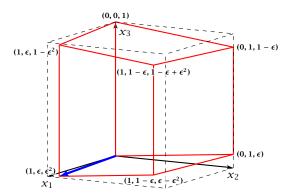
Analysis

- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

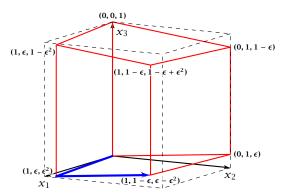


- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

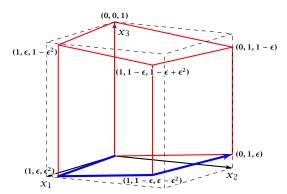


- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

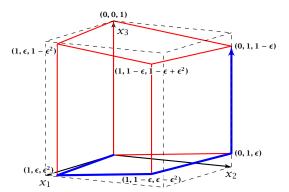


- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

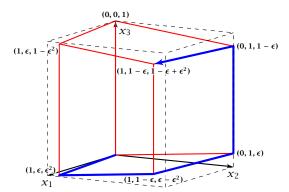


- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

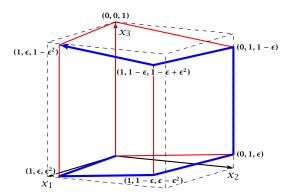


- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

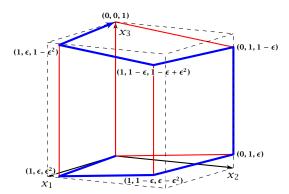


- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

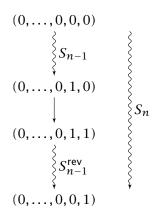
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



- ► In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0, ..., 0, 1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- ► An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

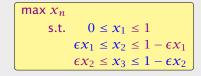
The sequence S_n that visits every node of the hypercube is defined recursively

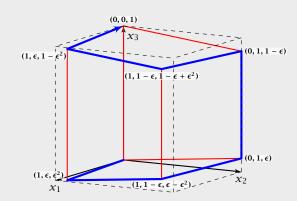


The non-recursive case is $S_1 = 0 \rightarrow 1$

EADS II Harald Räcke

7 Klee Minty Cube





Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

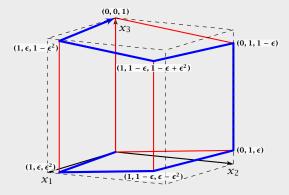
n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

$$n-1 \rightarrow n$$

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

$$n-1 \rightarrow n$$

To the mat part the variation

hence, also x ...

Going from Charles

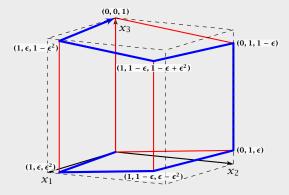
siliali silouyii ...

By induction hypothesis

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

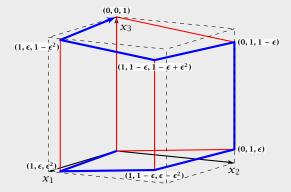
n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

$$n-1 \rightarrow n$$

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

$$n-1 \rightarrow n$$

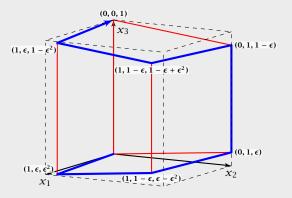
- ▶ For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

$$\text{max } x_n$$

$$\text{s.t.} \quad 0 \le x_1 \le 1$$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

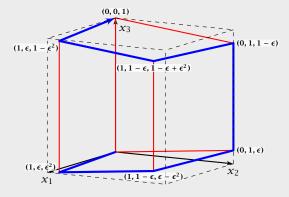
$$n-1 \rightarrow n$$

- ▶ For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- ▶ For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

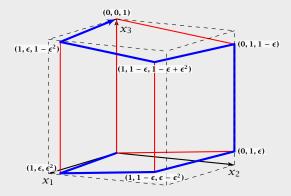
$$n-1 \rightarrow n$$

- ▶ For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

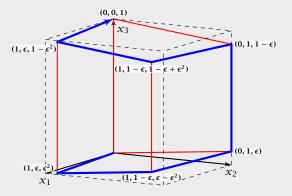
$$n-1 \rightarrow n$$

- ▶ For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- ▶ For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Lemma 45

The objective value x_n is increasing along path S_n .

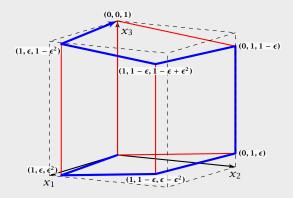
Proof by induction:

- n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.
- $n-1 \rightarrow n$
 - For the first part the value of $x_n = \epsilon x_{n-1}$.
 - ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
 - ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
 - ▶ For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
 - ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Observation

The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time $\mathcal{O}(mn)$.

In practise it usually takes a linear number of iterations.

7 Klee Minty Cube

Analysis

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

$$n = 1$$
: obvious, since $S_1 = 0 \rightarrow 1$, and $1 > 0$.

$$n-1 \rightarrow n$$

- ► For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} .
- hence, also x_n .

 Going from (0, ..., 0, 1, 0) to (0, ..., 0, 1, 1) increases x_n for
- small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have x_n = 1 − εx_{n-1}.
 By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence −εx_{n-1} is increasing along S_{n-1}^{rev}.

Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time ($\Omega(2^{\Omega(n)})$) (e.g. Klee Minty 1972).

Remarks about Simplex

Observation

The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time $\mathcal{O}(mn)$.

In practise it usually takes a linear number of iterations.

Theorem

For some standard randomized pivoting rules there exist subexponential lower bounds ($\Omega(2^{\Omega(n^{\alpha})})$ for $\alpha>0$) (Friedmann, Hansen, Zwick 2011).

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time $(\Omega(2^{\Omega(n)}))$ (e.g. Klee Minty 1972).

146/571

Conjecture (Hirsch 1957)

The edge-vertex graph of an m-facet polytope in d-dimensional Euclidean space has diameter no more than m-d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form $\mathcal{O}(\text{poly}(m,d))$ is open.

Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist subexponential lower bounds ($\Omega(2^{\Omega(n^{\alpha})})$) for $\alpha > 0$) (Friedmann, Hansen, Zwick 2011).

147/571

- Suppose we want to solve $\min\{c^Tx \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If d is much smaller than m one can do a lot better.
- ▶ In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

- Suppose we want to solve $\min\{c^Tx \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- \blacktriangleright If d is much smaller than m one can do a lot better
- ▶ In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

- Suppose we want to solve $\min\{c^Tx \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- In the following we develop an algorithm with running time $\mathcal{O}(d! \cdot m)$, i.e., linear in m.

- Suppose we want to solve $\min\{c^Tx \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If d is much smaller than m one can do a lot better.
- In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

Setting:

► We assume an LP of the form

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& & x & \geq & 0
\end{array}$$

We assume that the LP is bounded.

- ► Suppose we want to solve $\min\{c^Tx \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- ▶ In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ► If d is much smaller than m one can do a lot better.
- ▶ In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

• Compute a lower bound on $c^T x$ for any basic feasible solution.

8 Seidels LP-algorithm

Setting:

► We assume an LP of the form

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & 1 \\
& x & \geq & 0
\end{array}$$

► We assume that the LP is bounded.

150/571

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A: denote the resulting matrix with \bar{A} .

If B is an optimal basis then x_B with $\bar{A}_B x_B = \bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0)

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

► Compute a lower bound on $c^T x$ for any basic feasible solution.

151/571

150

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A: denote the resulting matrix with \bar{A} .

If B is an optimal basis then x_B with $\bar{A}_B x_B = \bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0)

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

► Compute a lower bound on c^Tx for any basic feasible solution.

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A} .

If B is an optimal basis then x_B with $\bar{A}_B x_B = \bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0)

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

► Compute a lower bound on c^Tx for any basic feasible solution.

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A} .

If B is an optimal basis then x_B with $\bar{A}_B x_B = \bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0).

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

• Compute a lower bound on $c^T x$ for any basic feasible solution.

Theorem 46 (Cramers Rule)

Let M be a matrix with $\det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_i = \frac{\det(M_j)}{\det(M)}$$

where M_i is the matrix obtained from M by replacing the i-th column by the vector b.

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A} .

If B is an optimal basis then x_B with $\bar{A}_B x_B = \bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0).

152/571

Theorem 46 (Cramers Rule)

Let M be a matrix with $\det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_i = \frac{\det(M_j)}{\det(M)} ,$$

where M_i is the matrix obtained from M by replacing the i-th column by the vector b.

153/571

Define

$$X_i = \begin{pmatrix} | & & | & | & | \\ e_1 & \cdots & e_{i-1} & \mathbf{x} & e_{i+1} & \cdots & e_n \\ | & & | & | & | & | \end{pmatrix}$$

Note that expanding along the i-th column gives that $det(X_i) = x_i$.

► Further, we have

$$MX_j = \begin{pmatrix} | & | & | & | \\ Me_1 & \cdots & Me_{i-1} & MX & Me_{i+1} & \cdots & Me_n \\ | & | & | & | & | \end{pmatrix} = M_i$$

▶ Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M_i)}$$

Theorem 46 (Cramers Rule)

Let M be a matrix with $\det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_i = \frac{\det(M_j)}{\det(M)} ,$$

where M_i is the matrix obtained from M by replacing the i-th column by the vector b.

Define

$$X_i = \begin{pmatrix} | & | & | & | \\ e_1 \cdots e_{i-1} & \mathbf{x} & e_{i+1} \cdots e_n \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the i-th column gives that $det(X_i) = x_i$.

Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | \\ Me_{1} \cdot \cdot \cdot \cdot Me_{i-1} & Mx & Me_{i+1} \cdot \cdot \cdot \cdot Me_{n} \\ | & | & | & | \end{pmatrix} = M$$

► Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)}$$

Theorem 46 (Cramers Rule)

Let M be a matrix with $\det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_i = \frac{\det(M_j)}{\det(M)} ,$$

where M_i is the matrix obtained from M by replacing the i-th column by the vector b.

153/571

Define

$$X_i = \begin{pmatrix} | & | & | & | & | \\ e_1 & \cdots & e_{i-1} & \mathbf{x} & e_{i+1} & \cdots & e_n \\ | & | & | & | & | \end{pmatrix}$$

Note that expanding along the i-th column gives that $det(X_i) = x_i$.

Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | \\ Me_{1} \cdots Me_{i-1} Mx Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

► Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)}$$

Theorem 46 (Cramers Rule)

Let M be a matrix with $\det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_i = \frac{\det(M_j)}{\det(M)} ,$$

where M_i is the matrix obtained from M by replacing the i-th column by the vector b.

153/571

Define

$$X_i = \begin{pmatrix} | & | & | & | \\ e_1 & \cdots & e_{i-1} & \mathbf{x} & e_{i+1} & \cdots & e_n \\ | & | & | & | & | \end{pmatrix}$$

Note that expanding along the i-th column gives that $det(X_i) = x_i$.

► Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | \\ Me_{1} \cdots Me_{i-1} Mx Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

► Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)}$$

Theorem 46 (Cramers Rule)

Let M be a matrix with $\det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_i = \frac{\det(M_j)}{\det(M)} ,$$

where M_i is the matrix obtained from M by replacing the i-th column by the vector b.

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} (for some j).

Observe that

|det(*C*)|

Proof:

► Define

$$X_i = \begin{pmatrix} | & | & | & | \\ e_1 \cdots e_{i-1} & \mathbf{x} & e_{i+1} \cdots e_n \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the i-th column gives that $det(X_i) = x_i$.

► Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | \\ Me_{1} \cdots Me_{i-1} & Mx & Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

► Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)}$$

Let Z be the maximum absolute entry occurring in \bar{A}, \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$

Proof:

▶ Define

$$X_i = \begin{pmatrix} | & | & | & | \\ e_1 \cdots e_{i-1} \times e_{i+1} \cdots e_n \\ | & | & | \end{pmatrix}$$

Note that expanding along the i-th column gives that $det(X_i) = x_i$.

► Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | \\ Me_{1} \cdots Me_{i-1} Mx Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

► Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)}$$

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

Proof:

Define

$$X_i = \begin{pmatrix} | & | & | & | \\ e_1 \cdots e_{i-1} & \mathbf{x} & e_{i+1} \cdots e_n \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the i-th column gives that $det(X_i) = x_i$.

► Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | \\ Me_{1} \cdots Me_{i-1} & Mx & Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

► Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)}$$

Let Z be the maximum absolute entry occuring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

$$\le m! \cdot Z^m.$$

Proof:

Define

$$X_i = \begin{pmatrix} | & | & | & | \\ e_1 \cdots e_{i-1} & \mathbf{x} & e_{i+1} \cdots e_n \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the i-th column gives that $det(X_i) = x_i$.

► Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | \\ Me_{1} \cdots Me_{i-1} Mx Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

► Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)}$$

Alternatively, Hadamards inequality gives

Bounding the Determinant

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

$$\le m! \cdot Z^m.$$

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} \|C_{*i}\|$$

Bounding the Determinant

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

$$\le m! \cdot Z^m.$$

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$

Bounding the Determinant

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

$$\le m! \cdot Z^m.$$

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$

 $< m^{m/2} Z^{m}$.

Bounding the Determinant

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} (for some j).

Observe that

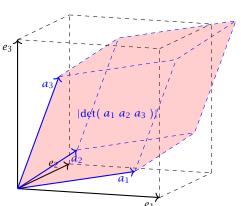
$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

$$\le m! \cdot Z^m.$$

8 Seidels LP-algorithm

Hadamards Inequality



Hadamards inequality says that the volume of the red parallelepiped (Spat) is smaller than the volume in the black cube (if $||e_1|| = ||a_1||$, $||e_2|| = ||a_2||$, $||e_3|| = ||a_3||$).

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$

$$\le m^{m/2} Z^{m}.$$

Ensuring Conditions

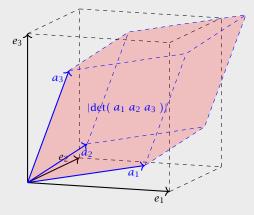
Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on c^Tx for any basic feasible solution. Add the constraint $c^Tx \ge -mZ(m! \cdot Z^m) - 1$. Note that this constraint is superfluous unless the LP is unbounded.

Hadamards Inequality



Hadamards inequality says that the volume of the red parallelepiped (Spat) is smaller than the volume in the black cube (if $||e_1|| = ||a_1||$, $||e_2|| = ||a_2||$, $||e_3|| = ||a_3||$).

Ensuring Conditions

Compute an optimum basis for the new LP.

- ▶ If the cost is $c^T x = -(mZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

► Compute a lower bound on c^Tx for any basic feasible solution. Add the constraint $c^Tx \ge -mZ(m! \cdot Z^m) - 1$. Note that this constraint is superfluous unless the LP is unbounded.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points

In addition it obeys the implicit constraint $c^T x > -(m \, 7)(m \cdot 7^m) = 1$

Ensuring Conditions

Compute an optimum basis for the new LP.

- ► If the cost is $c^T x = -(mZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- ► Otw. we have an optimum basis.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points

In addition it obeys the implicit constraint $c^T x > -(m \, 7)(m \, 1 \, . \, 7^m) - 1$

Ensuring Conditions

Compute an optimum basis for the new LP.

- ► If the cost is $c^T x = -(mZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- ► Otw. we have an optimum basis.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

In addition it obeys the implicit constraint $c^T x > -(m7)(m1 \cdot 7^m) - 1$

Ensuring Conditions

Compute an optimum basis for the new LP.

- ► If the cost is $c^T x = -(mZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- ► Otw. we have an optimum basis.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

In addition it obeys the implicit constraint $c^T x \ge -(mZ)(m! \cdot Z^m) - 1$.

Ensuring Conditions

Compute an optimum basis for the new LP.

- ► If the cost is $c^T x = -(mZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- ► Otw. we have an optimum basis.

1: **if** d = 1 **then** solve 1-dimensional problem and return;

In the following we use ${\mathcal H}$ to denote the set of all constraints apart from the constraint $c^T x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane

In the following we use $\mathcal H$ to denote the set of all constraints apart from the constraint $c^T x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: if \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: if \hat{x}^* = infeasible then return infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$
- 12: **if** \hat{x}^* = infeasible **then**
- 13: **return** infeasible
- 14: **else**
- add the value of x_{ℓ} to \hat{x}^* and return the solution

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

- ▶ If d = 1 we can solve the 1-dimensional problem in time $\mathcal{O}(\max\{m, 1\})$.
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector y
- ▶ The first recursive call takes time T(m-1,d) for the cal plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: if \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$
- 12: **if** \hat{x}^* = infeasible **then**
- 13: **return** infeasible
- 14: **else**
- 15: add the value of x_{ℓ} to \hat{x}^* and return the solution

- ▶ If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

4:
$$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$$

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: if \hat{x}^* = infeasible then return infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$
- 12: **if** \hat{x}^* = infeasible **then**
- 13: **return** infeasible
- 14: **else**
- add the value of x_{ℓ} to \hat{x}^* and return the solution

- ▶ If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$
- 12: **if** \hat{x}^* = infeasible **then**
- 13: **return** infeasible
- 14: **else**
- add the value of x_{ℓ} to \hat{x}^* and return the solution

- ▶ If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1,d-1).
- ▶ The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$
- 12: **if** \hat{x}^* = infeasible **then**
- 13: **return** infeasible
- 14: **else**
- add the value of x_{ℓ} to \hat{x}^* and return the solution

- ▶ If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- ▶ The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$
- 12: **if** \hat{x}^* = infeasible **then**
- 13: **return** infeasible
- 14: **else**
- add the value of x_{ℓ} to \hat{x}^* and return the solution

This gives the recurrence

$$T(m,d) = \begin{cases} \mathcal{O}(\max\{1,m\}) & \text{if } d = 1\\ \mathcal{O}(d) & \text{if } d > 1 \text{ and } m = 0\\ \mathcal{O}(d) + T(m-1,d) + \\ \frac{d}{m}(\mathcal{O}(dm) + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

8 Seidels LP-algorithm

- ▶ If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- ► If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1,d-1).
- ▶ The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1, m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1, d) + \\ \frac{d}{m}(Cdm + T(m-1, d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

8 Seidels LP-algorithm

This gives the recurrence

$$T(m,d) = \begin{cases} \mathcal{O}(\max\{1,m\}) & \text{if } d=1\\ \mathcal{O}(d) & \text{if } d>1 \text{ and } m=0\\ \mathcal{O}(d) + T(m-1,d) + \\ \frac{d}{m}(\mathcal{O}(dm) + T(m-1,d-1)) & \text{otw.} \end{cases}$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1, m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1, d) + \\ \frac{d}{m}(Cdm + T(m-1, d-1)) & \text{otw.} \end{cases}$$

Let C be the largest constant in the \mathcal{O} -notations.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq C f(d) \max\{1, m\}$.

d = 1:

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let \mathcal{C} be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le C \max\{1,m\}$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let $\mathcal C$ be the largest constant in the $\mathcal O$ -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\}$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let \mathcal{C} be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

d > 1: m = 0:

$$T(0,d) \le \mathcal{O}(d)$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

d > 1: m = 0:

$$T(0,d) \le \mathcal{O}(d) \le Cd$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1: m = 0:$$

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\}$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1$$
: $m = 0$:

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1, m\} \text{ for } f(d) \ge d$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let $\mathcal C$ be the largest constant in the $\mathcal O$ -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0:$$

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1, m\} \text{ for } f(d) \ge d$$

$$d > 1; m = 1$$
:

$$T(1,d) = \mathcal{O}(d) + T(0,d) + d(\mathcal{O}(d) + T(0,d-1))$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m,d) \leq C f(d) \max\{1,m\}$.

$$d = 1$$
:

$$T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

 $T(1,d) = \mathcal{O}(d) + T(0,d) + d(\mathcal{O}(d) + T(0,d-1))$ $\leq Cd + Cd + Cd^2 + dCf(d-1)$

d > 1: m = 0:

$$T(0,d) \leq 0$$

$$T(0,d) \leq C$$

$$I(0,a) \leq c$$

$$d > 1; m = 1:$$

$$d > 1; m =$$

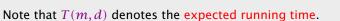
$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$$

for
$$f(1) \ge 1$$

8 Seidels LP-algorithm

Let
$$C$$
 be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1, m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1, d) + \\ \frac{d}{m}(Cdm + T(m-1, d-1)) & \text{otw.} \end{cases}$$



Let C be the largest constant in the \mathcal{O} -notations. We show $T(m,d) \leq C f(d) \max\{1,m\}$.

d=1:

d > 1: m = 0:

 $T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$

d > 1; m = 1:

 $T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$

 $T(1,d) = \mathcal{O}(d) + T(0,d) + d(\mathcal{O}(d) + T(0,d-1))$ $\leq Cd + Cd + Cd^2 + dCf(d-1)$

 $\leq C f(d) \max\{1, m\}$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

 $T(m,d) = \begin{cases} C \max\{1, m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1, d) + \\ \frac{d}{m}(Cdm + T(m-1, d-1)) & \text{otw.} \end{cases}$

Note that T(m,d) denotes the expected running time.

8 Seidels LP-algorithm

163

Let C be the largest constant in the \mathcal{O} -notations. We show $T(m,d) \leq C f(d) \max\{1,m\}$.

d = 1:

$$T(m,1) \le C \max\{1,m\} \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

d > 1: m = 0:

$$T(0,d) \le \mathcal{O}(d) \le Cd$$

$$d > 1; m = 1$$
:

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$$

 $\leq C f(d) \max\{1, m\} \text{ for } f(d) \geq 3d^2 + df(d-1)$

 $T(1,d) = \mathcal{O}(d) + T(0,d) + d(\mathcal{O}(d) + T(0,d-1))$ $\leq Cd + Cd + Cd^2 + dCf(d-1)$

$$1, m$$
 for $f(1) \ge$

or
$$f(1) \ge 1$$

$$f(1) \ge 1$$

$$T(m,d) = \begin{cases} C \max\{1, m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1, d) + \\ \frac{d}{m}(Cdm + T(m-1, d-1)) & \text{otw.} \end{cases}$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

Note that T(m,d) denotes the expected running time.

8 Seidels LP-algorithm

163

d > 1: m > 1:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1, m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1, d) + \\ \frac{d}{m}(Cdm + T(m-1, d-1)) & \text{otw.} \end{cases}$$

Note that T(m,d) denotes the expected running time.

165/571

d > 1: m > 1:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} (\mathcal{O}(dm) + T(m-1,d-1))$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

d > 1: m > 1:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m} Cf(d-1)(m-1)$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1, m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1, d) + \\ \frac{d}{m}(Cdm + T(m-1, d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

165/571

d > 1: m > 1:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m,d) denotes the expected running time.

165/571

d > 1; m > 1:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

d > 1: m > 1:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1, m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1, d) + \\ \frac{d}{m}(Cdm + T(m-1, d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

165/571

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$d > 1; m > 1$$
:

(by induction hypothesis statm. true for
$$d' < d, m' \ge 0$$
;

and for
$$d' = d$$
, $m' < m$)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \left(\mathcal{O}(dm) + T(m-1,d-1) \right)$$

$$\leq Cd + Cf(d)(m-1) + Cd^{2} + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^{2} + Cf(d)(m-1) + dCf(d-1)$$

C (**1**) ...

 $\leq Cf(d)m$

if $f(d) \ge df(d-1) + 2d^2$.

ani in EADS II 8 Seidels LP-algorithm

Harald Räcke

166/571

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

8 Seidels LP-algorithm

$$d > 1; m > 1$$
:

(by induction
$$|$$

(by induction hypothesis statm. true for
$$d' < d, m' \ge 0$$
; and for $d' = d, m' < m$)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \left(\mathcal{O}(dm) + T(m-1,d-1) \right)$$

$$m,d)=\mathcal{O}(d)+T$$

$$m-1,0$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$< 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

EADS II

Harald Räcke

166/571

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Harald Räcke

$$f(d) = 3d^2 + df(d-1)$$

8 Seidels LP-algorithm

$$d > 1; m > 1$$
:

(by induction hypothesis statm. true for
$$d' < d, m' \ge 0$$
; and for $d' = d, m' < m$)

$$(0) \quad (0) \quad (0)$$

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} (\mathcal{O}(dm) + T(m-1,d-1))$$

$$(m-1,$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

166/571

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$f(d) = 3d^{2} + df(d-1)$$
$$= 3d^{2} + d [3(d-1)^{2} + (d-1)f(d-2)]$$

EADS II 8 Seidels LP-algorithm Harald Räcke 166/571

8 Seidels LP-algorithm

and for d' = d, m' < m)

 $\leq Cf(d)m$

if $f(d) \ge df(d-1) + 2d^2$.

(by induction hypothesis statm. true for $d' < d, m' \ge 0$;

 $\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$

 $T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \left(\mathcal{O}(dm) + T(m-1,d-1) \right)$

8 Seidels LP-algorithm

165

 $\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$

d > 1: m > 1:

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^{2} + df(d-1)$$
$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3a^{2} + d \left[3(d-1)^{2} + (d-1)f(d-2) \right]$$

$$= 3d^{2} + d \left[3(d-1)^{2} + (d-1) \left[3(d-2)^{2} + (d-2)f(d-3) \right] \right]$$

8 Seidels LP-algorithm

d > 1: m > 1:

(by induction hypothesis statm. true for
$$d' < d, m' \ge 0$$
;

(by induction hypothesis and for
$$d' = d$$
, $m' < m$)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \left(\mathcal{O}(dm) + T(m-1,d-1) \right)$$

 $\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$

- if $f(d) \ge df(d-1) + 2d^2$.

166/571

8 Seidels LP-algorithm

 $\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2}$$

8 Seidels LP-algorithm

$$d > 1; m > 1$$
:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$;

and for
$$d'=d$$
, $m'< m$)
$$T(m,d)=\mathcal{O}(d)+T(m-1,d)+\frac{d}{m}\Big(\mathcal{O}(dm)+T(m-1,d-1)\Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^{2} + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^{2} + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

8 Seidels LP-algorithm

and for d' = d, m' < m)

$$d > 1; m > 1$$
:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$;

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

if $f(d) \ge df(d-1) + 2d^2$.

166/571

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$

8 Seidels LP-algorithm

and for d' = d, m' < m)

$$d > 1; m > 1$$
:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$;

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

 $\leq C f(d) m$

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$

since $\sum_{i>1} \frac{i^2}{i!}$ is a constant.

d > 1: m > 1:

8 Seidels LP-algorithm

(by induction hypothesis statm. true for $d' < d, m' \ge 0$;

and for d' = d, m' < m)

 $T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} (\mathcal{O}(dm) + T(m-1,d-1))$

 $\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$

 $\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$

 $\leq C f(d) m$

if $f(d) \ge df(d-1) + 2d^2$.

EADS II

Complexity

LP Feasibility Problem (LP feasibility)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with Ax = b, $x \ge 0$?

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$[\log_2(|a|)] + 1$$

Let for an $m \times n$ matrix M, L(M) denote the number of bit required to encode all the numbers in M

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- ► In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$

Complexity

LP Feasibility Problem (LP feasibility)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with Ax = b, $x \ge 0$?

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

Let for an $m \times n$ matrix M, L(M) denote the number of bits required to encode all the numbers in *M*.

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

Complexity

LP Feasibility Problem (LP feasibility)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with Ax = b, $x \ge 0$?

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

Let for an $m \times n$ matrix M, L(M) denote the number of bits required to encode all the numbers in M.

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.

Complexity

LP Feasibility Problem (LP feasibility)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with Ax = b, x > 0?

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$[\log_2(|a|)] + 1$$

Let for an $m \times n$ matrix M, L(M) denote the number of bits required to encode all the numbers in M.

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- ▶ In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

Complexity

LP Feasibility Problem (LP feasibility)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with Ax = b, $x \ge 0$?

- ▶ In the following we sometimes refer to $L := \langle A \rangle + \langle b \rangle$ as the input size (even though the real input size is something in $\Theta(\langle A \rangle + \langle b \rangle)$).
- ▶ In order to show that LP-decision is in NP we show that if there is a solution *x* then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in *L*).

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

► Let for an $m \times n$ matrix M, L(M) denote the number of bits required to encode all the numbers in M.

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- ► In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set B o basic variables such that

$$x_B = A_B^{-1}b$$

and all other entries in x are 0

- ▶ In the following we sometimes refer to $L := \langle A \rangle + \langle b \rangle$ as the input size (even though the real input size is something in $\Theta(\langle A \rangle + \langle b \rangle)$).
- ► In order to show that LP-decision is in NP we show that if there is a solution x then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in L).

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set B of basic variables such that

$$x_B = A_B^{-1}b$$

and all other entries in x are 0.

- ▶ In the following we sometimes refer to $L := \langle A \rangle + \langle b \rangle$ as the input size (even though the real input size is something in $\Theta(\langle A \rangle + \langle b \rangle)$).
- ▶ In order to show that LP-decision is in NP we show that if there is a solution *x* then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in *L*).

170/571

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertible matrix and let $b \in \mathbb{Z}^m$. Further define $L = \langle M \rangle + \langle b \rangle + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof

Cramers rules says that we can compute x_j as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector h

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set ${\it B}$ of basic variables such that

$$x_B = A_B^{-1}b$$

and all other entries in x are 0.

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertible matrix and let $b \in \mathbb{Z}^m$. Further define $L = \langle M \rangle + \langle b \rangle + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set ${\it B}$ of basic variables such that

$$x_B = A_B^{-1}b$$

and all other entries in x are 0.

$$|\det(X)|$$

Let $X = A_B$. Then

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertible matrix and let $b \in \mathbb{Z}^m$. Further define $L = \langle M \rangle + \langle b \rangle + n \log_2 n$. Then a solution to Mx = b has rational components x_i of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof:

Cramers rules says that we can compute x_i as

$$\det(M_j)$$

 $x_j = \frac{\det(M_j)}{\det(M)}$ where M_i is the matrix obtained from M by replacing the j-th

EADS II 9 The Ellipsoid Algorithm

172/571

column by the vector b.

Let
$$X = A_B$$
. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertible matrix and let $b \in \mathbb{Z}^m$. Further define $L = \langle M \rangle + \langle b \rangle + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Let
$$X = A_B$$
. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertible matrix and let $b \in \mathbb{Z}^m$. Further define $L = \langle M \rangle + \langle b \rangle + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \le 2^L$ and $|D| \le 2^L$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Let
$$X = A_B$$
. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\le n! \cdot 2^{\langle A \rangle + \langle b \rangle}$$

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertible matrix and let $b \in \mathbb{Z}^m$. Further define $L = \langle M \rangle + \langle b \rangle + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Let
$$X = A_B$$
. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\le n! \cdot 2^{\langle A \rangle + \langle b \rangle} \le 2^L.$$

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertible matrix and let $b \in \mathbb{Z}^m$. Further define $L = \langle M \rangle + \langle b \rangle + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$< n! \cdot 2^{\langle A \rangle + \langle b \rangle} < 2^L$$

Analogously for $det(M_i)$.

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertible matrix and let $b \in \mathbb{Z}^m$. Further define $L = \langle M \rangle + \langle b \rangle + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Given an LP $\max\{c^Tx \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^Tx - \delta = M$; $\delta \ge 0$ or $(c^Tx \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{2nL(\Delta)} \ge \frac{1}{2L'}$.

Here we use $L' = \langle A \rangle + \langle b \rangle + \langle c \rangle + n \log_2 n$ (it also includes the encoding size of c).

Bounding the Determinant

Let $X = A_R$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\le n! \cdot 2^{\langle A \rangle + \langle b \rangle} \le 2^L.$$

Analogously for $\det(M_j)$.

Given an LP $\max\{c^Tx \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^Tx - \delta = M$; $\delta \ge 0$ or $(c^Tx \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{2\pi L'} \ge \frac{1}{2L'}$.

Here we use $L' = \langle A \rangle + \langle b \rangle + \langle c \rangle + n \log_2 n$ (it also includes the encoding size of c).

Bounding the Determinant

Let $X = A_R$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\leq n! \cdot 2^{\langle A \rangle + \langle b \rangle} \leq 2^L.$$

Analogously for $det(M_j)$.

Given an LP $\max\{c^Tx \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^Tx - \delta = M$; $\delta \ge 0$ or $(c^Tx \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L')$$

as the range of the search is at most $-n2^{2L'},\ldots,n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \geq \frac{1}{2L'}$.

Here we use $L'=\langle A\rangle+\langle b\rangle+\langle c\rangle+n\log_2 n$ (it also includes the encoding size of c).

Bounding the Determinant

Let $X = A_R$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\leq n! \cdot 2^{\langle A \rangle + \langle b \rangle} \leq 2^L.$$

Analogously for $\det(M_j)$.

Given an LP $\max\{c^Tx \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^Tx - \delta = M$; $\delta \geq 0$ or $(c^Tx \geq M)$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \dots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2L'}$.

Bounding the Determinant

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\leq n! \cdot 2^{\langle A \rangle + \langle b \rangle} \leq 2^L.$$

Analogously for $\det(M_i)$.

Given an LP $\max\{c^Tx \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^Tx - \delta = M$; $\delta \ge 0$ or $(c^Tx \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2^{L'}}$.

Here we use $L' = \langle A \rangle + \langle b \rangle + \langle c \rangle + n \log_2 n$ (it also includes the encoding size of c).

Bounding the Determinant

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\le n! \cdot 2^{\langle A \rangle + \langle b \rangle} \le 2^L.$$

Analogously for $\det(M_j)$.

How do we detect whether the LP is unbounded?

Let $M_{\rm max}=n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

Reducing LP-solving to LP decision.

Given an LP $\max\{c^Tx \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^Tx - \delta = M$; $\delta \ge 0$ or $(c^Tx \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}$,..., $n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2L'}$.

Here we use $L' = \langle A \rangle + \langle b \rangle + \langle c \rangle + n \log_2 n$ (it also includes the encoding size of c).

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

Reducing LP-solving to LP decision.

Given an LP $\max\{c^Tx \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^T x - \delta = M$; $\delta \ge 0$ or $(c^T x \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}$,..., $n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2L'}$.

Here we use $L' = \langle A \rangle + \langle b \rangle + \langle c \rangle + n \log_2 n$ (it also includes the encoding size of c).

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

Reducing LP-solving to LP decision.

Given an LP $\max\{c^Tx \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^Tx - \delta = M$; $\delta \ge 0$ or $(c^Tx \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2L'}$.

Here we use $L' = \langle A \rangle + \langle b \rangle + \langle c \rangle + n \log_2 n$ (it also includes the encoding size of c).

⁹ The Ellipsoid Algorithm

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

▶ Let *K* be a convex set.

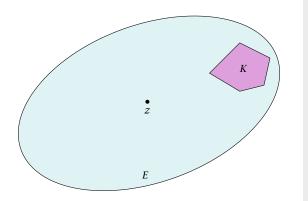
175/571

How do we detect whether the LP is unbounded?

Let $M_{\rm max}=n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\max} + 1$ and check for feasibility.

- ▶ Let *K* be a convex set.
- ► Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.

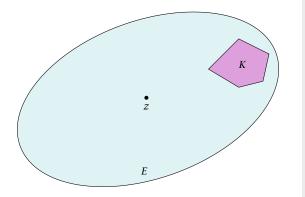


How do we detect whether the LP is unbounded?

Let $M_{\rm max}=n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

- ▶ Let *K* be a convex set.
- ► Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.



How do we detect whether the LP is unbounded?

Let $M_{\rm max}=n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

- Let *K* be a convex set.
- ► Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

How do we detect whether the LP is unbounded?

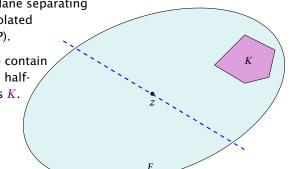
Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

- Let *K* be a convex set.
- ► Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from Z (e.g. a violated constraint in the LP).

Shift hyperplane to contain node z. H denotes halfspace that contains K.



How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

- ▶ Let *K* be a convex set.
- ► Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from Z (e.g. a violated constraint in the LP).

Shift hyperplane to contain node z. H denotes halfspace that contains K.

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

K

- \triangleright Let K be a convex set.
- ► Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from Z (e.g. a violated constraint in the LP).

- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- ► Compute (smallest) ellipsoid E' that contains $E \cap H$.

K

175/571

How do we detect whether the LP is unbounded?

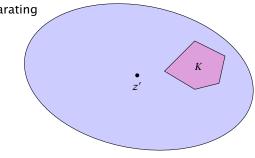
Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

- \blacktriangleright Let K be a convex set.
- ► Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from Z (e.g. a violated constraint in the LP).

- ► Shift hyperplane to contain node *z*. *H* denotes halfspace that contains *K*.
- ► Compute (smallest) ellipsoid E' that contains $E \cap H$.



How do we detect whether the LP is unbounded?

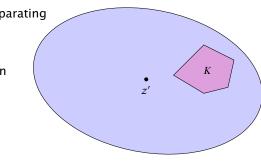
Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

- ▶ Let *K* be a convex set.
- ► Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.

► Otw. find a hyperplane separating *K* from *z* (e.g. a violated constraint in the LP).

- ► Shift hyperplane to contain node *z*. *H* denotes halfspace that contains *K*.
- ► Compute (smallest) ellipsoid E' that contains $E \cap H$.
- ▶ REPEAT



How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

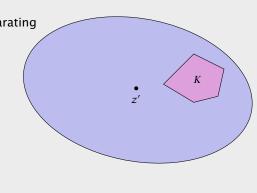
We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

Issues/Questions:

- ► How do you choose the first Ellipsoid? What is its volume?
- ▶ How do you measure progress? By how much does the volume decrease in each iteration?
- ▶ When can you stop? What is the minimum volume of a non-empty polytop?

Ellipsoid Method

- \blacktriangleright Let K be a convex set.
- ▶ Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.
- Otw. find a hyperplane separating *K* from *z* (e.g. a violated constraint in the LP).
- ► Shift hyperplane to contain node z. H denotes halfspace that contains K.
- ► Compute (smallest) ellipsoid E' that contains $E \cap H$.
- ► REPEAT



175

A mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where L is an invertible matrix is called an affine transformation.

Issues/Questions:

- ► How do you choose the first Ellipsoid? What is its volume?
- ► How do you measure progress? By how much does the volume decrease in each iteration?
- ► When can you stop? What is the minimum volume of a non-empty polytop?

177/571

176

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^{T}(x-c) \le r^{2}\}\$$
$$= \{x \mid \sum_{i} (x-c)_{i}^{2} / r^{2} \le 1\}$$

B(0,1) is called the unit ball.

Definition 48

A mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where L is an invertible matrix is called an affine transformation.

An affine transformation of the unit ball is called an ellipsoid.

Definition 49

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

Definition 49

179/571

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

Definition 49

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

Definition 49

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$

= $\{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$

Definition 49

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$\begin{split} f(B(0,1)) &= \{ f(x) \mid x \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \leq 1 \} \end{split}$$

Definition 49

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$\begin{split} f(B(0,1)) &= \{ f(x) \mid x \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1 \} \\ &= \{ y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1 \} \end{split}$$

Definition 49

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

$$= \{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$$

$$= \{y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1\}$$

$$= \{y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1\}$$

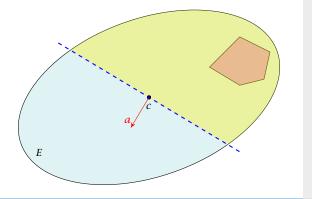
where $Q = LL^T$ is an invertible matrix.

Definition 49

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

B(0,1) is called the unit ball.



Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$

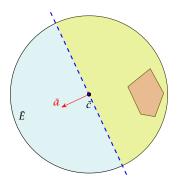
$$= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1 \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1 \}$$

where $Q = LL^T$ is an invertible matrix.

▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.



Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}\$$

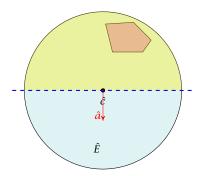
$$= \{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}\$$

$$= \{y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1\}\$$

$$= \{y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1\}\$$

where $Q = LL^T$ is an invertible matrix.

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .



Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}\$$

$$= \{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}\$$

$$= \{y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1\}\$$

$$= \{y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1\}\$$

where $Q = LL^T$ is an invertible matrix.

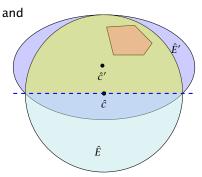
9 The Ellipsoid Algorithm

180/571

9 The Ellipsoid Algorithm

179

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- ► Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.



Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$\begin{split} f(B(0,1)) &= \{ f(x) \mid x \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1 \} \\ &= \{ y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1 \} \end{split}$$

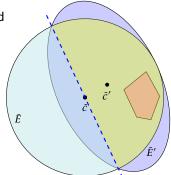
where $Q = LL^T$ is an invertible matrix.

9 The Ellipsoid Algorithm

180/571

9 The Ellipsoid Algorithm

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- ► Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.
- ▶ Use the transformations *R* and *f* to get the new center *c'* and the new matrix *Q'* for the original ellipsoid *E*.



Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$\begin{split} f(B(0,1)) &= \{ f(x) \mid x \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1 \} \\ &= \{ y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1 \} \end{split}$$

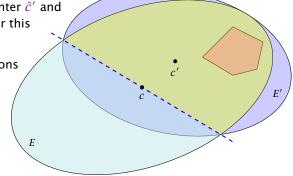
where $Q = LL^T$ is an invertible matrix.

▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

• Compute the new center \hat{c}' and the new matrix \hat{O}' for this simplified setting.

Use the transformations R and f to get the new center c' and the new matrix O' for the original ellipsoid *E*.



Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1 \}$$

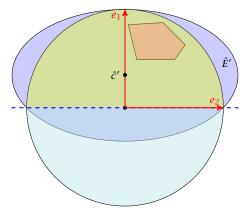
$$= \{ y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1 \}$$

where $Q = LL^T$ is an invertible matrix.

9 The Ellipsoid Algorithm

180/571

9 The Ellipsoid Algorithm



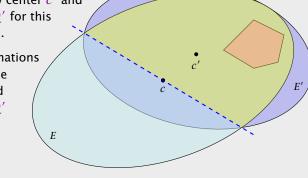
- ▶ The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ► The vectors $e_1, e_2,...$ have to fulfill the ellipsoid constrain with equality. Hence $(e_i \hat{c}')^T \hat{O}^{r-1} (e_i \hat{c}') = 1$.

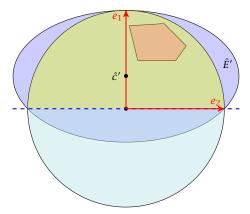
How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center ĉ' and the new matrix Q' for this simplified setting.
 Use the transformations

► Use the transformat R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.





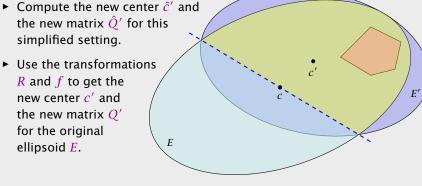
- ▶ The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ▶ The vectors $e_1, e_2, ...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$.

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

the new matrix \hat{O}' for this simplified setting. Use the transformations R and f to get the new center c' and the new matrix O' for the original

ellipsoid *E*.

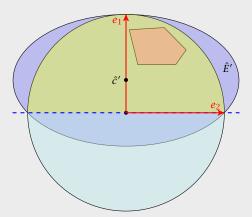


9 The Ellipsoid Algorithm

- ▶ To obtain the matrix $\hat{O'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

The Easy Case

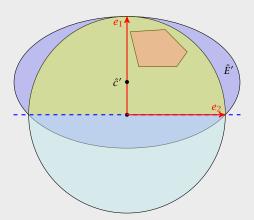


- ▶ The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ▶ The vectors $e_1, e_2, ...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$.

- ▶ To obtain the matrix $\hat{O'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.
- Let a denote the radius along the x_1 -axis and let b denote the (common) radius for the other axes.

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

The Easy Case



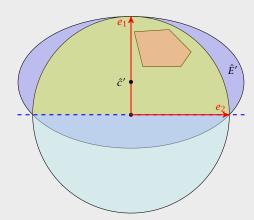
- ▶ The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ▶ The vectors $e_1, e_2, ...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i - \hat{c}')^T \hat{O}'^{-1} (e_i - \hat{c}') = 1$.

- ► To obtain the matrix \hat{Q}'^{-1} for our ellipsoid \hat{E}' note that \hat{E}' is axis-parallel.
- Let a denote the radius along the x_1 -axis and let b denote the (common) radius for the other axes.
- ► The matrix

$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array} \right)$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

The Easy Case



- ► The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ► The vectors $e_1, e_2,...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i \hat{c}')^T \hat{Q}'^{-1} (e_i \hat{c}') = 1$.

As $\hat{O}' = \hat{L}' \hat{L}'^t$ the matrix \hat{O}'^{-1} is of the form

$$\hat{Q}'^{-1} = \begin{pmatrix} \frac{1}{a^2} & 0 & \dots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^2} \end{pmatrix}$$

The Easy Case

- ► To obtain the matrix \hat{Q}'^{-1} for our ellipsoid \hat{E}' note that \hat{E}' is axis-parallel.
- ► Let a denote the radius along the x_1 -axis and let b denote the (common) radius for the other axes.
- ► The matrix

$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array}\right)$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

• $(e_1 - \hat{c}')^T \hat{Q}'^{-1} (e_1 - \hat{c}') = 1$ gives

$$\begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^T \cdot \begin{pmatrix} \frac{1}{a^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^2} \end{pmatrix} \cdot \begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $(1-t)^2 = a^2$.

The Easy Case

As $\hat{O}' = \hat{L}' \hat{L}'^t$ the matrix \hat{O}'^{-1} is of the form

$$\hat{Q}'^{-1} = \begin{pmatrix} \frac{1}{a^2} & 0 & \dots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^2} \end{pmatrix}$$

For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{O}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i=2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{b^2} = 1$, and hence

$$\frac{1}{h^2} = 1 - \frac{t^2}{a^2}$$

The Easy Case

•
$$(e_1 - \hat{c}')^T \hat{Q}'^{-1} (e_1 - \hat{c}') = 1$$
 gives

$$\begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^T \cdot \begin{pmatrix} \frac{1}{a^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^2} \end{pmatrix} \cdot \begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $(1-t)^2 = a^2$.

For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i = 2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{b^2} = 1$, and hence

$$\frac{1}{h^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2}$$

The Easy Case

• $(e_1 - \hat{c}')^T \hat{Q}'^{-1} (e_1 - \hat{c}') = 1$ gives

$$\begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^T \cdot \begin{pmatrix} \frac{1}{a^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^2} \end{pmatrix} \cdot \begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $(1 - t)^2 = a^2$.

For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i = 2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{b^2} = 1$, and hence

$$\frac{1}{h^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2} = \frac{1-2t}{(1-t)^2}$$

The Easy Case

• $(e_1 - \hat{c}')^T \hat{Q}'^{-1} (e_1 - \hat{c}') = 1$ gives

$$\begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^T \cdot \begin{pmatrix} \frac{1}{a^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^2} \end{pmatrix} \cdot \begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $(1-t)^2 = a^2$.

185/571

184

Summary

So far we have

$$a = 1 - t$$
 and $b = \frac{1 - t}{\sqrt{1 - 2t}}$

The Easy Case

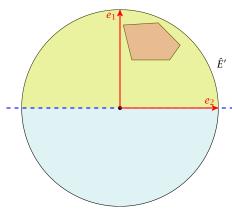
For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i = 2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{12} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{h^2} = 1$, and hence

$$\frac{1}{h^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2} = \frac{1-2t}{(1-t)^2}$$

We still have many choices for t:



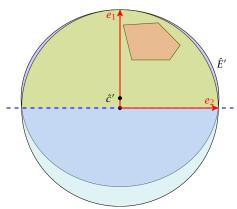
Choose t such that the volume of \hat{F}' is minimal!!!

Summary

So far we have

$$a = 1 - t \quad \text{and} \quad b = \frac{1 - t}{\sqrt{1 - 2t}}$$

We still have many choices for t:



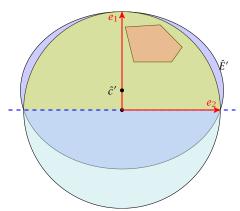
Choose t such that the volume of \hat{E}' is minimal!!!

Summary

So far we have

$$a = 1 - t \quad \text{and} \quad b = \frac{1 - t}{\sqrt{1 - 2t}}$$

We still have many choices for t:



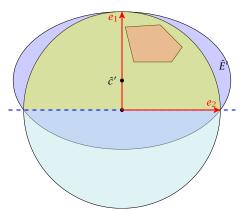
Choose t such that the volume of \hat{E}' is minimal!!!

Summary

So far we have

$$a = 1 - t \quad \text{and} \quad b = \frac{1 - t}{\sqrt{1 - 2t}}$$

We still have many choices for t:



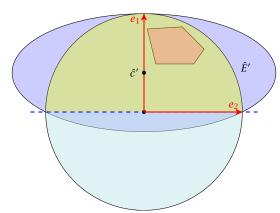
Choose t such that the volume of \hat{E}' is minimal!!!

Summary

So far we have

$$a = 1 - t \quad \text{and} \quad b = \frac{1 - t}{\sqrt{1 - 2t}}$$

We still have many choices for t:



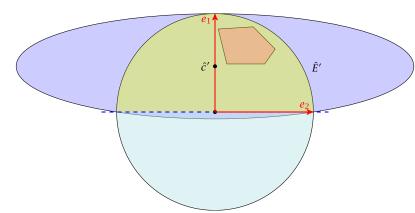
Choose t such that the volume of \hat{E}' is minimal!!!

Summary

So far we have

$$a = 1 - t \quad \text{and} \quad b = \frac{1 - t}{\sqrt{1 - 2t}}$$

We still have many choices for t:



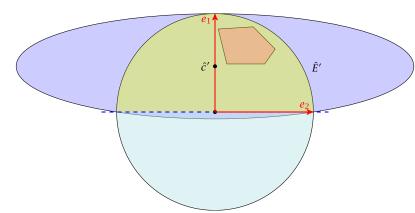
Choose t such that the volume of \hat{E}' is minimal!!!

Summary

So far we have

$$a = 1 - t \quad \text{and} \quad b = \frac{1 - t}{\sqrt{1 - 2t}}$$

We still have many choices for t:



Choose t such that the volume of \hat{E}' is minimal!!!

Summary

So far we have

$$a = 1 - t \quad \text{and} \quad b = \frac{1 - t}{\sqrt{1 - 2t}}$$

We want to choose t such that the volume of \hat{E}' is minimal.

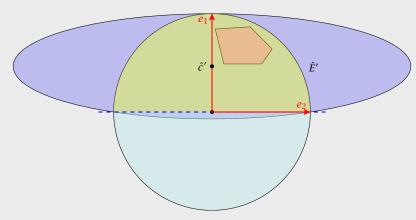
Lemma 5

Let L be an affine transformation and $K \subseteq \mathbb{R}^n$. The

 $vol(L(K)) = |det(L)| \cdot vol(K)$.

The Easy Case

We still have many choices for *t*:



Choose t such that the volume of \hat{E}' is minimal!!!

We want to choose t such that the volume of \hat{E}' is minimal.

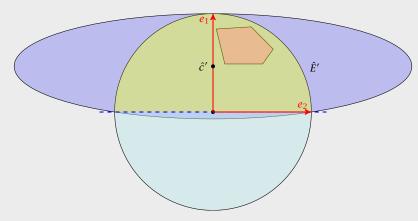
Lemma 51

Let L be an affine transformation and $K \subseteq \mathbb{R}^n$. Then

$$vol(L(K)) = |det(L)| \cdot vol(K)$$
.

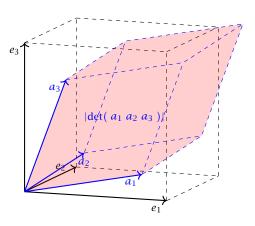
The Easy Case

We still have many choices for t:



Choose t such that the volume of \hat{E}' is minimal!!!

n-dimensional volume



The Easy Case

We want to choose t such that the volume of \hat{E}' is minimal.

Lemma 51

Let L be an affine transformation and $K \subseteq \mathbb{R}^n$. Then

$$vol(L(K)) = |det(L)| \cdot vol(K)$$
.

• We want to choose t such that the volume of \hat{E}' is minimal.

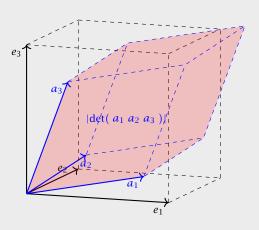
$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|,$$

► Docall that

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

► Note that *a* and *b* in the above equations depend on *t*, by

n-dimensional volume



• We want to choose t such that the volume of \hat{E}' is minimal.

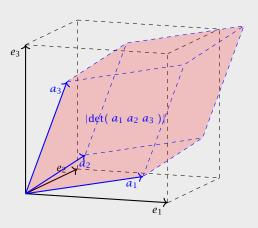
$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|,$$

Recall that

$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array} \right)$$

Note that a and b in the above equations depend on t, by

n-dimensional volume



• We want to choose t such that the volume of \hat{E}' is minimal.

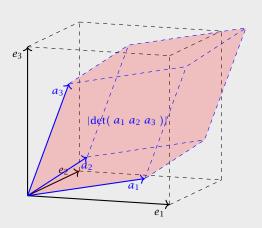
$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|,$$

► Recall that

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

▶ Note that *a* and *b* in the above equations depend on *t*, by the previous equations.

n-dimensional volume



$vol(\hat{E}')$

• We want to choose t such that the volume of \hat{E}' is minimal.

The Easy Case

▶ Recall that

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

 \blacktriangleright Note that a and b in the above equations depend on t, by the previous equations.

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$,

EADS II Harald Räcke

• We want to choose t such that the volume of \hat{E}' is minimal.

We want to choose
$$t$$
 such that the volume of E'

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|.$$

The Easy Case

Recall that
$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array} \right)$$

 \blacktriangleright Note that a and b in the above equations depend on t, by the previous equations.

EADS II Harald Räcke

9 The Ellipsoid Algorithm

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$

9 The Ellipsoid Algorithm

The Easy Case

$$lacktriangle$$
 We want to choose t such that the volume of \hat{E}' is minimal.

Recall that
$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array} \right)$$

 \blacktriangleright Note that a and b in the above equations depend on t, by the previous equations.

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$.

$$= \operatorname{vol}(B(0,1)) \cdot ab^{n-1}$$

9 The Ellipsoid Algorithm

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$

$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$ $= \operatorname{vol}(B(0,1)) \cdot ab^{n-1}$ $= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$

The Easy Case

• We want to choose t such that the volume of \hat{E}' is minimal.

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|,$$

Recall that
$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array} \right)$$

 \blacktriangleright Note that a and b in the above equations depend on t, by the previous equations.

$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$ $= vol(B(0,1)) \cdot ab^{n-1}$ $= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$ $= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$

The Easy Case

▶ We want to choose
$$t$$
 such that the volume of \hat{E}' is minimal.

Recall that
$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array} \right)$$

 \blacktriangleright Note that a and b in the above equations depend on t, by the previous equations.

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$.

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

$$= vol(B(0,1)) \cdot ab^{n-1}$$

$$= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$= vol(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$

We use the shortcut $\Phi := vol(B(0,1))$.

The Easy Case

• We want to choose t such that the volume of \hat{E}' is minimal.

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|.$$

Recall that
$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array} \right)$$

 \blacktriangleright Note that a and b in the above equations depend on t, by the previous equations.

The Easy Case $\frac{\operatorname{d}\operatorname{vol}(\hat{E}')}{\operatorname{d}t}$

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$

The Easy Case

 $= \operatorname{vol}(B(0,1)) \cdot ab^{n-1}$ $= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$ $= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$ We use the shortcut $\Phi := vol(B(0, 1))$.

EADS II

Harald Räcke

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

The Easy Case

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

$$= vol(B(0,1)) \cdot ab^{n-1}$$

$$= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$= vol(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$

We use the shortcut $\Phi := vol(B(0, 1))$.

9 The Ellipsoid Algorithm

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{\Phi}{N^2}$$

$$N = \text{denominator}$$

The Easy Case

$$= \operatorname{vol}(B(0,1)) \cdot ab^{n-1}$$

$$= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$
We use the shortcut $\Phi := \operatorname{vol}(B(0,1))$.

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$

EADS II 9 The Ellipsoid Algorithm
Harald Räcke 192/571

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{\Phi}{N^2} \cdot \left(\frac{(-1) \cdot n(1-t)^{n-1}}{\text{derivative of numerator}} \right)$$

The Easy Case

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

$$= vol(B(0,1)) \cdot ab^{n-1}$$

$$= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$= vol(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$
We use the shortcut $\Phi := vol(B(0,1))$

We use the shortcut $\Phi := vol(B(0,1))$.

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$
denominator

The Easy Case

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$$

$$= \operatorname{vol}(B(0,1)) \cdot ab^{n-1}$$

$$= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$
We use the shortcut $\Phi := \operatorname{vol}(B(0,1))$.

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} - (n-1)(\sqrt{1-2t})^{n-2} \right)$$
outer derivative

The Easy Case

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \end{aligned}$$
 We use the shortcut $\Phi := \operatorname{vol}(B(0,1))$.

$$\begin{split} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right. \\ &\left. - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \right. \\ &\left. \qquad \qquad \text{inner derivative} \right] \end{split}$$

The Easy Case

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \end{aligned}$$
 We use the shortcut $\Phi := \operatorname{vol}(B(0,1))$.

$$\begin{split} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right. \\ &\left. - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &\left. - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \end{split}$$

The Easy Case

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \end{aligned}$$
 We use the shortcut $\Phi := \operatorname{vol}(B(0,1))$.

192/571

9 The Ellipsoid Algorithm

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)
= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)
- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right)
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

The Easy Case

$$=\operatorname{vol}(B(0,1))\cdot ab^{n-1}$$

$$=\operatorname{vol}(B(0,1))\cdot (1-t)\cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$=\operatorname{vol}(B(0,1))\cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$
 We use the shortcut $\Phi:=\operatorname{vol}(B(0,1))$.

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)
= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)
- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right)
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

9 The Ellipsoid Algorithm

The Easy Case

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \end{aligned}$$
 We use the shortcut $\Phi := \operatorname{vol}(B(0,1))$.

192/571

191

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} t} &= \frac{\mathrm{d}}{\mathrm{d} t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

The Easy Case

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \end{aligned}$$
 We use the shortcut $\Phi := \operatorname{vol}(B(0,1))$.

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} \, t} &= \frac{\mathrm{d}}{\mathrm{d} \, t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

The Easy Case

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \end{aligned}$$
 We use the shortcut $\Phi := \operatorname{vol}(B(0,1))$.

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} \, t} &= \frac{\mathrm{d}}{\mathrm{d} \, t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

The Easy Case

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

$$= vol(B(0,1)) \cdot ab^{n-1}$$

$$= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$= vol(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$

We use the shortcut $\Phi := vol(B(0, 1))$.

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} \, t} &= \frac{\mathrm{d}}{\mathrm{d} \, t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

The Easy Case

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

$$= vol(B(0,1)) \cdot ab^{n-1}$$

$$= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$= vol(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$

We use the shortcut $\Phi := vol(B(0,1))$.

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\
\cdot \left((n-1)(1-t) - n(1-2t) \right)$$

The Easy Case

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

$$= vol(B(0,1)) \cdot ab^{n-1}$$

$$= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$= vol(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$

We use the shortcut $\Phi := vol(B(0,1))$.

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} \, t} &= \frac{\mathrm{d}}{\mathrm{d} \, t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\ &\quad \cdot \left((n-1)(1-t) - n(1-2t) \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right) \end{split}$$

The Easy Case

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \end{aligned}$$
 We use the shortcut $\Phi := \operatorname{vol}(B(0,1))$.

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

а

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\
\cdot \left((n-1)(1-t) - n(1-2t) \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t$$

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\
\cdot \left((n-1)(1-t) - n(1-2t) \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\
\cdot \left((n-1)(1-t) - n(1-2t) \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = 1$

The Easy Case

$$\frac{\operatorname{dvol}(\hat{E}')}{\operatorname{d}t} = \frac{\operatorname{d}}{\operatorname{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\
\cdot \left((n-1)(1-t) - n(1-2t) \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}}$

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\
\cdot \left((n-1)(1-t) - n(1-2t) \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

FADS II 9 The Ellipsoid Algorithm

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$

$$= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$\cdot \left((n-1)(1-t) - n(1-2t) \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^2$$

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$

$$= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$\cdot \left((n-1)(1-t) - n(1-2t) \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^2 = \frac{(1-t)^2}{1-2t}$$

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$

$$= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$\cdot \left((n-1)(1-t) - n(1-2t) \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^2 = \frac{(1-t)^2}{1-2t} = \frac{(1-\frac{1}{n+1})^2}{1-\frac{2}{n+1}}$$

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$

$$= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$\cdot \left((n-1)(1-t) - n(1-2t) \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n-1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n-1}}$$

The Easy Case

$$\frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} t} = \frac{\mathrm{d}}{\mathrm{d} t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$

$$= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$\cdot \left((n-1)(1-t) - n(1-2t) \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n-1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n-1}} = \frac{n^{2}}{n^{2}-1}$$

The Easy Case

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$

$$= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$\cdot \left((n-1)(1-t) - n(1-2t) \right)$$

$$= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right)$$

Let $\gamma_n = \frac{\operatorname{vol}(E')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$\gamma_n^2$$

The Easy Case

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

Let $\gamma_n = \frac{\operatorname{vol}(E')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2-1}\right)^{n-1}$$

The Easy Case

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

193

Let $y_n = \frac{\operatorname{vol}(\dot{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$
$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

The Easy Case

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

Let $y_n = \frac{\operatorname{vol}(\dot{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$\begin{split} \gamma_n^2 &= \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2-1}\right)^{n-1} \\ &= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1} \\ &\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \end{split}$$

The Easy Case

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

Let $\gamma_n = \frac{\operatorname{vol}(\vec{E}')}{\operatorname{vol}(R(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

The Easy Case

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

Let $y_n = \frac{\operatorname{vol}(\vec{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

The Easy Case

- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

193

Let $y_n = \frac{\operatorname{vol}(E')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $\gamma_n \leq e^{-\frac{1}{2(n+1)}}$.

The Easy Case

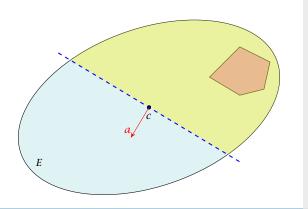
- We obtain the minimum for $t = \frac{1}{n+1}$.
- ► For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

How to Compute the New Ellipsoid



195/571

The Easy Case

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

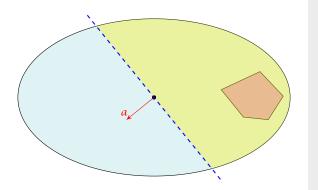
$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $y_n \leq e^{-\frac{1}{2(n+1)}}$.

194

▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.



The Easy Case

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

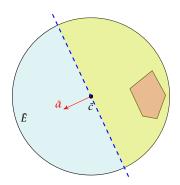
$$\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $\gamma_n \leq e^{-\frac{1}{2(n+1)}}$.

▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.



The Easy Case

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$\begin{aligned} \gamma_n^2 &= \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1} \\ &= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1} \\ &\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\ &= e^{-\frac{1}{n+1}} \end{aligned}$$

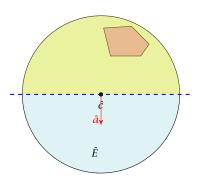
where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $\gamma_n \leq e^{-\frac{1}{2(n+1)}}$.

195/571

194

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .



The Easy Case

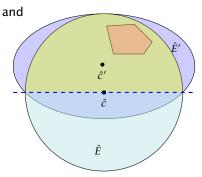
Let $\gamma_n = \frac{\operatorname{vol}(\vec{E}')}{\operatorname{vol}(R(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$\begin{aligned} \gamma_n^2 &= \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1} \\ &= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1} \\ &\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\ &= e^{-\frac{1}{n+1}} \end{aligned}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $v_n \leq e^{-\frac{1}{2(n+1)}}$.

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{O}' for this simplified setting.



The Easy Case

Let $y_n = \frac{\operatorname{vol}(\vec{E}')}{\operatorname{vol}(R(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

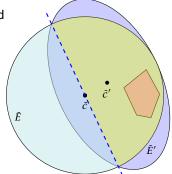
$$\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $v_n \leq e^{-\frac{1}{2(n+1)}}$.

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.
- ▶ Use the transformations *R* and *f* to get the new center *c'* and the new matrix *Q'* for the original ellipsoid *E*.



The Easy Case

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $\gamma_n \leq e^{-\frac{1}{2(n+1)}}$.

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.

► Use the transformations *R* and *f* to get the new center *c'* and the new matrix *Q'* for the original ellipsoid *E*.

The Easy Case

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

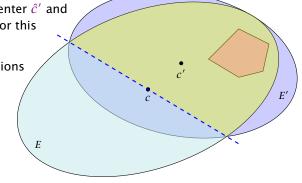
This gives $\gamma_n \leq e^{-\frac{1}{2(n+1)}}$.

▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

• Compute the new center \hat{c}' and the new matrix \hat{O}' for this simplified setting.

Use the transformations R and f to get the new center c' and the new matrix O' for the original ellipsoid *E*.



The Easy Case

Let
$$y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$$
 be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

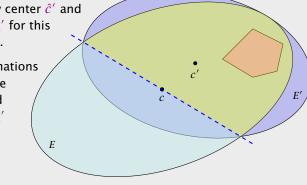
This gives $\gamma_n \leq e^{-\frac{1}{2(n+1)}}$.

$$e^{-\frac{1}{2(n+1)}}$$

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

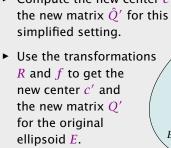
Compute the new center ĉ' and the new matrix Q' for this simplified setting.
Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.

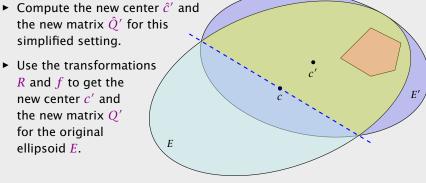


$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(\hat{E}')}{\text{vol}(B(0,1))}$$

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .



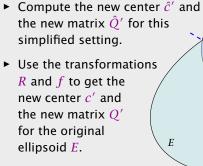


9 The Ellipsoid Algorithm

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(\hat{E}')}{\text{vol}(B(0,1))} = \frac{\text{vol}(\hat{E}')}{\text{vol}(\hat{E})}$$

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

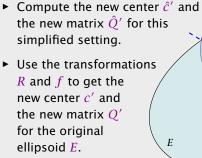


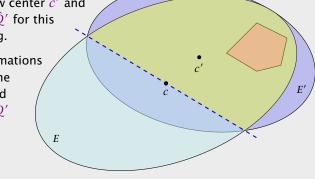
9 The Ellipsoid Algorithm

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(E')}{\text{vol}(B(0,1))} = \frac{\text{vol}(E')}{\text{vol}(\hat{E})} = \frac{\text{vol}(R(E'))}{\text{vol}(R(\hat{E}))}$$

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

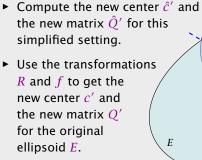


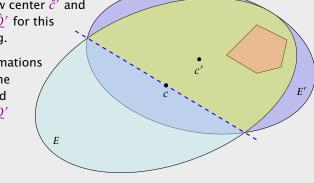


$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})}$$

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .





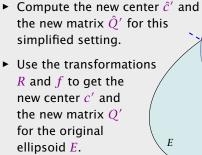
9 The Ellipsoid Algorithm

EADS II

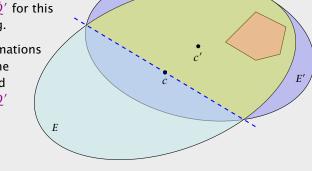
$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))}$$

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .



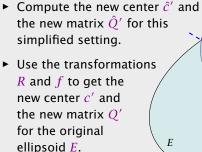
EADS II

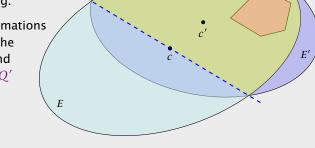


$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .





195

9 The Ellipsoid Algorithm

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

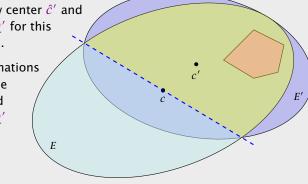
How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center ĉ' and the new matrix Q' for this simplified setting.
Use the transformations R and f to get the new center c' and the new matrix Q' for the original

ellipsoid *E*.

EADS II



195

9 The Ellipsoid Algorithm

How to Compute The New Parameters?

Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

197/571

196

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

Our progress is the same:

$$\begin{split} e^{-\frac{1}{2(n+1)}} &\geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))} \\ &= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)} \end{split}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor $\det(L)$.

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

Our progress is the same:

$$\begin{split} e^{-\frac{1}{2(n+1)}} &\geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))} \\ &= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)} \end{split}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor $\det(L)$.

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$
$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

Our progress is the same:

$$\begin{split} e^{-\frac{1}{2(n+1)}} &\geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))} \\ &= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)} \end{split}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

197/571

196

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$
$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$
$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

Our progress is the same:

$$\begin{split} e^{-\frac{1}{2(n+1)}} &\geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))} \\ &= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)} \end{split}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(\hat{E}')}{\text{vol}(B(0,1))} = \frac{\text{vol}(\hat{E}')}{\text{vol}(\hat{E})} = \frac{\text{vol}(R(\hat{E}'))}{\text{vol}(R(\hat{E}))}$$
$$= \frac{\text{vol}(\bar{E}')}{\text{vol}(\bar{E})} = \frac{\text{vol}(f(\bar{E}'))}{\text{vol}(f(\bar{E}))} = \frac{\text{vol}(E')}{\text{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(\hat{E}')}{\text{vol}(B(0,1))} = \frac{\text{vol}(\hat{E}')}{\text{vol}(\hat{E})} = \frac{\text{vol}(R(\hat{E}'))}{\text{vol}(R(\hat{E}))}$$
$$= \frac{\text{vol}(\bar{E}')}{\text{vol}(\bar{E})} = \frac{\text{vol}(f(\bar{E}'))}{\text{vol}(f(\bar{E}))} = \frac{\text{vol}(E')}{\text{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x - c) \le 0\}$$

$$= \{f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(Ly + c - c) \le 0\}$$

$$= \{y \mid (a^{T}L)y \le 0\}$$

This means $\bar{a} = L^T a$.

Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(\hat{E}')}{\text{vol}(B(0,1))} = \frac{\text{vol}(\hat{E}')}{\text{vol}(\hat{E})} = \frac{\text{vol}(R(\hat{E}'))}{\text{vol}(R(\hat{E}))}$$
$$= \frac{\text{vol}(\bar{E}')}{\text{vol}(\bar{E})} = \frac{\text{vol}(f(\bar{E}'))}{\text{vol}(f(\bar{E}))} = \frac{\text{vol}(E')}{\text{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

Hence,

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}'$$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1$$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}')$$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x - c) \le 0\}$$

$$= \{f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(Ly + c - c) \le 0\}$$

$$= \{y \mid (a^{T}L)y \le 0\}$$

M:

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence.

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$
$$= -\frac{1}{n+1} L \frac{L^T a}{\|L^T a\|} + c$$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x - c) \le 0\}$$

$$= \{f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(Ly + c - c) \le 0\}$$

$$= \{y \mid (a^{T}L)y \le 0\}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$

$$= -\frac{1}{n+1} L \frac{L^T a}{\|L^T a\|} + c$$

$$= c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

How to Compute The New Parameters?

The Ellipsoid Algorithm

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

 $f^{-1}(H) = \{ f^{-1}(x) \mid a^T(x - c) \le 0 \}$

$$= \{f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(Ly + c - c) \le 0\}$$

$$= \{y \mid (a^{T}L)y \le 0\}$$
This means $\bar{a} = L^{T}a$.

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}' , \bar{E}' and E' refer to the ellispoids centered in the origin.

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$\begin{split} c' &= f(\bar{c}') = L \cdot \bar{c}' + c \\ &= -\frac{1}{n+1} L \frac{L^T a}{\|L^T a\|} + c \\ &= c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}} \end{split}$$

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This give

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big)$$

because for $a^2 = n^2/(n+1)^2$ and $b^2 = n^2/n^2 - 1$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}' , \bar{E}' and E' refer to the ellippoids centered in the origin.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

because for $a^2 = n^2/(n+1)^2$ and $b^2 = n^2/n^2-1$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}' , \bar{E}' and E' refer to the ellispoids centered in the origin.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

because for $a^2 = n^2/(n+1)^2$ and $b^2 = n^2/n^2-1$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}' , \bar{E}' and E' refer to the ellispoids centered in the origin.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

 $\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$

This gives

because for $a^2 = n^2/(n+1)^2$ and $b^2 = n^2/n^2-1$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = 0$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}', \bar{E}' and E' refer to the ellipsoids centered in the origin.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

because for $a^2 = n^2/(n+1)^2$ and $b^2 = n^2/n^2-1$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}}$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}' , \bar{E}' and E' refer to the ellispoids centered in the origin.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

because for $a^2 = n^2/(n+1)^2$ and $b^2 = n^2/n^2-1$

because for
$$a^2 = \frac{n^2}{(n+1)^2}$$
 and $b^2 = \frac{n^2}{n^2 - 1}$

$$b^2 - b^2 \frac{2}{n+1} = \frac{n^2}{n^2 - 1} - \frac{2n^2}{(n-1)(n+1)^2}$$

$$= \frac{n^2(n+1) - 2n^2}{(n-1)(n+1)^2} = \frac{n^2(n-1)}{(n-1)(n+1)^2} = a^2$$

the following that \hat{E}', \bar{E}' and E' refer to the ellispoids centered in the origin.

For computing the matrix Q' of the new ellipsoid we assume in

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

because for
$$a^2 = n^2/(n+1)^2$$
 and $b^2 = n^2/n^2 - 1$

$$b^2 - b^2 \frac{2}{n+1} = \frac{n^2}{n^2 - 1} - \frac{2n^2}{(n-1)(n+1)^2}$$

$$= \frac{n^2(n+1) - 2n^2}{(n-1)(n+1)^2} = \frac{n^2(n-1)}{(n-1)(n+1)^2} = a$$

the following that \hat{E}' , \bar{E}' and E' refer to the ellispoids centered in the origin.

For computing the matrix Q' of the new ellipsoid we assume in

This gives

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

 $= \frac{n^2(n+1) - 2n^2}{(n-1)(n+1)^2} = \frac{n^2(n-1)}{(n-1)(n+1)^2} = a^2$

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

For
$$a^2 = n^2/(1.1)^2$$
 and $b^2 = n^2/(2.1)$

because for
$$a^2 = n^2/(n+1)^2$$
 and $b^2 = n^2/n^2-1$

ecause for
$$a^2 = n^2/(n+1)^2$$
 and $b^2 = n^2/n^2-1$

$$b^2 - b^2 \frac{2}{n+1} = \frac{n^2}{n^2-1} - \frac{2n^2}{(n-1)(n+1)^2}$$

the origin.

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}' , \bar{E}' and E' refer to the ellispoids centered in

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = rac{n^2}{n^2 - 1} \Big(I - rac{2}{n+1} e_1 e_1^T \Big)$$

$$Q = \frac{1}{n^2 - 1} \left(I - \frac{1}{n+1} e^{\frac{t}{n}} \right)$$

$$n^2-1$$
 $n+1$

because for
$$a^2 = n^2/(n+1)^2$$
 and $b^2 = n^2/n^2 - 1$

$$b^2 - b^2 \frac{2}{n+1} = \frac{n^2}{n^2 - 1} - \frac{2n^2}{(n-1)(n+1)^2}$$

$$= \frac{n^2(n+1) - 2n^2}{(n-1)(n+1)^2} = \frac{n^2(n-1)}{(n-1)(n+1)^2} = a^2$$

$$\bar{E}' = R(\hat{E}')$$

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big)$$

because for
$$a^2 = n^2/(n+1)^2$$
 and $\ln^2 = n^2/(n^2-1)$

because for
$$a^2 = n^2/(n+1)^2$$
 and $b^2 = n^2/n^2 - 1$

$$b^2 - b^2 \frac{2}{n+1} = \frac{n^2}{n^2 - 1} - \frac{2n^2}{(n-1)(n+1)^2}$$

$$= \frac{n^2(n+1) - 2n^2}{(n-1)(n+1)^2} = \frac{n^2(n-1)}{(n-1)(n+1)^2} = a^2$$

EADS II 9 The Ellipsoid Algorithm

$$\bar{E}' = R(\hat{E}')$$

$$= \{R(x) \mid x^T \hat{O}'^{-1} x \le 1\}$$

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big)$$

because for
$$a^2 = n^2/(n+1)^2$$
 and $b^2 = n^2/n^2 - 1$

$$b^2 - b^2 \frac{2}{n+1} = \frac{n^2}{n^2 - 1} - \frac{2n^2}{(n-1)(n+1)^2}$$

$$= \frac{n^2(n+1) - 2n^2}{(n-1)(n+1)^2} = \frac{n^2(n-1)}{(n-1)(n+1)^2} = a^2$$

EADS II 9 The Ellipsoid Algorithm

$$\bar{E}' = R(\hat{E}')
= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\}
= \{y \mid (R^{-1}y)^T \hat{O}'^{-1} R^{-1} y \le 1\}$$

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

because for $a^2 = n^2/(n+1)^2$ and $b^2 = n^2/n^2-1$ $b^2 - b^2 \frac{2}{n+1} = \frac{n^2}{n^2 - 1} - \frac{2n^2}{(n-1)(n+1)^2}$ $= \frac{n^2(n+1) - 2n^2}{(n-1)(n+1)^2} = \frac{n^2(n-1)}{(n-1)(n+1)^2} = a^2$

EADS II

$$\bar{E}' = R(\hat{E}')
= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\}
= \{y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1\}$$

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

because for
$$a^2 = n^2/(n+1)^2$$
 and $b^2 = n^2/n^2-1$

$$b^2 - b^2 \frac{2}{n+1} = \frac{n^2}{n^2-1} - \frac{2n^2}{(n-1)(n+1)^2}$$

9 The Ellipsoid Algorithm

201/571

 $= \frac{n^2(n+1) - 2n^2}{(n-1)(n+1)^2} = \frac{n^2(n-1)}{(n-1)(n+1)^2} = a^2$

$$\bar{E}' = R(\hat{E}')
= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\}
= \{y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R\hat{Q}' R^T)^{-1} y \le 1\}$$

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

nis gives
$$\hat{Q}' = rac{n^2}{n^2 - 1} \Big(I - rac{2}{n+1} e_1 e_1^T \Big)$$

because for $a^2 = n^2/(n+1)^2$ and $b^2 = n^2/n^2-1$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

EADS II 9 The Ellipsoid Algorithm

Hence,

9 The Ellipsoid Algorithm

$$\bar{E}' = R(\hat{E}')
= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\}
= \{y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (\underbrace{R\hat{Q}' R^T}_{\bar{Q}'})^{-1} y \le 1\}$$

Hence,

$$\bar{Q}' = R\hat{Q}'R^T$$

9 The Ellipsoid Algorithm

$$\bar{E}' = R(\hat{E}')
= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\}
= \{y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (\underbrace{R\hat{Q}' R^T}_{\hat{Q}'})^{-1} y \le 1\}$$

Hence,

$$\tilde{Q}' = R\hat{Q}'R^T
= R \cdot \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right) \cdot R^T$$

9 The Ellipsoid Algorithm

$$\bar{E}' = R(\hat{E}')
= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\}
= \{y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R\hat{Q}' R^T)^{-1} y \le 1\}
= \{y \mid y^T (R\hat{Q}' R^T)^{-1} y \le 1\}$$

Hence,

$$\bar{Q}' = R\hat{Q}'R^{T}$$

$$= R \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} e_{1} e_{1}^{T} \right) \cdot R^{T}$$

$$= \frac{n^{2}}{n^{2} - 1} \left(R \cdot R^{T} - \frac{2}{n+1} (Re_{1}) (Re_{1})^{T} \right)$$

9 The Ellipsoid Algorithm

$$\bar{E}' = R(\hat{E}')
= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\}
= \{y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (\underbrace{R\hat{Q}' R^T}_{\hat{Q}'})^{-1} y \le 1\}$$

Hence,

$$\begin{split} \bar{Q}' &= R\hat{Q}'R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \Big) \end{split}$$

9 The Ellipsoid Algorithm

$$\bar{E}' = R(\hat{E}')
= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\}
= \{y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (\underbrace{R\hat{Q}' R^T}_{\hat{Q}'})^{-1} y \le 1\}$$

E'

9 The Ellipsoid Algorithm

Hence,

$$\begin{split} \bar{Q}' &= R \hat{Q}' R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \Big) \end{split}$$

$$E' = L(\bar{E}')$$

9 The Ellipsoid Algorithm

$$\begin{split} \bar{Q}' &= R \hat{Q}' R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \Big) \end{split}$$

$$E' = L(\bar{E}')$$
= {L(x) | x^TQ̄'⁻¹x \le 1}

9 The Ellipsoid Algorithm

Hence,

$$\bar{Q}' = R\hat{Q}'R^{T}$$

$$= R \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} e_{1} e_{1}^{T} \right) \cdot R^{T}$$

$$= \frac{n^{2}}{n^{2} - 1} \left(R \cdot R^{T} - \frac{2}{n+1} (Re_{1}) (Re_{1})^{T} \right)$$

$$= \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} \frac{L^{T} a a^{T} L}{\|L^{T} a\|^{2}} \right)$$

$$E' = L(\bar{E}')$$

$$= \{ L(x) \mid x^T \bar{Q}'^{-1} x \le 1 \}$$

$$= \{ v \mid (L^{-1}v)^T \bar{O}'^{-1} L^{-1} v \le 1 \}$$

9 The Ellipsoid Algorithm

$$\bar{Q}' = R\hat{Q}'R^{T}
= R \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} e_{1} e_{1}^{T} \right) \cdot R^{T}
= \frac{n^{2}}{n^{2} - 1} \left(R \cdot R^{T} - \frac{2}{n+1} (Re_{1}) (Re_{1})^{T} \right)
= \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} \frac{L^{T} a a^{T} L}{\|L^{T} a\|^{2}} \right)$$

$$E' = L(\bar{E}')$$

$$= \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

9 The Ellipsoid Algorithm

Hence,

$$\begin{split} \bar{Q}' &= R\hat{Q}'R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \Big) \end{split}$$

$$E' = L(\bar{E}')$$

$$= \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (L\bar{Q}' L^T)^{-1} y \le 1\}$$

9 The Ellipsoid Algorithm

Hence,

$$\begin{split} \bar{Q}' &= R\hat{Q}'R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \Big) \end{split}$$

Hence,

Q

 $E' = L(ar{E}')$

 $= \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$

9 The Ellipsoid Algorithm

 $= \{ y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1 \}$ $= \{ y \mid y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1 \}$ $= \{ y \mid y^T (\underline{L} \bar{Q}' L^T)^{-1} y \le 1 \}$

EADS II
Harald Räcke

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

Hence,

$$Q' = L\bar{Q}'L^T$$

 $E' = L(\bar{E}')$

9 The Ellipsoid Algorithm

 $= \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$

 $= \{ y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1 \}$ $= \{ y \mid y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} \gamma \le 1 \}$

 $= \{ y \mid y^T (\underbrace{L\bar{Q}'L^T}_{O'})^{-1} y \le 1 \}$

Hence,

$$Q' = L\bar{Q}'L^{T}$$

$$= L \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} \frac{L^{T} a a^{T} L}{a^{T} O a} \right) \cdot L^{T}$$

9 The Ellipsoid Algorithm

 $E' = L(\bar{E}')$

$$= \{L(x) \mid x^{T} \bar{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (L^{-1}y)^{T} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^{T} (L^{T})^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^{T} (L\bar{Q}' L^{T})^{-1} y \le 1\}$$

Hence,

$$Q' = L\bar{Q}'L^{T}$$

$$= L \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} \frac{L^{T} a a^{T} L}{a^{T} Q a} \right) \cdot L^{T}$$

$$= \frac{n^{2}}{n^{2} - 1} \left(Q - \frac{2}{n+1} \frac{Q a a^{T} Q}{a^{T} Q a} \right)$$

9 The Ellipsoid Algorithm

$$E' = L(\bar{E}')$$

$$= \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (\underline{L} \bar{Q}' L^T)^{-1} y \le 1\}$$

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm 1: **input**: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$ 2: **output:** point $x \in K$ or "K is empty" 3: *O* ← ??? 4: repeat if $c \in K$ then return c else choose a violated hyperplane a 8: $c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$ $Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^TQ}{a^TQa} \right)$ 10: endif 11: until ??? 12: return "K is empty"

9 The Ellipsoid Algorithm

Hence,

$$Q' = L\bar{Q}'L^{T}$$

$$= L \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} \frac{L^{T} a a^{T} L}{a^{T} Q a} \right) \cdot L^{T}$$

$$= \frac{n^{2}}{n^{2} - 1} \left(Q - \frac{2}{n+1} \frac{Q a a^{T} Q}{a^{T} Q a} \right)$$

Repeat: Size of basic solutions

Lemma 52

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a bounded polyhedron. Let $\langle a_{\max} \rangle$ be the maximum encoding length of an entry in A, b. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \le 2^{2n\langle a_{\max} \rangle + 2n\log_2 n}$.

In the following we use $\delta := 2^{2n(a_{\text{max}}) + 2n\log_2 n}$.

Note that here we have $P = \{x \mid Ax \le b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

- 1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$
- 2: **output:** point $x \in K$ or "K is empty"
- 3: *Q* ← ???
- 4: repeat
- if $c \in K$ then return c
- else:
- 7: choose a violated hyperplane a

8:
$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

9:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^TQ}{a^TOa} \right)$$

- 10: **endif**
- 11: until ???
- 12: return "K is empty"

Repeat: Size of basic solutions

Lemma 52

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a bounded polyhedron. Let $\langle a_{\max} \rangle$ be the maximum encoding length of an entry in A, b. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \le 2^{2n\langle a_{\max} \rangle + 2n\log_2 n}$.

In the following we use $\delta := 2^{2n\langle a_{\max}\rangle + 2n\log_2 n}$.

Note that here we have $P = \{x \mid Ax \le b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

- 1: **input**: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$
- 2: **output:** point $x \in K$ or "K is empty"
- 3: *Q* ← ???
- 4: repeat
 - : if $c \in K$ then return c
- 6: **else**
- choose a violated hyperplane *a*

8:
$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

- 9: $Q \leftarrow \frac{n^2}{n^2 1} \left(Q \frac{2}{n+1} \frac{Qaa^TQ}{a^TOa} \right)$
- 10: endif
- 11: until ???
- 12: return "K is empty"

Repeat: Size of basic solutions

Proof:

Let $\bar{A} = \begin{bmatrix} A - A I_m \end{bmatrix}$, b, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the j-th column of \bar{A}_B by b) can become at most

$$\det(\bar{A}_B), \det(\bar{M}_j) \leq \|\vec{\ell}_{\max}\|^{2n}$$

$$\leq (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \leq 2^{2n\langle a_{\max} \rangle + 2n\log_2 n},$$

where $\vec{\ell}_{\rm max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

This holds because columns from I_m selected when going from \bar{A} to \bar{A}_B do not increase the determinant. Only the at most 2n columns from matrices A and -A that \bar{A} consists of contribute.

Repeat: Size of basic solutions

Lemma 52

Let $P=\{x\in\mathbb{R}^n\mid Ax\leq b\}$ be a bounded polyhedron. Let $\langle a_{\max}\rangle$ be the maximum encoding length of an entry in A,b. Then every entry x_j in a basic solution fulfills $|x_j|=\frac{D_j}{D}$ with $D_j,D\leq 2^{2n\langle a_{\max}\rangle+2n\log_2 n}$.

In the following we use $\delta := 2^{2n\langle a_{\max}\rangle + 2n\log_2 n}$.

Note that here we have $P = \{x \mid Ax \leq b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at $\max R^n \operatorname{vol}(B(0,1)) \le (n\delta)^n \operatorname{vol}(B(0,1))$.

Repeat: Size of basic solutions

Proof:

Let $\bar{A} = \begin{bmatrix} A - A I_m \end{bmatrix}$, b, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the j-th column of \bar{A}_B by b) can become at most

$$\det(\bar{A}_B), \det(\bar{M}_j) \le \|\vec{\ell}_{\max}\|^{2n}$$

$$\le (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \le 2^{2n\langle a_{\max} \rangle + 2n\log_2 n}.$$

where $\vec{\ell}_{\max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \leq \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at $\max R^n \operatorname{vol}(B(0,1)) \le (n\delta)^n \operatorname{vol}(B(0,1))$.

Repeat: Size of basic solutions

Proof:

Let $\bar{A} = \begin{bmatrix} A - A I_m \end{bmatrix}$, b, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the j-th column of \bar{A}_B by b) can become at most

$$\det(\bar{A}_B), \det(\bar{M}_j) \le \|\vec{\ell}_{\max}\|^{2n}$$

$$\le (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \le 2^{2n\langle a_{\max} \rangle + 2n \log_2 n},$$

where $\vec{\ell}_{\max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at $\max R^n \operatorname{vol}(B(0,1)) \le (n\delta)^n \operatorname{vol}(B(0,1))$.

Repeat: Size of basic solutions

Proof:

Let $\bar{A} = \begin{bmatrix} A - A I_m \end{bmatrix}$, b, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the j-th column of \bar{A}_B by b) can become at most

$$\det(\bar{A}_B), \det(\bar{M}_j) \le \|\vec{\ell}_{\max}\|^{2n}$$

$$\le (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \le 2^{2n\langle a_{\max} \rangle + 2n \log_2 n},$$

where $\vec{\ell}_{\max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n \operatorname{vol}(B(0,1)) \le (n\delta)^n \operatorname{vol}(B(0,1))$.

Repeat: Size of basic solutions

Proof:

Let $\bar{A} = \begin{bmatrix} A - A I_m \end{bmatrix}$, b, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the j-th column of \bar{A}_B by b) can become at most

$$\det(\bar{A}_B), \det(\bar{M}_j) \le \|\vec{\ell}_{\max}\|^{2n}$$

$$\le (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \le 2^{2n\langle a_{\max} \rangle + 2n \log_2 n},$$

where $\vec{\ell}_{\max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n \operatorname{vol}(B(0,1)) \le (n\delta)^n \operatorname{vol}(B(0,1))$.

Repeat: Size of basic solutions

Proof:

Let $\bar{A} = \begin{bmatrix} A - A I_m \end{bmatrix}$, b, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the j-th column of \bar{A}_B by b) can become at most

$$\det(\bar{A}_B), \det(\bar{M}_j) \le \|\vec{\ell}_{\max}\|^{2n}$$

$$\le (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \le 2^{2n\langle a_{\max} \rangle + 2n\log_2 n}$$

where $\vec{\ell}_{\max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

This holds because columns from I_m selected when going from \bar{A} to \bar{A}_B do not increase the determinant. Only the at most 2n columns from matrices A and -A that \bar{A} consists of contribute.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \leq x_i \leq \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n \operatorname{vol}(B(0,1)) \le (n\delta)^n \operatorname{vol}(B(0,1))$.

Repeat: Size of basic solutions

Proof:

Let $\bar{A} = \begin{bmatrix} A - A I_m \end{bmatrix}$, b, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the j-th column of \bar{A}_B by b) can become at most

$$\det(\bar{A}_B), \det(\bar{M}_j) \le \|\vec{\ell}_{\max}\|^{2n}$$

$$\le (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \le 2^{2n\langle a_{\max} \rangle + 2n\log_2 n}.$$

where $\vec{\ell}_{\max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

This holds because columns from I_m selected when going from \bar{A} to \bar{A}_B do not increase the determinant. Only the at most 2n columns from matrices A and -A that \bar{A} consists of contribute.

When can we terminate?

$$P_{\lambda} := \left\{ x \mid Ax \le b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop *P* is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \leq \delta$.

Hence, *P* is contained in the cube $-\delta \leq x_i \leq \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at $\operatorname{most} R^n \operatorname{vol}(B(0,1)) \leq (n\delta)^n \operatorname{vol}(B(0,1)).$

When can we terminate?

Let $P:=\{x\mid Ax\leq b\}$ with $A\in\mathbb{Z}$ and $b\in\mathbb{Z}$ be a bounded polytop. Let $\langle a_{\max}\rangle$ be the encoding length of the largest entry in A or b.

Consider the following polyhedror

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n \operatorname{vol}(B(0,1)) \le (n\delta)^n \operatorname{vol}(B(0,1))$.

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop. Let $\langle a_{\text{max}} \rangle$ be the encoding length of the largest entry in A or b.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop *P* is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \leq \delta$.

origin.

Starting with the ball $E_0 := B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at

 $\operatorname{most} R^n \operatorname{vol}(B(0,1)) \leq (n\delta)^n \operatorname{vol}(B(0,1)).$

Hence, *P* is contained in the cube $-\delta \leq x_i \leq \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the

9 The Ellipsoid Algorithm

 P_{λ} is feasible if and only if P is feasible.

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop. Let $\langle a_{\text{max}} \rangle$ be the encoding length of the largest entry in A or b.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

Lemma 53 P_{λ} is feasible if and only if P is feasible.

←: obvious!

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop. Let $\langle a_{\text{max}} \rangle$ be the encoding length of the largest entry in A or b.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

⇒:

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

$$ar{b}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + rac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \geq 0 \right\} .$$

Lemma 53

 P_{λ} is feasible if and only if P is feasible.

←: obvious!

 \Longrightarrow :

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \geq 0 \right\}.$$

P is feasible if and only if $ar{P}$ is feasible, and P_{λ} feasible if and only if $ar{P}_{\lambda}$ feasible.

 $ar{P}_{\lambda}$ is bounded since P_{λ} and P are bounded

Lemma 53

 P_{λ} is feasible if and only if P is feasible.

←: obvious!

 \Longrightarrow :

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \geq 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded

Lemma 53

 P_{λ} is feasible if and only if P is feasible.

⇐: obvious!

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

Lemma 53

 P_{λ} is feasible if and only if P is feasible.

←: obvious!

Let
$$\bar{A} = [A - A I_m]$$
.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix} 1\\ \vdots\\ 1\end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})$$

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

Let
$$\bar{A} = [A - A I_m]$$
.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix} 1\\ \vdots\\ 1\end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \leq (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})$$

 \Longrightarrow :

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

Let
$$\bar{A} = [A - A I_m]$$
.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix} 1\\ \vdots\\ 1\end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists *i* with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_R^{-1}\vec{1})_i \leq \det(\bar{M}_i) ,$$

where \bar{M}_j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j car become at most $\delta.$

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

Let $\bar{A} = [A - A I_m]$.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix} 1\\ \vdots\\ 1\end{pmatrix}$$

(The other *x*-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists *i* with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where \bar{M}_j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most $\delta.$

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

Let $\bar{A} = [A - A I_m]$.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix} 1\\ \vdots\\ 1\end{pmatrix}$$

(The other *x*-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where $ar{M}_j$ is obtained by replacing the j-th column of $ar{A}_B$ by $ec{1}$.

However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most $\delta.$

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

Let
$$\bar{A} = [A - A I_m]$$
.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix} 1\\ \vdots\\ 1\end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists *i* with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \le \det(\bar{M}_j) ,$$

where $ar{M}_j$ is obtained by replacing the j-th column of $ar{A}_B$ by $ec{1}$.

However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most $\delta.$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where $ar{M}_j$ is obtained by replacing the j-th column of $ar{A}_B$ by $ec{1}$.

However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most $\delta.$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where \bar{M}_j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most $\delta.$

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

213

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \le b$.

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where $ar{M}_j$ is obtained by replacing the j-th column of $ar{A}_B$ by $ec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most $\delta.$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$(A(x+\vec{\ell}))_i$$

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where $ar{M}_j$ is obtained by replacing the j-th column of $ar{A}_B$ by $ec{1}$.

However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most $\delta.$

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

214/571

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \le b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$(A(x+\vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i$$

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where \bar{M}_j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most $\delta.$

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

213

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \le \det(\bar{M}_j) ,$$

where \bar{M}_j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most $\delta.$

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

214/571

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}||$$

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \le \det(\bar{M}_j) ,$$

where \bar{M}_j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most $\delta.$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \le b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

$$(A(x+\vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where \bar{M}_j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most $\delta.$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

$$\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3}$$

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \le \det(\bar{M}_j) ,$$

where \bar{M}_j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most $\delta.$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{83n} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

$$\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda}$$

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \le \det(\bar{M}_j) ,$$

where \bar{M}_i is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_i can become at most δ .

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

214/571

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{83n} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

$$\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda}$$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_R^{-1}\vec{1})_i \le \det(\bar{M}_i) ,$$

where \bar{M}_i is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_i can

become at most δ .

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

214/571

EADS II 9 The Ellipsoid Algorithm 215/571

Proof: If
$$P_{\lambda}$$
 feasible then also P . Let x be feasible for P . This means $Ax \leq b$.

Lemma 54

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

$$\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda}$$

9 The Ellipsoid Algorithm

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

This means $Ax \leq b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq \gamma$. Then

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

$$\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda}$$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

215/571

EADS II

$$e^{-\frac{1}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

This means $Ax \leq b$.

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

$$\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda}$$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

215/571

EADS II
Harald Räc

small?

How many iterations do we need until the volume becomes too

 $e^{-\frac{1}{2(n+1)}} \cdot \text{vol}(B(0,R)) < \text{vol}(B(0,r))$

215/571

has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Lemma 54

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

This means $Ax \leq b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq \gamma$. Then

 $(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This

 $\leq b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \leq b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot \gamma$

 $\leq b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \leq b_i + \frac{1}{\delta^2 + 1} \leq b_i + \frac{1}{\lambda}$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

Hence,

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Lemma 54

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

This means $Ax \leq b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$i = (Ax)i$$

$$(Ax)_i = (Ax)_i$$

$$= (Ax)_i +$$

$$=(Ax)_i +$$

$$=(Ax)_i +$$

 $< h_i + \|\vec{q}_i\| \cdot \|\vec{\ell}\| < h_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot \gamma$

 $\leq b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \leq b_i + \frac{1}{\delta^2 + 1} \leq b_i + \frac{1}{\lambda}$

$$= (Ax)_i$$

$$= (Ax)_i$$

$$=(Ax)_i$$

$$-(\Lambda x)$$
.

Hence,
$$x + \vec{\ell}$$
 is feasible for P_{λ} which proves the lemma.

- - 9 The Ellipsoid Algorithm 215/571
- - 9 The Ellipsoid Algorithm

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$
$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This

Lemma 54

has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{83n} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq \gamma$. Then

This means $Ax \leq b$.

$$(A(x + \vec{\ell}))_i = (Ax)$$

$$(A(x+\vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

Hence
$$x
v | \vec{\theta}$$
 is feasible for \vec{P}_2 , which proves the lemma

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

 $\leq b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \leq b_i + \frac{1}{\delta^2 + 1} \leq b_i + \frac{1}{\lambda}$

215/571

$$e^{-\frac{1}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$

$$= 8n(n+1)\ln(\delta) + 2(n+1)n\ln(n)$$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This

Lemma 54

has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{83n} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

This means $Ax \leq b$.

$$(A(x+\vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$(A(x+t))_{i} - (Ax)_{i} + (At)_{i} \le b_{i} + a_{i} t$$

$$\le b_{i} + \|\vec{a}_{i}\| \cdot \|\vec{\ell}\| \le b_{i} + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r$$

$$\le b_{i} + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^{3}} \le b_{i} + \frac{1}{\delta^{2} + 1} \le b_{i} + \frac{1}{\lambda}$$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

9 The Ellipsoid Algorithm

215/571

9 The Ellipsoid Algorithm

How many iterations do we need until the volume becomes too small?

$$e^{-\frac{1}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$

$$= 8n(n+1)\ln(\delta) + 2(n+1)n\ln(n)$$

$$= \mathcal{O}(\operatorname{poly}(n,\langle a_{\max}\rangle))$$

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{83n} \text{vol}(B(0,1))$.

Lemma 54

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

This means $Ax \leq b$.

Let $\vec{\ell}$ with $||\vec{\ell}|| \leq r$. Then

 $(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$

 $< b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot \gamma$

 $\leq b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \leq b_i + \frac{1}{\delta^2 + 1} \leq b_i + \frac{1}{\lambda}$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

215/571

EADS II

Algorithm 1 ellipsoid-algorithm

1: **input**: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r

2: with $K \subseteq B(c,R)$, and $B(x,r) \subseteq K$ for some x

3: **output:** point $x \in K$ or "K is empty"

4: $Q \leftarrow \operatorname{diag}(R^2, \dots, R^2) // \text{ i.e., } L = \operatorname{diag}(R, \dots, R)$

6: if $c \in K$ then return c

5: **repeat**

6: If $c \in \mathbf{A}$ then return

7: **else**

8: choose a violated hyperplane *a*

9: $c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$ 0: $Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qa} \right)$

10: $Q \leftarrow \frac{1}{n^2 - 1} (Q - \frac{1}{n + 1})$ endif

12: **until** $\det(Q) \le r^{2n}$ // i.e., $\det(L) \le r^n$

13: **return** "K is empty"

How many iterations do we need until the volume becomes too small?

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$

$$= 8n(n+1)\ln(\delta) + 2(n+1)n\ln(n)$$

$$= \mathcal{O}(\operatorname{poly}(n,\langle a_{\max}\rangle))$$

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- \triangleright or finds a hyperplane separating x from K.

We will usually assume that \boldsymbol{A} is a polynomial-time algorithm

In order to find a point in K we need

an initial ball 2000 20 with radius 20 that contains

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Algorithm 1 ellipsoid-algorithm

1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r

2: with $K \subseteq B(c,R)$, and $B(x,r) \subseteq K$ for some x

3: **output:** point $x \in K$ or "K is empty"

4:
$$Q \leftarrow \text{diag}(R^2, ..., R^2) // \text{i.e., } L = \text{diag}(R, ..., R)$$

- 5: **repeat**
- 6: if $c \in K$ then return c
- 7: **else**
- 8: choose a violated hyperplane *a*

9:
$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

10:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qa} \right)$$

- 11: endif
- 12: **until** $\det(Q) \leq r^{2n}$ // i.e., $\det(L) \leq r^n$
- 13: return "K is empty"

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- \triangleright or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm

In order to find a point in K we need

an initial ball 800, 80 with radius 8 that contains

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

9 The Ellipsoid Algorithm

217/571

- 1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r
- 2: with $K \subseteq B(c,R)$, and $B(x,r) \subseteq K$ for some x
- 3: **output:** point $x \in K$ or "K is empty"
- 4: $Q \leftarrow \text{diag}(R^2, ..., R^2) // \text{i.e.}, L = \text{diag}(R, ..., R)$
- 5: repeat
- if $c \in K$ then return c
- 7: **else**
- 8: choose a violated hyperplane *a*

9:
$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

0:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qa} \right)$$

- 11: endif
- 12: **until** $\det(Q) \leq r^{2n}$ // i.e., $\det(L) \leq r^n$
- 13: return "K is empty"

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that \boldsymbol{A} is a polynomial-time algorithm.

In order to find a point in K we need

The Ellipsoid algorithm requires $\mathcal{O}(\mathrm{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Algorithm 1 ellipsoid-algorithm

1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r

2: with
$$K \subseteq B(c,R)$$
, and $B(x,r) \subseteq K$ for some x

3: **output:** point $x \in K$ or "K is empty"

4:
$$Q \leftarrow \text{diag}(R^2, ..., R^2) // \text{i.e.}, L = \text{diag}(R, ..., R)$$

- 5: repeat
- if $c \in K$ then return c
- 7: **else**
- 8: choose a violated hyperplane *a*

9:
$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

10:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T O a} \right)$$

- 11: endif
- 12: **until** $\det(Q) \leq r^{2n}$ // i.e., $\det(L) \leq r^n$
- 13: return "K is empty"

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- \triangleright certifies that $x \in K$.
- \triangleright or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- \triangleright a guarantee that a ball of radius γ is contained in K,

1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r

2: with
$$K \subseteq B(c,R)$$
, and $B(x,r) \subseteq K$ for some x

3: **output:** point $x \in K$ or "K is empty"

4:
$$Q \leftarrow \operatorname{diag}(R^2, \dots, R^2) // \text{ i.e., } L = \operatorname{diag}(R, \dots, R)$$

- 5: repeat
- if $c \in K$ then return c

- else
- choose a violated hyperplane a

9:
$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

10:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T O a} \right)$$

- 11: endif
- 12: **until** $\det(O) \leq r^{2n}$ // i.e., $\det(L) \leq r^n$
- 13: return "K is empty"

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- ightharpoonup or finds a hyperplane separating x from K.

We will usually assume that \boldsymbol{A} is a polynomial-time algorithm.

In order to find a point in K we need

- ightharpoonup a guarantee that a ball of radius r is contained in K,
- \blacktriangleright an initial ball B(c,R) with radius R that contains K,
- \triangleright a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

9 The Ellipsoid Algorithm

- 1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r
- 2: with $K \subseteq B(c,R)$, and $B(x,r) \subseteq K$ for some x
- 3: **output:** point $x \in K$ or "K is empty"
- 4: $Q \leftarrow \text{diag}(R^2, ..., R^2) // \text{i.e., } L = \text{diag}(R, ..., R)$
- 5: repeat
- if $c \in K$ then return c
- 7: **else**
- 8: choose a violated hyperplane *a*

9:
$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

10:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T O a} \right)$$

- 11: **endif**
- 12: **until** $\det(Q) \leq r^{2n}$ // i.e., $\det(L) \leq r^n$
- 13: return "K is empty"

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- \triangleright certifies that $x \in K$,
- ightharpoonup or finds a hyperplane separating x from K.

We will usually assume that \boldsymbol{A} is a polynomial-time algorithm.

In order to find a point in K we need

- ightharpoonup a guarantee that a ball of radius r is contained in K,
- ightharpoonup an initial ball B(c,R) with radius R that contains K,
- ightharpoonup a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

9 The Ellipsoid Algorithm

1: **input:** point
$$c \in \mathbb{R}^n$$
, convex set $K \subseteq \mathbb{R}^n$, radii R and r

2: with
$$K \subseteq B(c,R)$$
, and $B(x,r) \subseteq K$ for some x

3: **output:** point
$$x \in K$$
 or " K is empty"

4:
$$Q \leftarrow \text{diag}(R^2, ..., R^2) // \text{i.e., } L = \text{diag}(R, ..., R)$$

- 5: repeat
- if $c \in K$ then return c
- 7: **else**
- 8: choose a violated hyperplane *a*

9:
$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

10:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T O a} \right)$$

- 11: endif
- 12: **until** $\det(Q) \leq r^{2n}$ // i.e., $\det(L) \leq r^n$
- 13: return "K is empty"

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- ightharpoonup or finds a hyperplane separating x from K.

We will usually assume that \boldsymbol{A} is a polynomial-time algorithm.

In order to find a point in *K* we need

- ightharpoonup a guarantee that a ball of radius r is contained in K,
- ightharpoonup an initial ball B(c,R) with radius R that contains K,
- \triangleright a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

- ▶ inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- ▶ for $x \in P^\circ$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the i-th constrain

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(s_i(x))$$

- ▶ inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- ▶ $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- ▶ for $x \in P^\circ$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the i-th constrain

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(s_i(x))$$

- ▶ inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- ▶ $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- ▶ for $x \in P^\circ$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the i-th constrain

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(s_i(x))$$

- ▶ inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- ▶ $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- ▶ for $x \in P^{\circ}$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(s_i(x))$$

- ▶ inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- ▶ $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^{\circ}$ define

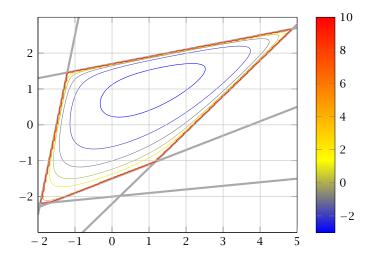
$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(s_i(x))$$

Penalty Function



10 Karmarkars Algorithm

- ▶ inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- ▶ $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- ▶ for $x \in P^{\circ}$ define

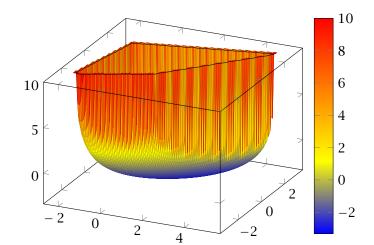
$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

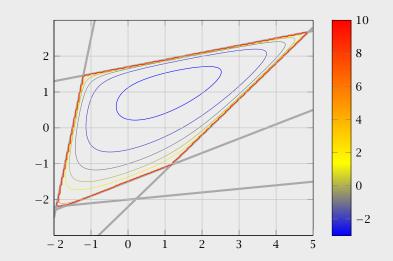
logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(s_i(x))$$

Penalty Function



Penalty Function



220/571

Gradient and Hessian

Taylor approximation:

$$\phi(x + \epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_X$$

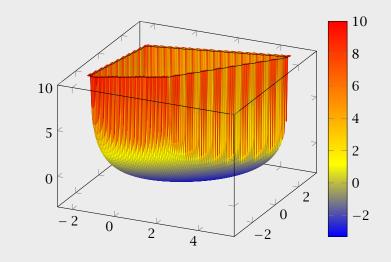
where $d_x^T = (1/s_1(x), ..., 1/s_m(x))$. $(d_x$ vector of inverse slacks

Hessian

$$H_X := \nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)^2} a_i a_i^T = A^T D_{X^Z}^2$$

with $D_X = \operatorname{diag}(d_X)$.

Penalty Function



Gradient and Hessian

Taylor approximation:

$$\phi(x + \epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

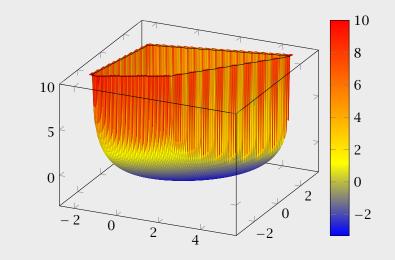
where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian

$$H_X := \nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)^2} a_i a_i^T = A^T D_{X^Z}^2$$

with $D_X = \operatorname{diag}(d_X)$.

Penalty Function



Gradient and Hessian

Taylor approximation:

$$\phi(x + \epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

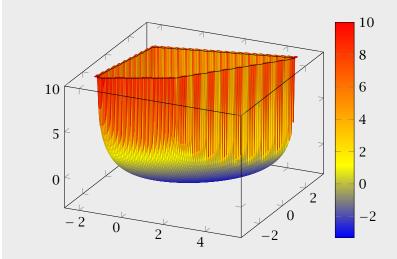
where $d_x^T = (1/s_1(x), ..., 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_X := \nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)^2} a_i a_i^T = A^T D_x^2 A$$

with $D_X = \operatorname{diag}(d_X)$.

Penalty Function



Proof for Gradient

$$\frac{\partial \phi(x)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(-\sum_r \ln(s_r(x)) \right)
= -\sum_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right) = -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right)
= -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right) = \sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right)
= \sum_r \frac{1}{s_r(x)} A_{ri}$$

The *i*-th entry of the gradient vector is $\sum_{r} 1/s_r(x) \cdot A_{ri}$. This gives that the gradient is

gives that the gradient is
$$\nabla \phi(x) = \sum 1/s_r(x) a_r = A^T d_x$$

Gradient and Hessian

Taylor approximation:

$$\phi(x + \epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

$$H_X := \nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)^2} a_i a_i^T = A^T D_x^2 A$$

with $D_{\gamma} = \operatorname{diag}(d_{\gamma})$.

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_r A_{ri} A_{rj} = (A^T A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

Hence the Hessian is

$$H_{x} = A^{T}D^{2}A$$

Proof for Gradient

$$\frac{\partial \phi(x)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(-\sum_r \ln(s_r(x)) \right)
= -\sum_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right) = -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right)
= -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right) = \sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right)
= \sum_r \frac{1}{s_r(x)} A_{ri}$$

The *i*-th entry of the gradient vector is $\sum_{r} 1/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} 1/s_r(x) a_r = A^T d_X$$

 H_X is positive semi-definite for $X \in P^{\circ}$

$$u^{T}H_{X}u = u^{T}A^{T}D_{X}^{2}Au = ||D_{X}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex

If rank(A) = n, H_X is positive definite for $X \in P^{\circ}$

$$u^{T}H_{X}u = ||D_{X}Au||_{2}^{2} > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex

 $\|u\|_{H_X}:=\sqrt{u^TH_Xu}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_r A_{ri} A_{rj} = (A^T A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

$$H_X = A^T D^2 A$$

 H_X is positive semi-definite for $X \in P^{\circ}$

$$u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_X is positive definite for $X \in P^{\circ}$

$$u^{T}H_{X}u = ||D_{X}Au||_{2}^{2} > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex

 $\|u\|_{H_X}:=\sqrt{u^TH_Xu}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_r A_{ri} A_{rj} = (A^T A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

$$H_X = A^T D^2 A$$

 H_{χ} is positive semi-definite for $\chi \in P^{\circ}$

$$u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^{\circ}$

$$u^{T}H_{x}u = ||D_{x}Au||_{2}^{2} > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex

 $\|u\|_{H_X}:=\sqrt{u^TH_Xu}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_r A_{ri} A_{rj} = (A^T A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

$$H_X = A^T D^2 A$$

 $H_{\mathcal{X}}$ is positive semi-definite for $x \in P^{\circ}$

$$u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^{\circ}$

$$u^{T}H_{x}u = ||D_{x}Au||_{2}^{2} > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex.

 $\|u\|_{H_X}:=\sqrt{u^TH_Xu}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_r A_{ri} A_{rj} = (A^T A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

$$H_X = A^T D^2 A$$

 $H_{\mathcal{X}}$ is positive semi-definite for $x \in P^{\circ}$

$$u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If
$$rank(A) = n$$
, H_X is positive definite for $X \in P^{\circ}$

$$u^{T}H_{x}u = \|D_{x}Au\|_{2}^{2} > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex.

 $\|u\|_{H_X}:=\sqrt{u^TH_Xu}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_r A_{ri} A_{rj} = (A^T A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

$$H_{\Upsilon} = A^T D^2 A$$

$$E_X = \{ y \mid (y - x)^T H_X (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

H_x is positive semi-definite for $x \in P^{\circ}$

Properties of the Hessian

 $u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^{\circ}$

This gives that $\phi(x)$ is strictly convex.

 $u^{T}H_{x}u = \|D_{x}Au\|_{2}^{2} > 0 \text{ for } u \neq 0$

10 Karmarkars Algorithm

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

$$E_X = \{ y \mid (y - x)^T H_X(y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

Points in E_x are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T} (y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

Properties of the Hessian

 H_x is positive semi-definite for $x \in P^{\circ}$

$$u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If
$$rank(A) = n$$
, H_X is positive definite for $X \in P^{\circ}$

$$u^T H_X u = ||D_X A u||_2^2 > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

$$E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_{x}} \le 1 \}$$

Points in E_x are feasible!!!

$$(y-x)^{T}H_{X}(y-x) = (y-x)^{T}A^{T}D_{X}^{2}A(y-x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y-x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

H_x is positive semi-definite for $x \in P^{\circ}$

Properties of the Hessian

This gives that $\phi(x)$ is convex.

This gives that
$$\phi(x)$$
 is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm

 $u^{T}H_{Y}u = u^{T}A^{T}D_{Y}^{2}Au = ||D_{Y}Au||_{2}^{2} \ge 0$

$$u^T H_X u = ||D_X A u||_2^2 > 0 \text{ for } u \neq 0$$

$$x \in P^{\circ}$$

If
$$\operatorname{rank}(A) = n$$
, H_X is positive definite for $X \in P^\circ$

$$x \in P^{\circ}$$

$$x \in P^{\circ}$$

$$\kappa \in P^{\circ}$$

$$x \in P^{\circ}$$

is an ellipsoid.

$$E_X = \{ y \mid (y - x)^T H_X(y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

Points in E_x are feasible!!!

$$(y-x)^{T}H_{X}(y-x) = (y-x)^{T}A^{T}D_{X}^{2}A(y-x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y-x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

Properties of the Hessian

 H_x is positive semi-definite for $x \in P^{\circ}$

$$u^{T}H_{Y}u = u^{T}A^{T}D_{Y}^{2}Au = ||D_{Y}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^{\circ}$

$$u^{T}H_{x}u = ||D_{x}Au||_{2}^{2} > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex.

$$\|u\|_{H_X}:=\sqrt{u^TH_Xu}$$
 is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

$$E_X = \{ y \mid (y - x)^T H_X(y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

Points in E_x are feasible!!!

$$(y-x)^{T}H_{X}(y-x) = (y-x)^{T}A^{T}D_{x}^{2}A(y-x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y-x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

Properties of the Hessian

 H_x is positive semi-definite for $x \in P^{\circ}$

$$u^{T}H_{Y}u = u^{T}A^{T}D_{Y}^{2}Au = ||D_{Y}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^{\circ}$

$$u^{T}H_{X}u = \|D_{X}Au\|_{2}^{2} > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex.

$$\|u\|_{H_X}:=\sqrt{u^TH_Xu}$$
 is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

$$E_X = \{ y \mid (y - x)^T H_X(y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

Points in E_x are feasible!!!

$$(y-x)^{T}H_{x}(y-x) = (y-x)^{T}A^{T}D_{x}^{2}A(y-x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y-x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

Properties of the Hessian

 H_x is positive semi-definite for $x \in P^{\circ}$

$$u^{T}H_{X}u = u^{T}A^{T}D_{X}^{2}Au = ||D_{X}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^{\circ}$

$$u^{T}H_{x}u = ||D_{x}Au||_{2}^{2} > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

$$E_X = \{ y \mid (y - x)^T H_X (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

Points in E_x are feasible!!!

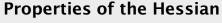
$$(y - x)^{T} H_{X}(y - x) = (y - x)^{T} A^{T} D_{X}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T} (y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

 ≤ 1 In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.



 H_x is positive semi-definite for $x \in P^{\circ}$

$$u^{T}H_{X}u = u^{T}A^{T}D_{X}^{2}Au = ||D_{X}Au||_{2}^{2} \ge 0$$

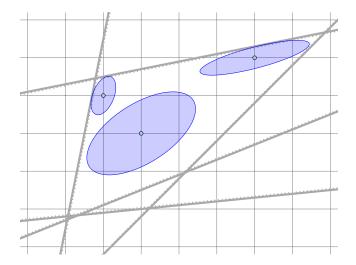
This gives that $\phi(x)$ is convex.

If
$$rank(A) = n$$
, H_X is positive definite for $X \in P^{\circ}$

 $u^{T}H_{x}u = \|D_{x}Au\|_{2}^{2} > 0 \text{ for } u \neq 0$

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

This gives that $\phi(x)$ is strictly convex.



Dikin Ellipsoid

$$E_X = \{ y \mid (y - x)^T H_X (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

Points in E_x are feasible!!!

$$(y-x)^{T}H_{X}(y-x) = (y-x)^{T}A^{T}D_{X}^{2}A(y-x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y-x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

Analytic Center

$$x_{\rm ac} := \arg\min_{x \in P^{\circ}} \phi(x)$$

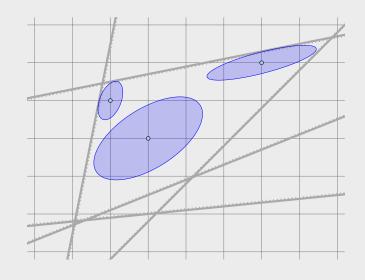
 \triangleright $x_{\rm ac}$ is solution to

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$$

- depends on the description of the polytope
- \triangleright $x_{\rm ac}$ exists and is unique iff P° is nonempty and bounded

Dikin Ellipsoids

227/571



226

Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Pat

Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_X \{ tc^T x + \phi(x) \}$$

- $t = \infty$: ontimum solution

Analytic Center

$$x_{ac} := \arg\min_{x \in P^{\circ}} \phi(x)$$

► x_{ac} is solution to

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$$

- ► depends on the description of the polytope
- x_{ac} exists and is unique iff P° is nonempty and bounded

228/571

Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_x \{tc^T x + \phi(x)\}\$$

- t as antimum solution

Analytic Center

$$x_{\rm ac} := \arg\min_{x \in P^{\circ}} \phi(x)$$

► x_{ac} is solution to

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$$

- ► depends on the description of the polytope
- x_{ac} exists and is unique iff P° is nonempty and bounded

Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$$

- t = 0: analytic center ▶ $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

Analytic Center

$$x_{\mathrm{ac}} := \operatorname{arg\,min}_{x \in P^{\circ}} \phi(x)$$

 \triangleright χ_{ac} is solution to

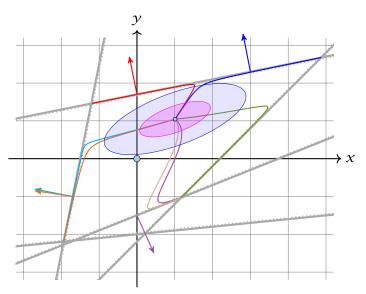
$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$$

 \blacktriangleright $x_{\rm ac}$ exists and is unique iff P° is nonempty and bounded

- depends on the description of the polytope

228/571

Different Central Paths



Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

EADS II

Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_x \{tc^T x + \phi(x)\}\$$

- \rightarrow t = 0: analytic center
- ► $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

Central Path

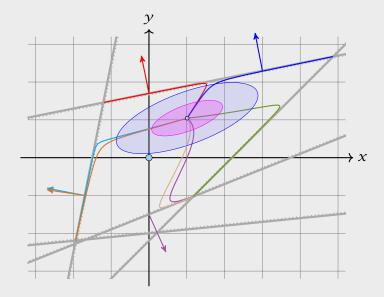
Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions:

- ▶ Is this really true? How large a t do we need?
- ▶ How do we find corresponding point $x^*(t)$ on central path?

Different Central Paths



230/571

The Dual

primal-dual pair:

$$\min c^T x$$
s.t. $Ax \le b$

$$\max -b^T z$$
s.t. $A^T z + c = 0$
 $z \ge 0$

Assumptions

- primal and dual problems are strictly feasible;
- ightharpoonup rank(A) = n.

Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions:

- ► Is this really true? How large a t do we need?
- ▶ How do we find corresponding point $x^*(t)$ on central path?

Force Field Interpretation

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$

- We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
- ▶ In addition there is a force *tc* pulling us towards the optimum solution.

The Dual

primal-dual pair:

$$min c^T x$$
s.t. $Ax \le b$

$$\max -b^{T}z$$
s.t. $A^{T}z + c = 0$
 $z \ge 0$

Assumptions

- primal and dual problems are strictly feasible;
- ightharpoonup rank(A) = n.

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

Force Field Interpretation

- We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
- \blacktriangleright In addition there is a force tc pulling us towards the optimum solution.

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

Οľ

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

Force Field Interpretation

- We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
 - In addition there is a force tc pulling us towards the optimum solution.

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

Force Field Interpretation

- We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
- ► In addition there is a force *tc* pulling us towards the optimum solution.

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

- $z^*(t)$ is strictly dual feasible: $(A^Tz^* + c = 0; z^* > 0)$

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

Force Field Interpretation

- ▶ We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
 - ▶ In addition there is a force tc pulling us towards the optimum solution.

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

- $ightharpoonup z^*(t)$ is strictly dual feasible: $(A^Tz^* + c = 0; z^* > 0)$
- duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

 \blacktriangleright if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

Force Field Interpretation

- We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
- ► In addition there is a force *tc* pulling us towards the optimum solution.

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or
$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0 \ \ \text{with} \ \ z_i^*(t) = \frac{1}{t s_i(x^*(t))}$$

- $z^*(t)$ is strictly dual feasible: $(A^Tz^* + c = 0; z^* > 0)$ • duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

Force Field Interpretation

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$

▶ We can view each constraint as generating a repelling force.

The combination of these forces is represented by $\nabla \phi(x)$.

▶ In addition there is a force tc pulling us towards the optimum solution.

How to find $x^*(t)$

First idea:

- start somewhere in the polytope
- use iterative method (Newtons method) to minimize $f_t(x) := tc^T x + \phi(x)$

How large should t be?

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

- $ightharpoonup z^*(t)$ is strictly dual feasible: $(A^Tz^* + c = 0; z^* > 0)$
- duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x)$$

How to find
$$x^*(t)$$

- start somewhere in the polytope use iterative method (Newtons method) to minimize

 $f_t(x) := tc^T x + \phi(x)$

EADS II Harald Räcke

10 Karmarkars Algorithm

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

How to find
$$x^*(t)$$

First idea:

- start somewhere in the polytope
 use iterative method (Newtons method) to minimize

 $f_t(x) := tc^T x + \phi(x)$

EADS II

EADS II 10 Karmarkars Algorithm

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

How to find $x^*(t)$

First idea:

- start somewhere in the polytope use iterative method (Newtons method) to minimize

 $f_t(x) := tc^T x + \phi(x)$

 $\nabla f_t(x+\epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$

10 Karmarkars Algorithm

235/571

We want to move to a point where this gradient is 0:

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H_{f_t}^{-1}(x) \nabla f_t(x)$$

$$= -H_{f_t}^{-1}(x) (tc + \nabla \phi(x))$$

$$= -(A^T D_x^2 A)^{-1} (tc + A^T d_x)$$

Newton Iteration:

$$x := x + \Delta x_{nt}$$

Newton Method

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x + \epsilon) = \nabla f_t(x) + H_{f_*}(x) \cdot \epsilon$$

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{n}}$$

$$\lambda_t(x) = 0 \text{ iff } x = x^*(t)$$

 $ightharpoonup \lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Newton Method

We want to move to a point where this gradient is 0:

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H_{f_t}^{-1}(x) \nabla f_t(x)$$

$$= -H_{f_t}^{-1}(x) (tc + \nabla \phi(x))$$

$$= -(A^T D_x^2 A)^{-1} (tc + A^T d_x)$$

Newton Iteration:

$$x := x + \Delta x_{\mathsf{nt}}$$

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$$

$$\lambda_t(x) = 0 \text{ iff } x = x^*(t)$$

Newton Method

We want to move to a point where this gradient is 0:

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H_{ft}^{-1}(x) \nabla f_t(x)$$

$$= -H_{ft}^{-1}(x) (tc + \nabla \phi(x))$$

$$= -(A^T D_x^2 A)^{-1} (tc + A^T d_x)$$

Newton Iteration:

$$x := x + \Delta x_{\mathsf{nt}}$$

[▶] $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$$

- $\lambda_t(x) = 0 \text{ iff } x = x^*(t)$
- ▶ $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Newton Method

We want to move to a point where this gradient is 0:

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H_{f_t}^{-1}(x) \nabla f_t(x)$$

$$= -H_{f_t}^{-1}(x) (tc + \nabla \phi(x))$$

$$= -(A^T D_x^2 A)^{-1} (tc + A^T d_x)$$

Newton Iteration:

$$x := x + \Delta x_{nt}$$

Theorem 55

If $\lambda_t(x) < 1$ then

- $x_+ := x + \Delta x_{nt} \in P^{\circ}$ (new point feasible)
- $\lambda_t(x_+) \leq \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\rm nt}$$

- $\lambda_t(x) = 0 \text{ iff } x = x^*(t)$
- $\blacktriangleright \lambda_t(x)$ is measure of proximity of x to $x^*(t)$

feasibility:

▶ $\lambda_t(x) = \|\Delta x_{\mathsf{nt}}\|_{H_X} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

Convergence of Newtons Method

Theorem 55

If $\lambda_t(x) < 1$ then

- $x_+ := x + \Delta x_{nt} \in P^\circ$ (new point feasible)
- $\rightarrow \lambda_t(x_+) \leq \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

bound on $\lambda_t(x^+)$:

we use
$$D:=D_{\mathcal{X}}=\operatorname{diag}(d_{\mathcal{X}})$$
 and $D_+:=D_{\mathcal{X}^+}=\operatorname{diag}(d_{\mathcal{X}^+})$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||$$

if
$$a^T(a+b) = 0$$

Convergence of Newtons Method

feasibility:

▶ $\lambda_t(x) = \|\Delta x_{\rm nt}\|_{H_x} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{nt}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{nt}^{+}\|^{2} + \|D_{+}A\Delta x_{nt}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{nt}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{nt}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||$$

$$if a^T(a+b) = 0$$

Convergence of Newtons Method

feasibility:

▶ $\lambda_t(x) = \|\Delta x_{\mathsf{nt}}\|_{H_x} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||$$

$$if a^T(a+b) = 0$$

Convergence of Newtons Method

feasibility:

▶ $\lambda_t(x) = \|\Delta x_{\mathsf{nt}}\|_{H_x} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||$$

$$if a^T(a+b) = 0$$

Convergence of Newtons Method

feasibility:

▶ $\lambda_t(x) = \|\Delta x_{\mathsf{nt}}\|_{H_X} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||$$

$$if a^T(a+b) = 0$$

Convergence of Newtons Method

feasibility:

▶ $\lambda_t(x) = \|\Delta x_{\mathsf{nt}}\|_{H_x} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

bound on $\lambda_t(x^+)$:

if $a^{T}(a+b) = 0$.

we use
$$D := D_X = \text{diag}(d_X)$$
 and $D_+ := D_{X^+} = \text{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||^2$$

Convergence of Newtons Method

feasibility:

▶ $\lambda_t(x) = \|\Delta x_{\mathsf{nt}}\|_{H_x} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

$$DA\Delta x_{\mathsf{nt}} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a + b)$$

$$= \Delta x_{nt}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{nt}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{nt}^{+} - A^{T} D^{2} A \Delta x_{nt} + A^{T} D_{+} D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(H_{+} \Delta x_{nt}^{+} - H \Delta x_{nt} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{nt}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$||a||^2 + ||a + b||^2 = ||b||^2$$

$$if a^T(a+b)=0.$$

$$DA\Delta x_{\mathsf{nt}} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\text{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\text{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\text{nt}} \right)$$

$$= \Delta x_{\text{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\text{nt}}^{+} - A^{T} D^{2} A \Delta x_{\text{nt}} + A^{T} D_{+} D A \Delta x_{\text{nt}} \right)$$

$$= \Delta x_{\text{nt}}^{+T} \left(H_{+} \Delta x_{\text{nt}}^{+} - H \Delta x_{\text{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\text{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$||a||^2 + ||a + b||^2 = ||b||^2$$

$$if a^T(a+b)=0.$$

$$DA\Delta x_{\mathsf{nt}} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a + b)$$

$$= \Delta x_{\text{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\text{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\text{nt}} \right)$$

$$= \Delta x_{\text{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\text{nt}}^{+} - A^{T} D^{2} A \Delta x_{\text{nt}} + A^{T} D_{+} D A \Delta x_{\text{nt}} \right)$$

$$= \Delta x_{\text{nt}}^{+T} \left(H_{+} \Delta x_{\text{nt}}^{+} - H \Delta x_{\text{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\text{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$||a||^2 + ||a + b||^2 = ||b||^2$$

$$if a^T(a+b)=0.$$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a + b)$$

$$= \Delta x_{nt}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{nt}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{nt}^{+} - A^{T} D^{2} A \Delta x_{nt} + A^{T} D_{+} D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(H_{+} \Delta x_{nt}^{+} - H \Delta x_{nt} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{nt}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$||a||^2 + ||a + b||^2 = ||b||^2$$

if
$$a^T(a+b)=0$$
.

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a + b)$$

$$= \Delta x_{nt}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{nt}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{nt}^{+} - A^{T} D^{2} A \Delta x_{nt} + A^{T} D_{+} D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(H_{+} \Delta x_{nt}^{+} - H \Delta x_{nt} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{nt}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$||a||^2 + ||a + b||^2 = ||b||^2$$

$$if a^T(a+b)=0.$$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(-\nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$||a||^2 + ||a + b||^2 = ||b||^2$$

$$if a^T(a+b)=0.$$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \mathbf{I} - A^{T} D \mathbf{I} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$||a||^2 + ||a + b||^2 = ||b||^2$$

if
$$a^T(a+b)=0$$
.

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$||a||^2 + ||a + b||^2 = ||b||^2$$

if
$$a^T(a+b)=0$$
.

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||^2$$

if
$$a^T(a+b)=0$$
.

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \operatorname{diag}(d_X)$$
 and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||^2$$

$$if a^T(a+b)=0.$$

$$DA\Delta x_{\mathsf{nt}} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a + b)$$

$$= \Delta x_{nt}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{nt}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{nt}^{+} - A^{T} D^{2} A \Delta x_{nt} + A^{T} D_{+} D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(H_{+} \Delta x_{nt}^{+} - H \Delta x_{nt} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{nt}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use $D:=D_X=\operatorname{diag}(d_X)$ and $D_+:=D_{X^+}=\operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||^2$$

if
$$a^T(a+h)=0$$
.

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)^{2}\tilde{\mathbf{I}}\|^{2}$$

$$\leq \|(I - D_{+}^{-1}D)\tilde{\mathbf{I}}\|^{4}$$

$$= \|DA\Delta x_{\mathsf{nt}}\|^{4}$$

$$= \lambda_{t}(x)^{4}$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{nt}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{nt}^{+}\|^{2} + \|D_{+}A\Delta x_{nt}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{nt}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{nt}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2}$$

$$\leq \|(I - D_{+}^{-1}D)\vec{1}\|^{4}$$

$$= \|DA\Delta x_{nt}\|^{4}$$

$$= \lambda_{t}(x)^{4}$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a + b)$$

$$= \Delta x_{nt}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{nt}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{nt}^{+} - A^{T} D^{2} A \Delta x_{nt} + A^{T} D_{+} D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(H_{+} \Delta x_{nt}^{+} - H \Delta x_{nt} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{nt}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{nt}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{nt}^{+}\|^{2} + \|D_{+}A\Delta x_{nt}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{nt}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{nt}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2}$$

$$\leq \|(I - D_{+}^{-1}D)\vec{1}\|^{4}$$

$$= \|DA\Delta x_{nt}\|^{4}$$

$$= \lambda_{t}(x)^{4}$$

The second inequality follows from $\sum_{i} y_{i}^{4} \leq (\sum_{i} y_{i}^{2})^{2}$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a + b)$$

$$= \Delta x_{nt}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{nt}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{nt}^{+} - A^{T} D^{2} A \Delta x_{nt} + A^{T} D_{+} D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(H_{+} \Delta x_{nt}^{+} - H \Delta x_{nt} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{nt}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\text{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\text{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\text{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\text{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\text{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2}$$

$$\leq \|(I - D_{+}^{-1}D)\vec{1}\|^{4}$$

$$= \|DA\Delta x_{\text{nt}}\|^{4}$$

$$= \lambda_{t}(x)^{4}$$

The second inequality follows from $\sum_{i} y_{i}^{4} \leq (\sum_{i} y_{i}^{2})^{2}$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{nt}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{nt}^{+}\|^{2} + \|D_{+}A\Delta x_{nt}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{nt}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{nt}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2}$$

$$\leq \|(I - D_{+}^{-1}D)\vec{1}\|^{4}$$

$$= \|DA\Delta x_{nt}\|^{4}$$

$$= \lambda_{t}(x)^{4}$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

If $\lambda_t(x)$ is large we do not have a guarantee.

Try to avoid this case!!!

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use $D := D_x = \operatorname{diag}(d_x)$ and $D_+ := D_{x^+} = \operatorname{diag}(d_{x^+})$

 $\lambda_t(x^+)^2 = \|D_+ A \Delta x_{\rm nt}^+\|^2$ $\leq \|D_+ A \Delta x_{nt}^+\|^2 + \|D_+ A \Delta x_{nt}^+ + (I - D_+^{-1}D)DA \Delta x_{nt}\|^2$ $= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$ $= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2}$ $\leq \|(I - D_{+}^{-1}D)\vec{1}\|^4$ $= \|DA\Delta x_{\mathsf{nt}}\|^4$ $=\lambda_t(x)^4$

The second inequality follows from $\sum_i v_i^4 \leq (\sum_i v_i^2)^2$

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function

4: recenter to return to central path

If $\lambda_t(x)$ is large we do not have a guarantee.

Try to avoid this case!!!

simplifying assumptions:

- ▶ a first central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly in each iteration

 $\boldsymbol{\epsilon}$ is approximation we are aiming for

start at $t=t_0$, repeat until $m/t \le \epsilon$

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- $ightharpoonup t := \mu t$

where $\mu = 1 + 1/(2\sqrt{m})$

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

- 1: start at analytic center
- 2: while solution not good enough do
- 3: make step to improve objective function
- 4: recenter to return to central path

gradient of f_{t^+} at $(x = x^*(t))$

$$\nabla f_{t+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_X \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$$

$$= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A$$

$$\leq (\mu - 1)^{2} m$$

$$= 1/4$$

This means we are in the range of quadratic convergence!!!

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly in each iteration

 ϵ is approximation we are aiming for

start at $t=t_0$, repeat until $m/t \le \epsilon$

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- $ightharpoonup t := \mu t$

gradient of f_{t^+} at $(x = x^*(t))$

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$$

$$= (\mu - 1)^{2} \overline{1}^{T} B (B^{T} B)^{-1} B^{T} \overline{1} \qquad B = D_{X}^{T} A$$

$$\leq (\mu - 1)^{2} m$$

$$= 1/4$$

This means we are in the range of quadratic convergence!!!

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly in each iteration

 ϵ is approximation we are aiming for

start at $t=t_0$, repeat until $m/t \le \epsilon$

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- $ightharpoonup t := \mu t$

gradient of f_{t^+} at $(x = x^*(t))$

$$\nabla f_{t+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_X \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$$

$$= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A$$

$$\leq (\mu - 1)^{2} m$$

$$= 1/4$$

This means we are in the range of quadratic convergence!!!

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly in each iteration

 ϵ is approximation we are aiming for

start at $t=t_0$, repeat until $m/t \le \epsilon$

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- $ightharpoonup t := \mu t$

gradient of f_{t^+} at $(x = x^*(t))$

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$$

$$= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A$$

$$\leq (\mu - 1)^{2} m$$

$$= 1/4$$

This means we are in the range of quadratic convergence!!!

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly in each iteration

 $\boldsymbol{\epsilon}$ is approximation we are aiming for

start at $t=t_0$, repeat until $m/t \le \epsilon$

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- $ightharpoonup t := \mu t$

gradient of f_{t+} at $(x = x^*(t))$

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$$

$$= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A$$

$$\leq (\mu - 1)^{2} m$$

$$= 1/4$$

This means we are in the range of quadratic convergence!!!

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $\rightarrow x^*(t)$ is computed exactly in each iteration

 ϵ is approximation we are aiming for

start at $t=t_0$, repeat until $m/t \le \epsilon$

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- $ightharpoonup t := \mu t$

Number of Iterations

the number of Newton iterations per outer iteration is very small; in practise only 1 or 2

Number of outer iterations:

We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when

$$k \ge \frac{\log(m/(\epsilon t_0))}{\log(\mu)}$$

We get a bound of

$$\mathcal{O}\left(\sqrt{m}\log\frac{m}{\epsilon t_0}\right)$$

We show how to get a starting point with $t_0 = 1/2^L$. Together with $\epsilon \approx 2^{-L}$ we get $\mathcal{O}(L\sqrt{m})$ iterations.

gradient of f_{t+} at $(x = x^*(t))$

Short Step Barrier Method

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$$

$$= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A$$

$$\leq (\mu - 1)^{2} m$$

$$= 1/4$$

This means we are in the range of quadratic convergence!!!

Observation:

EADS II

For $x \in P^{\circ}$ and direction $v \neq 0$ define

$$\sigma_X(v) := \max_i \frac{a_i^T v}{s_i(x)}$$

 $x + \alpha v \in P$ for $\alpha \in \{0, 1/\sigma_x(v)\}$

10 Karmarkars Algorithm

248/571

We get a bound of $\mathcal{O}\left(\sqrt{m}\log\frac{m}{\epsilon t_0}\right)$ We show how to get a starting point with $t_0 = 1/2^L$. Together

with $\epsilon \approx 2^{-L}$ we get $\mathcal{O}(L\sqrt{m})$ iterations.

Number of Iterations

Number of outer iterations:

the number of Newton iterations per outer

iteration is very small; in practise only 1 or 2

 $k \ge \frac{\log(m/(\epsilon t_0))}{\log(u)}$

We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when

10 Karmarkars Algorithm

247

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha y) - \phi(x)$$

Damped Newton Method

For $x \in P^{\circ}$ and direction $v \neq 0$ define

$$\sigma_X(v) := \max_i \frac{a_i^T v}{s_i(x)}$$

Observation:

$$x + \alpha v \in P$$
 for $\alpha \in \{0, 1/\sigma_x(v)\}$

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha y) = \phi(x)$$

Damped Newton Method

For $x \in P^{\circ}$ and direction $v \neq 0$ define

$$\sigma_X(v) := \max_i \frac{a_i^T v}{s_i(x)}$$

Observation:

$$x + \alpha v \in P$$
 for $\alpha \in \{0, 1/\sigma_x(v)\}$

10 Karmarkars Algorithm

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha v) - \phi(x) = -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x))$$
$$= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x))$$

Damped Newton Method

For $x \in P^{\circ}$ and direction $v \neq 0$ define

$$\sigma_X(v) := \max_i \frac{a_i^T v}{s_i(x)}$$

Observation:

$$x + \alpha v \in P$$
 for $\alpha \in \{0, 1/\sigma_x(v)\}$

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha v) - \phi(x) = -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x))$$
$$= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x))$$

Damped Newton Method

For $x \in P^{\circ}$ and direction $v \neq 0$ define

$$\sigma_X(v) := \max_i \frac{a_i^T v}{s_i(x)}$$

Observation:

$$x + \alpha v \in P$$
 for $\alpha \in \{0, 1/\sigma_x(v)\}$

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha v) - \phi(x) = -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x))$$
$$= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x))$$
$$= -\sum_{i} \log(1 - a_i^T \alpha v/s_i(x))$$

Damped Newton Method

For $x \in P^{\circ}$ and direction $v \neq 0$ define

$$\sigma_{x}(v) := \max_{i} \frac{a_{i}^{T} v}{s_{i}(x)}$$

Observation:

$$x + \alpha v \in P$$
 for $\alpha \in \{0, 1/\sigma_X(v)\}$

Define
$$w_i = a_i^T v / s_i(x)$$
 and $\sigma = \max_i w_i$. Then

$$f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$$

Damped Newton Method

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha v) - \phi(x) = -\sum_i \log(s_i(x + \alpha v)) + \sum_i \log(s_i(x))$$

$$= -\sum_i \log(s_i(x + \alpha v)/s_i(x))$$

$$= -\sum_i \log(1 - a_i^T \alpha v/s_i(x))$$

Define
$$w_i = a_i^T v / s_i(x)$$
 and $\sigma = \max_i w_i$. Then

$$f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$$

$$= -\sum_i (\alpha w_i + \log(1 - \alpha w_i))$$

$$\leq -\sum_{w_i > 0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i \leq 0} \frac{\alpha^2 w_i^2}{2}$$

$$\leq -\sum_{w_i > 0} \frac{w_i^2}{\sigma^2} (\alpha \sigma + \log(1 - \alpha \sigma)) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i = 0} \frac{w_i}{\sigma^2}$$

Damped Newton Method

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$\begin{split} f_t(x + \alpha v) - f_t(x) &= tc^T \alpha v + \phi(x + \alpha v) - \phi(x) \\ \phi(x + \alpha v) - \phi(x) &= -\sum_i \log(s_i(x + \alpha v)) + \sum_i \log(s_i(x)) \\ &= -\sum_i \log(s_i(x + \alpha v)/s_i(x)) \\ &= -\sum_i \log(1 - a_i^T \alpha v/s_i(x)) \end{split}$$

Define
$$w_i = a_i^T v / s_i(x)$$
 and $\sigma = \max_i w_i$. Then

$$\begin{split} f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v \\ &= -\sum_i (\alpha w_i + \log(1 - \alpha w_i)) \\ &\leq -\sum_{w_i > 0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i \leq 0} \frac{\alpha^2 w_i^2}{2} \\ &\leq -\sum_{w_i > 0} \frac{w_i^2}{\sigma^2} \left(\alpha \sigma + \log(1 - \alpha \sigma)\right) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i \leq 0} \frac{w_i}{\sigma^2} \right] \end{split}$$

Damped Newton Method

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha v) - \phi(x) = -\sum_i \log(s_i(x + \alpha v)) + \sum_i \log(s_i(x))$$

$$= -\sum_i \log(s_i(x + \alpha v)/s_i(x))$$

$$= -\sum_i \log(1 - a_i^T \alpha v/s_i(x))$$

Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then

$$\begin{split} f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v \\ &= -\sum_i (\alpha w_i + \log(1 - \alpha w_i)) \\ &\leq -\sum_{w_i > 0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i \leq 0} \frac{\alpha^2 w_i^2}{2} \\ &\leq -\sum_{w_i > 0} \frac{w_i^2}{\sigma^2} \Big(\alpha \sigma + \log(1 - \alpha \sigma)\Big) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i \leq 0} \frac{w_i^2}{\sigma^2} \end{split}$$

Damped Newton Method

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$\begin{split} f_t(x + \alpha v) - f_t(x) &= tc^T \alpha v + \phi(x + \alpha v) - \phi(x) \\ \phi(x + \alpha v) - \phi(x) &= -\sum_i \log(s_i(x + \alpha v)) + \sum_i \log(s_i(x)) \\ &= -\sum_i \log(s_i(x + \alpha v)/s_i(x)) \\ &= -\sum_i \log(1 - a_i^T \alpha v/s_i(x)) \end{split}$$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{X}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:
In a damped Newton step we choos

$$x_{+} = x + \frac{1}{1 + 3 \left(\Delta x_{-}\right)} \Delta x_{n1}$$

Damped Newton Method

Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then

$$f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$$

$$= -\sum_i (\alpha w_i + \log(1 - \alpha w_i))$$

$$\leq -\sum_{w_i > 0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i \leq 0} \frac{\alpha^2 w_i^2}{2}$$

$$\leq -\sum_{w_i > 0} \frac{w_i^2}{\sigma^2} (\alpha \sigma + \log(1 - \alpha \sigma)) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i \leq 0} \frac{w_i^2}{\sigma^2}$$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{x}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:
In a damped Newton step we choos

$$x_{+} = x + \frac{1}{1 + 3 \left(\Delta x_{-}\right)} \Delta x_{n1}$$

Damped Newton Method

Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then

$$f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$$

$$= -\sum_i (\alpha w_i + \log(1 - \alpha w_i))$$

$$\leq -\sum_{w_i > 0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i \leq 0} \frac{\alpha^2 w_i^2}{2}$$

$$\leq -\sum_{w_i > 0} \frac{w_i^2}{\sigma^2} (\alpha \sigma + \log(1 - \alpha \sigma)) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i \leq 0} \frac{w_i^2}{\sigma^2}$$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{X}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \alpha_{\text{tot}}(\Delta x_{\text{res}})} \Delta x_{\text{nt}}$$

Damped Newton Method

Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then

$$f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$$

$$= -\sum_i (\alpha w_i + \log(1 - \alpha w_i))$$

$$\leq -\sum_{w_i > 0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i \leq 0} \frac{\alpha^2 w_i^2}{2}$$

$$\leq -\sum_{w_i > 0} \frac{w_i^2}{\sigma^2} (\alpha \sigma + \log(1 - \alpha \sigma)) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i \leq 0} \frac{w_i^2}{\sigma^2}$$

Theorem:

In a damped Newton step the cost decreases by at least

$$\lambda_t(x) - \log(1 + \lambda_t(x))$$

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x} (\alpha \sigma + \log(1 - \alpha \sigma))$$

Damped Newton Method

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{x}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{nt})} \Delta x_{nt}$$

Theorem:

In a damped Newton step the cost decreases by at least

$$\lambda_t(x) - \log(1 + \lambda_t(x))$$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x} (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1}$ and $v = \Delta x_{\rm nt}$ gives

Damped Newton Method

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{X}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{nt})} \Delta x_{nt}$$

Theorem:

In a damped Newton step the cost decreases by at least

$$\lambda_t(x) - \log(1 + \lambda_t(x))$$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_X} (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\alpha}$ and $v = \Delta x_{nt}$ gives

$$\frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \left(\frac{\sigma}{1+\sigma} + \log\left(1 - \frac{\sigma}{1+\sigma}\right) \right)$$
$$= \frac{\lambda_t(x)^2}{\sigma^2} \left(\sigma - \log(1+\sigma) \right)$$

Damped Newton Method

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{x}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{nt})} \Delta x_{nt}$$

Damped Newton Method Theorem:

In a damped Newton step the cost decreases by at least

$$\lambda_t(x) - \log(1 + \lambda_t(x))$$

Proof: The decrease in cost is

$$(c)^T v + \frac{1}{\sigma}$$

$$(x)^{T}v + \overline{\sigma^{2}}$$

Choosing $\alpha = \frac{1}{1+\alpha}$ and $v = \Delta x_{nt}$ gives

$$\sigma^2$$

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x} (\alpha \sigma + \log(1 - \alpha \sigma))$$

 $\frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2}\left(\frac{\sigma}{1+\sigma} + \log\left(1-\frac{\sigma}{1+\sigma}\right)\right)$

 $=\frac{\lambda_t(x)^2}{\sigma^2}\left(\sigma - \log(1+\sigma)\right)$

$$\log(1 + \Lambda_t(x))$$

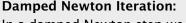
Damped Newton Method

$$w^2$$

$$w_{i}^{2}$$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

$$= -\frac{1}{\sigma^2} \|v\|_{H_X}^2 \left(\alpha \sigma + \log(1 - \alpha \sigma)\right)$$



10 Karmarkars Algorithm

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{\mathsf{nt}})} \Delta x_{\mathsf{nt}}$$

$$\geq \lambda_t(x) - \log(1 + \lambda_t(x))$$

$$\geq 0.09$$

for
$$\lambda_t(x) \ge 0.5$$

Centering Algorithm:

- Input: precision δ ; starting point
- 1. compute $\Delta x_{\rm nt}$ and λ
- 2. If $\Lambda_t(x) \leq 0$ return x

3. set
$$x := x + \alpha \Delta x_{nt}$$
 w

$$\frac{1}{+\sigma_{r}(\Delta y_{nt})}$$
 $\lambda_{t} \geq 1$

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

$$\lambda_t(x) - \log(1 + \lambda_t(x))$$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x} (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\alpha}$ and $v = \Delta x_{nt}$ gives

$$\frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \left(\frac{\sigma}{1+\sigma} + \log\left(1 - \frac{\sigma}{1+\sigma}\right) \right)$$
$$= \frac{\lambda_t(x)^2}{\sigma^2} \left(\sigma - \log(1+\sigma) \right)$$

$$\geq \lambda_t(x) - \log(1 + \lambda_t(x))$$

$$\geq 0.09$$

for
$$\lambda_t(x) \ge 0.5$$

Centering Algorithm:

Input: precision δ ; starting point x

- 1. compute $\Delta x_{\rm nt}$ and $\lambda_t(x)$
- **2.** if $\lambda_t(x) \leq \delta$ return x
- 2 -------

3. set
$$x := x + \alpha \Delta x_{nt}$$
 with

$$\alpha = \begin{cases} \frac{1}{1 + \sigma_x(\Delta x_{\mathsf{nt}})} & \lambda_t \ge 1/2 \\ 1 & \mathsf{otw} \end{cases}$$

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

$$\lambda_t(x) - \log(1 + \lambda_t(x))$$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_X} (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\alpha}$ and $v = \Delta x_{nt}$ gives

$$\frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \left(\frac{\sigma}{1+\sigma} + \log\left(1 - \frac{\sigma}{1+\sigma}\right) \right)$$
$$= \frac{\lambda_t(x)^2}{\sigma^2} \left(\sigma - \log(1+\sigma) \right)$$

Centering

Lemma 56 The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \leq \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log\log(1/\delta))$$

iterations.

This can be very, very slow...

Damped Newton Method

$$\geq \lambda_t(x) - \log(1 + \lambda_t(x))$$

$$\geq 0.09$$

 $\alpha = \begin{cases} \frac{1}{1 + \sigma_X(\Delta x_{\mathsf{nt}})} & \lambda_t \ge 1/2 \\ 1 & \mathsf{otw.} \end{cases}$

for $\lambda_t(x) \geq 0.5$

Centering Algorithm:

Input: precision δ ; starting point x

- 1. compute $\Delta x_{\rm nt}$ and $\lambda_t(x)$
- **2.** if $\lambda_t(x) \leq \delta$ return x
 - 3. set $x := x + \alpha \Delta x_{nt}$ with

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP

Centering

Lemma 56

The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \le \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.00} + \mathcal{O}(\log\log(1/\delta))$$

iterations.

This can be very, very slow...

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

Centering

Lemma 56

The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \leq \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.00} + \mathcal{O}(\log\log(1/\delta))$$

iterations.

This can be very, very slow...

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\tilde{B}}$, the cost-difference $c^Tx_B - c^Tx_{\tilde{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\tilde{B}}) \cdot \lambda$

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t\approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^Tx_B - c^Tx_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_{\bar{B}}) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t\approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^Tx_B - c^Tx_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_{\bar{B}}) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t\approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^Tx_B - c^Tx_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t\approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

Start at x_0 .

$$t \cdot c^T x + \phi(x)$$

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i,i} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Start at x_0 .

Choose $\hat{c} := -\nabla \phi(x)$.

$$t \cdot c^T x + \phi(x)$$

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i,i} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Start at x_0 .

Choose $\hat{c} := -\nabla \phi(x)$.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

$$t \cdot c^T x + \phi(x)$$

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i,i} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Start at x_0 .

Choose $\hat{c} := -\nabla \phi(x)$.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t\approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

(i.e., same value for t but different $oldsymbol{arepsilon}$, hence, different central path).

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i,i} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^Tx_B - c^Tx_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t\approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Start at x_0 .

Choose $\hat{c} := -\nabla \phi(x)$.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

$$t \cdot c^T x + \phi(x)$$

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i,i} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Start at x_0 .

Choose $\hat{c} := -\nabla \phi(x)$.

$$x_0 = x^*(1)$$
 is point on central path for \hat{c} and $t = 1$.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

(i.e., same value for t but different c, hence, different central path).

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i,i} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

Clearly,

$$t \cdot \hat{c}^T x_{\hat{c}} + \phi(x_{\hat{c}}) \le t \cdot \hat{c}^T x_c + \phi(x_c)$$

The different between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$\begin{aligned} tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c}) \\ &\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c}) \\ &\leq 4tn2^{3L} \end{aligned}$$

For $t=1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_{c} quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

How to get close to analytic center?

Start at x_0 .

Choose
$$\hat{c} := -\nabla \phi(x)$$
.

$$x_0 = x^*(1)$$
 is point on central path for \hat{c} and $t = 1$.

You can travel the central path in both directions. Go towards 0 until $t\approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

Clearly,

$$t \cdot \hat{c}^T x_{\hat{c}} + \phi(x_{\hat{c}}) \leq t \cdot \hat{c}^T x_c + \phi(x_c)$$

The different between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{\hat{c}})$$

$$< 4tn 2^{3L}$$

For $t=1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_{c} quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

How to get close to analytic center?

Start at x_0 .

Choose
$$\hat{c} := -\nabla \phi(x)$$
.

$$x_0 = x^*(1)$$
 is point on central path for \hat{c} and $t = 1$.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

Clearly,

$$t \cdot \hat{c}^T x_{\hat{c}} + \phi(x_{\hat{c}}) \leq t \cdot \hat{c}^T x_c + \phi(x_c)$$

The different between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4!n2^{3/4}$$

For $t=1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_{c} quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

How to get close to analytic center?

Start at x_0 .

Choose
$$\hat{c} := -\nabla \phi(x)$$
.

$$x_0 = x^*(1)$$
 is point on central path for \hat{c} and $t = 1$.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

Clearly,

$$t \cdot \hat{c}^T x_{\hat{c}} + \phi(x_{\hat{c}}) \leq t \cdot \hat{c}^T x_c + \phi(x_c)$$

The different between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4tn2^{3L}$$

For $t=1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_{c} quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

How to get close to analytic center?

Start at x_0 .

Choose
$$\hat{c} := -\nabla \phi(x)$$
.

$$x_0 = x^*(1)$$
 is point on central path for \hat{c} and $t = 1$.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

Clearly,

$$t \cdot \hat{c}^T x_{\hat{c}} + \phi(x_{\hat{c}}) \le t \cdot \hat{c}^T x_c + \phi(x_c)$$

The different between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4tn2^{3L}$$

For $t=1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to $x_{\mathcal{C}}$ quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

How to get close to analytic center?

Start at x_0 .

Choose
$$\hat{c} := -\nabla \phi(x)$$
.

$$x_0 = x^*(1)$$
 is point on central path for \hat{c} and $t = 1$.

You can travel the central path in both directions. Go towards 0 until $t\approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

Clearly,

$$t \cdot \hat{c}^T x_{\hat{c}} + \phi(x_{\hat{c}}) \le t \cdot \hat{c}^T x_c + \phi(x_c)$$

The different between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4tn2^{3L}$$

For $t=1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to $x_{\mathcal{C}}$ quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

How to get close to analytic center?

Start at x_0 .

Choose
$$\hat{c} := -\nabla \phi(x)$$
.

$$x_0 = x^*(1)$$
 is point on central path for \hat{c} and $t = 1$.

You can travel the central path in both directions. Go towards 0 until $t\approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

Clearly,

$$t \cdot \hat{c}^T x_{\hat{c}} + \phi(x_{\hat{c}}) \le t \cdot \hat{c}^T x_c + \phi(x_c)$$

The different between $f_t(x_c)$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$< 4tn2^{3L}$$

For $t = 1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to $x_{\hat{c}}$ quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

How to get close to analytic center?

Start at x_0 .

path).

Choose $\hat{c} := -\nabla \phi(x)$.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

Part III

Approximation Algorithms

What can we do?

Heuristics.

Exploit special structure of instances occurring in practise

Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum

- ▶ Heuristics
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

There are many practically important optimization problems that are NP-hard.

- ► Heuristics.
- ► Exploit special structure of instances occurring in practise.
- ► Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

11 Introduction to Approximation

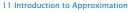
- ▶ We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics
- ► It provides a metric to compare the difficulty of variou optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not

Sometimes the results are very pessimistic due to the fac that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.



- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

262/571

261

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ▶ It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

11 Introduction to Approximation

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ▶ It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fac that an algorithm has to provide a close-to-optimum solution on every instance.

11 Introduction to Approximation

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ▶ It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ▶ It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

262/571

261

Definition 58

An optimization problem P = (1, sol, m, goal) is in **NPO** if

- $x \in I$ can be decided in polynomial time
- $\gamma \in \text{sol}(I)$ can be verified in polynomial time
- m can be computed in polynomial time
- ▶ $goal \in \{min, max\}$

In other words: the decision problem is there a solution y with m(x, y) at most/at least z is in NP.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ► It provides a metric to compare the difficulty of various optimization problems.
- ► Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

► Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

- x is problem instance
- $\triangleright v$ is candidate solution
- $m^*(x)$ cost/profit of an optimal solution

Definition 59 (Performance Ratio)

$$R(x,y) := \max \left\{ \frac{m(x,y)}{m^*(x)}, \frac{m^*(x)}{m(x,y)} \right\}$$

Definition 58

An optimization problem P = (1, sol, m, goal) is in **NPO** if

- $x \in \mathcal{I}$ can be decided in polynomial time
- $y \in sol(I)$ can be verified in polynomial time
- ► *m* can be computed in polynomial time
- ▶ $goal \in \{min, max\}$

In other words: the decision problem is there a solution y with m(x,y) at most/at least z is in NP.

Definition 60 (γ -approximation)

An algorithm A is an γ -approximation algorithm iff

$$\forall x \in \mathcal{I} : R(x, A(x)) \leq r$$
,

and A runs in polynomial time.

- ► *x* is problem instance
- \triangleright γ is candidate solution
- $m^*(x)$ cost/profit of an optimal solution

Definition 59 (Performance Ratio)

$$R(x,y) := \max \left\{ \frac{m(x,y)}{m^*(x)}, \frac{m^*(x)}{m(x,y)} \right\}$$

Definition 61 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x\in\mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

Definition 60 (r-approximation)

An algorithm A is an γ -approximation algorithm iff

$$\forall x \in \mathcal{I} : R(x, A(x)) \leq r$$
,

and A runs in polynomial time.

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Definition 61 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x\in\mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

Definition 62 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as input $x\in\mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x| and $1/\epsilon$.

approximation with arbitrary good factor... fast!

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Definition 62 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as input $x\in\mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x| and $1/\epsilon$.

approximation with arbitrary good factor... fast!

Definition 63 (APX - approximable)

A problem P from NPO is in APX if there exist a constant $r \ge 1$ and an r-approximation algorithm for P.

constant factor approximation...

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s. t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

Definition 63 (APX - approximable)

A problem P from NPO is in APX if there exist a constant $r \geq 1$ and an r-approximation algorithm for P.

constant factor approximation...

Problems with polylogarithmic approximation guarantees

- Set Cover
- Minimum Multicut
- Sparsest Cut
- ► Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^c(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

Problems that are in APX

MAXCUT. Given a graph G=(V,E); partition V into two disjoint pieces A and B s. t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

There are really difficult problems!

Theorem 64

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial

Problems with polylogarithmic approximation guarantees

- ► Set Cover
- ► Minimum Multicut
- ► Sparsest Cut
- ► Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^c(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

There are really difficult problems!

Theorem 64

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial

Problems with polylogarithmic approximation guarantees

- ► Set Cover
- ► Minimum Multicut
- ► Sparsest Cut
- ► Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^c(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

There are really difficult problems!

Theorem 64

For any constant $\epsilon>0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P=NP.

11 Introduction to Approximation

Note that an n-approximation is trivial.

Problems with polylogarithmic approximation guarantees

- ► Set Cover
- ► Minimum Multicut
- ► Sparsest Cut
- ► Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^c(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

There are weird problems!

Asymmetric k-Center admits an $\mathcal{O}(\log^* n)$ -approximation.

There is no $o(\log^* n)$ -approximation to Asymmetric k-Center unless $NP \subseteq DTIME(n^{\log\log\log n})$.

There are really difficult problems!

Theorem 64

For any constant $\epsilon>0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P=NP.

Note that an n-approximation is trivial.

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits a 4-approximation.

One only says that a problem is APX-hard.

There are weird problems!

Asymmetric k-Center admits an $\mathcal{O}(\log^* n)$ -approximation.

There is no $o(\log^* n)$ -approximation to Asymmetric k-Center unless $NP \subseteq DTIME(n^{\log\log\log n})$.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

12 Integer Programs

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Definition 65

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 66

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

12 Integer Programs

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Definition 65

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 66

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

12 Integer Programs

Note that solving Integer Programs in general is NP-complete!

Definition 65

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 66

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Definition 65

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 66

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

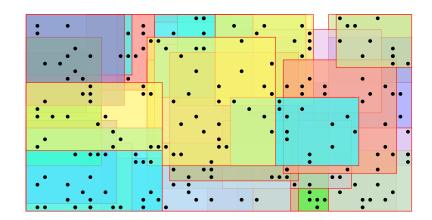
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.

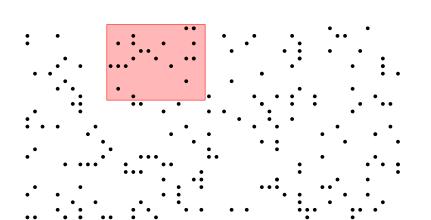
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



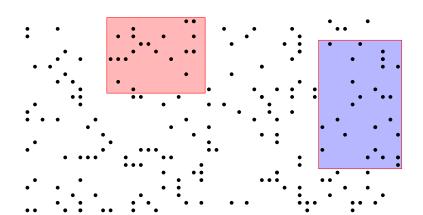
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i=1}^{n} w_i$$
 is minimized.



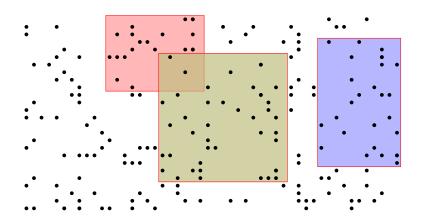
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



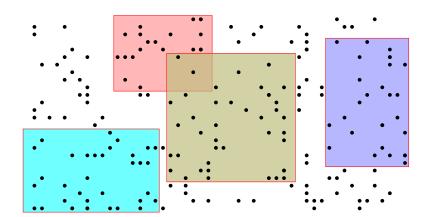
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



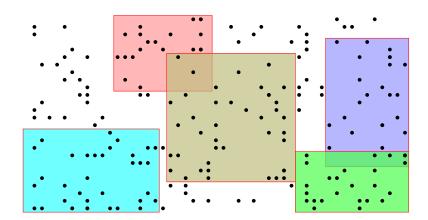
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the *i*-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \dots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i=1}^{n} w_i$$
 is minimized.



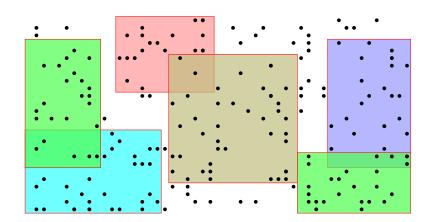
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i=1}^{n} w_i$$
 is minimized.



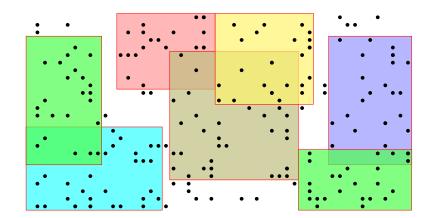
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



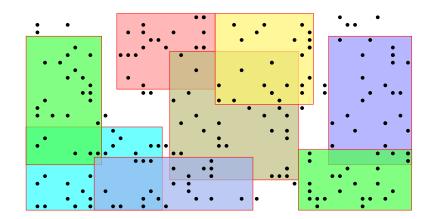
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



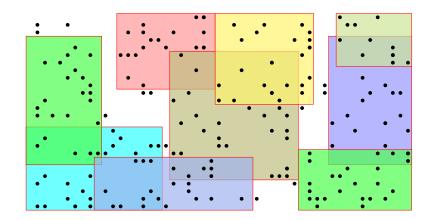
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



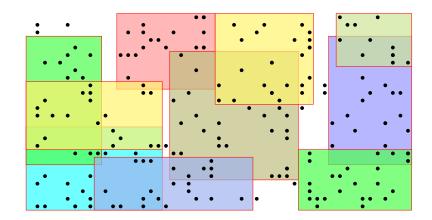
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



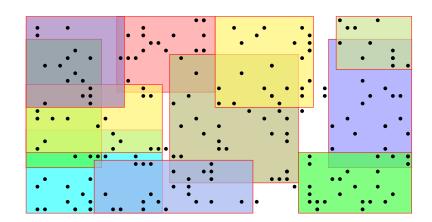
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i\in I} w_i$$
 is minimized.



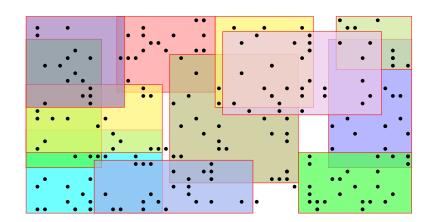
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



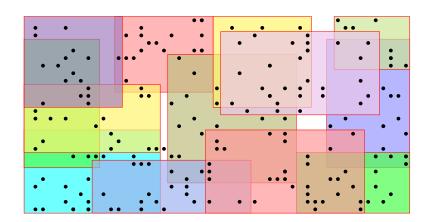
Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.



Set Cover

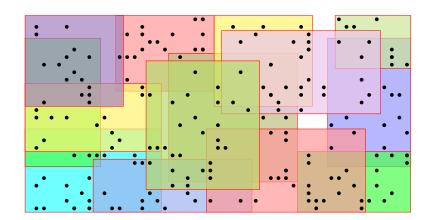
Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.

Set Cover



Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

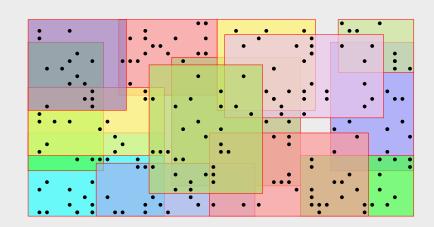
and

$$\sum_{i\in I} w_i$$
 is minimized.

IP-Formulation of Set Cover

$$\begin{array}{lllll} \min & \sum_{i} w_{i} x_{i} \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_{i}} x_{i} & \geq & 1 \\ & \forall i \in \{1, \dots, k\} & x_{i} & \geq & 0 \\ & \forall i \in \{1, \dots, k\} & x_{i} & \text{integral} \end{array}$$

Set Cover



Vertex Cover

IP-Formulation of Set Cover

Given a graph G=(V,E) and a weight w_v for every node. Find a vertex subset $S\subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

 $\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_i w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i & \geq & 1 \\ & \forall i \in \{1,\dots,k\} & x_i & \geq & 0 \\ & \forall i \in \{1,\dots,k\} & x_i & \text{integral} \end{array}$

IP-Formulation of Vertex Cover

min

min
$$\sum_{v \in V} w_v x_v$$
s.t. $\forall e = (i, j) \in E$
$$x_i + x_j \ge 1$$

$$\forall v \in V$$

$$x_v \in \{0, 1\}$$

Given a graph G = (V, E) and a weight w_v for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is

Vertex Cover

Harald Räcke

283/571

incident to at least one vertex in S.

Maximum Weighted Matching

Given a graph G=(V,E), and a weight w_e for every edge $e\in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

IP-Formulation of Vertex Cover

min
$$\sum_{v \in V} w_v x_v$$
s.t. $\forall e = (i, j) \in E$ $x_i + x_j \ge 1$ $x_v \in \{0, 1\}$

Maximum Weighted Matching

Given a graph G=(V,E), and a weight w_e for every edge $e\in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

$$\begin{array}{cccc} \max & \sum_{e \in E} w_e x_e \\ \text{s.t.} & \forall v \in V & \sum_{e:v \in e} x_e & \leq & 1 \\ & \forall e \in E & x_e & \in & \{0,1\} \end{array}$$

IP-Formulation of Vertex Cover

Maximum Independent Set

Given a graph G=(V,E), and a weight w_v for every node $v\in V$. Find a subset $S\subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

Maximum Weighted Matching

Given a graph G=(V,E), and a weight w_e for every edge $e\in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

Maximum Independent Set

Given a graph G=(V,E), and a weight w_v for every node $v\in V$. Find a subset $S\subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

$$\max_{\mathbf{s.t.}} \quad \sum_{v \in V} w_v x_v \\
\mathbf{s.t.} \quad \forall e = (i, j) \in E \quad x_i + x_j \leq 1 \\
\forall v \in V \quad x_i \in \{0, 1\}$$

Maximum Weighted Matching

Given a graph G=(V,E), and a weight w_e for every edge $e\in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

Knapsack

Given a set of items $\{1, \dots, n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1, \dots, n\}$ of items of total weight at most K such that the profit is maximized.

Maximum Independent Set

Given a graph G = (V, E), and a weight w_v for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in *S* are adjacent.

max
$$\sum_{v \in V} w_v x_v$$
s.t. $\forall e = (i, j) \in E$
$$x_i + x_j \leq 1$$

$$\forall v \in V$$

$$x_v \in \{0, 1\}$$

Knapsack

Given a set of items $\{1, \dots, n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1, \dots, n\}$ of items of total weight at most K such that the profit is maximized.

Maximum Independent Set

Given a graph G = (V, E), and a weight w_v for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0,1]$ instead of $x_i \in \{0,1\}$

Knapsack

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I\subseteq\{1,\ldots,n\}$ of items of total weight at most K such that the profit is maximized.

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0,1]$ instead of $x_i \in \{0,1\}$.

Knapsack

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1,\ldots,n\}$ of items of total weight at most K such that the profit is maximized.

```
\begin{array}{ccccc} \max & & \sum_{i=1}^n p_i x_i \\ \text{s.t.} & & \sum_{i=1}^n w_i x_i & \leq & K \\ & \forall i \in \{1, \dots, n\} & & x_i & \in & \{0, 1\} \end{array}
```

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

Relaxations

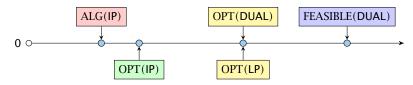
Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

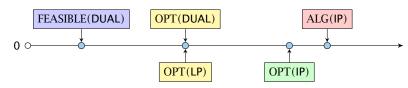
We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

Relations

Maximization Problems:



Minimization Problems:



By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation

$$\begin{array}{llll} \min & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i \geq 1 \\ & \forall i \in \{1,\dots,k\} & x_i \in [0,1] \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f=\max_u\{f_u\}$ be the maximum frequency

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i & \geq & 1 \\ & \forall i \in \{1, \dots, k\} & x_i & \in & [0, 1] \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f=\max_u\{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{|c|c|c|c|}\hline \min & & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i & \geq & 1 \\ & \forall i \in \{1,\dots,k\} & x_i & \in & [0,1] \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_{u} \{f_u\}$ be the maximum frequency.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 68 The rounding algorithm gives an f-approximation.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most f < f elements
- ▶ Therefore one of the sets that contain u must have $x_i > 1/f$
- This set will be selected. Hence wis sovered

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/t$
- This set will be selected. Hence 11 is covered

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u \in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- This set will be selected. Hence wis severed

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ► This set will be selected. Hence, *u* is covered.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

The cost of the rounded solution is at most $f \cdot OPT$.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.

▶ This set will be selected. Hence, *u* is covered.

▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.

The cost of the rounded solution is at most $f \cdot OPT$.

$$\sum_{i \in I} w_i$$

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

The cost of the rounded solution is at most $f \cdot OPT$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

The cost of the rounded solution is at most $f \cdot \mathsf{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \text{cost}(x)$$

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- . M/- lon-outh-st \(\sigma\)
- ▶ We know that $\sum_{i:u \in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ► This set will be selected. Hence, *u* is covered.

The cost of the rounded solution is at most $f \cdot \mathsf{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

$$= f \cdot \cot(x)$$

$$\le f \cdot \text{OPT}.$$

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u \in S_i} x_i \ge 1$.
- ► The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- This set will be selected. Hence, u is covered.

Technique 1: Round the LP solution.

Relaxation for Set Cover

nal:
$$\sum_{i\in I} w_i x_i$$

$$\max \sum_{u \in U} y_u$$
s.t. $\forall i \sum_{u:u \in S_i} y_u \leq w_i$

$$y_u \geq 0$$

The cost of the rounded solution is at most $f \cdot OPT$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

$$= f \cdot \text{cost}(x)$$

$$\le f \cdot \text{OPT} .$$

Technique 1: Round the LP solution.

Relaxation for Set Cover

Primal:

$$\begin{array}{ll}
\min & \sum_{i \in I} w_i x_i \\
\text{s.t. } \forall u & \sum_{i:u \in S_i} x_i \ge 1 \\
& x_i \ge 0
\end{array}$$

The cost of the rounded solution is at most $f \cdot OPT$. $\sum w_i \le \sum^k w_i (f \cdot x_i)$ $= f \cdot \cot(x)$ $\leq f \cdot \text{OPT}$.

Technique 1: Round the LP solution.

Relaxation for Set Cover

Primal:

min $\sum_{i \in I} w_i x_i$ s.t. $\forall u \quad \sum_{i:u \in S_i} x_i \ge 1$ Dual:

max $\sum_{u \in U} y_u$ s.t. $\forall i \sum_{u:u \in S_i} y_u \leq w_i$ $y_u \geq 0$ The cost of the rounded solution is at most $f \cdot \mathsf{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \cot(x)$$
$$\le f \cdot \text{OPT} .$$

EADS II

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i} y_u = w_i$$

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

 $\min \sum_{i \in I} w_i x_i$ $\text{s.t. } \forall u \quad \sum_{i:u \in S_i} x_i \ge 1$ $\qquad x_i \ge 0$

Dual:

13.2 Rounding the Dual

 $\max \sum_{u \in U} y_u$ s.t. $\forall i \sum_{u:u \in S_i} y_u \leq w_i$ $y_u \geq 0$

Lemma 69

The resulting index set is an f-approximation.

71001:

Suppose there is a ω that is not covered

No. of

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let *I* denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- ▶ Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u \in S_i} v_u < w_i$ for all sets S_i that contain u
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i\in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

13.2 Rounding the Dual

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i\in I} w_i$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

297/571

- \blacktriangleright Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

297/571

- ► Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ightharpoonup But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

297/571

- ► Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ightharpoonup But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

297/571

- ► Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- ► Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \operatorname{cost}(x^*)$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- ► Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

297/571

- ► Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ightharpoonup But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \operatorname{cost}(x^*)$$

$$\leq f \cdot \operatorname{OPT}$$

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{4}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- \blacktriangleright Hence, the second algorithm will also choose S_i .

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot \text{OPT}$$

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ► Hence, the second algorithm will also choose S:

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- \blacktriangleright Hence, the second algorithm will also choose S_i .

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

$$I \subset I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

13.2 Rounding the Dual

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

Of course, we also need that I is a cover.

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ► This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \leq \operatorname{cost}(x^{*}) \leq \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is tight.

Of course, we also need that I is a cover.

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- \blacktriangleright Hence, the second algorithm will also choose S_i .

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \cot(x^{*}) \le OPT$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course we also need that I is a cover

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$I\subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ► This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \cot(x^{*}) \le OPT$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ► This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

Algorithm 1 PrimalDual

- 1: *y* ← 0
- 2: *I* ← Ø
- 3: **while** exists $u \notin \bigcup_{i \in I} S_i$ **do**
- 4: increase dual variable y_u until constraint for some new set S_ℓ becomes tight
- 5: $I \leftarrow I \cup \{\ell\}$

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_u \le \cot(x^*) \le \mathsf{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

Algorithm 1 Greedy

- 1: *I* ← Ø
- 2: $\hat{S}_i \leftarrow S_i$ for all j
- 3: **while** *I* not a set cover **do**
- 4: $\ell \leftarrow \arg\min_{j:\hat{S}_i \neq 0} \frac{w_j}{|\hat{S}_i|}$
- 5: $I \leftarrow I \cup \{\ell\}$
 - $\hat{S}_j \leftarrow \hat{S}_j S_\ell$ for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

- 1: *y* ← 0
- 2: *I* ← Ø
- 3: **while** exists $u \notin \bigcup_{i \in I} S_i$ **do**
- 4: increase dual variable y_u until constraint for some new set S_ℓ becomes tight
- 5: $I \leftarrow I \cup \{\ell\}$

301/571

300

Lemma 70

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k , and $S \subseteq \{1, \dots, k\}$ then

$$\min_{i} \frac{a_i}{h_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} h_i} \le \max_{i} \frac{a_i}{h_i}$$

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

- 2: $\hat{S}_j \leftarrow S_j$ for all j
- 3: while I not a set cover do
- 4: $\ell \leftarrow \arg\min_{j: \hat{S}_j \neq 0} \frac{w_j}{|\hat{S}_j|}$ 5: $I \leftarrow I \cup \{\ell\}$ 6: $\hat{S}_j \leftarrow \hat{S}_j S_\ell$ for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the Pth iteration

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT

Let \hat{S}_j be a subset that minimizes this ratio. Hence

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers $a_1,...,a_k$ and $b_1,...,b_k$, and $S \subseteq \{1,...,k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{f}}$$

since an optimal algorithm can cover the remaining n_ℓ element with cost Ω^{DT}

Let \hat{S}_j be a subset that minimizes this ratio. Hence $w_i/|\hat{S}_i| \leq \frac{OPT}{2}$.

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{i}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{i \in \text{OPT}} |\hat{S}_{i}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{i}|} \leq \frac{\text{OPT}}{n_{f}}$$

since an optimal algorithm can cover the remaining n_ℓ element with cost $\Omega^{\rm PT}$

Let \hat{S}_j be a subset that minimizes this ratio. Hence $w_i/|\hat{S}_i| \leq \frac{OPT}{2}$.

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{k}}$$

since an optimal algorithm can cover the remaining n_ℓ element with cost OPT

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_i/|\hat{S}_i| < \frac{\mathrm{OPT}}{2}$.

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{i \in \text{OPT}} |\hat{S}_{i}|} = \frac{\text{OPT}}{\sum_{i \in \text{OPT}} |\hat{S}_{i}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ element with sort OPT

Let \hat{S}_j be a subset that minimizes this ratio. Hence $w_i/|\hat{S}_i| \leq \frac{OPT}{2}$.

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT .

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_i/|\hat{S}_i| \leq \frac{OPT}{2}$.

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the **ℓ**-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{i}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{i \in \text{OPT}} |\hat{S}_{i}|} = \frac{\text{OPT}}{\sum_{i \in \text{OPT}} |\hat{S}_{i}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost $\mathrm{OPT}.$

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_s}$.

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \leq \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

Technique 4: The Greedy Algorithm

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT .

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\mathrm{OPT}}{n_\ell}$.

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

Te

Technique 4: The Greedy Algorithm

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost $\ensuremath{\mathsf{OPT}}.$

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{ ext{OPT}}{n_\ell}$.

 $\sum_{j\in I} w_j$

Technique 4: The Greedy Algorithm

$$w_j \leq rac{|\hat{S}_j| ext{OPT}}{n_\ell} = rac{n_\ell - n_{\ell+1}}{n_\ell} \cdot ext{OPT}$$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_i|$.

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

Technique 4: The Greedy Algorithm

$$w_j \leq rac{|\hat{S}_j| ext{OPT}}{n_\ell} = rac{n_\ell - n_{\ell+1}}{n_\ell} \cdot ext{OPT}$$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_i|$.

13.4 Greedy

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1} = n_\ell - |\hat{S}_j|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^{s} \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^{s} \left(\frac{1}{n_{\ell}} + \frac{1}{n_{\ell} - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_i|$. $w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$

EADS II

13.4 Greedy

 $= OPT \sum_{i=1}^{k} \frac{1}{i}$

305/571

13.4 Greedy

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$

 $= H_n \cdot \text{OPT} \leq \text{OPT}(\ln n + 1)$.

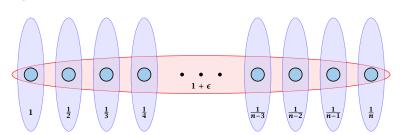
Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_i|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

Technique 4: The Greedy Algorithm

A tight example:



Technique 4: The Greedy Algorithm

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$

$$= H_n \cdot \text{OPT} \le \text{OPT}(\ln n + 1) .$$

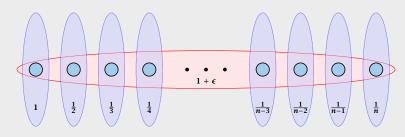
One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm

Technique 4: The Greedy Algorithm

A tight example:



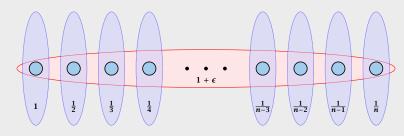
One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP Otherwise, repeat the whole algorithm

Technique 4: The Greedy Algorithm

A tight example:



One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all i).

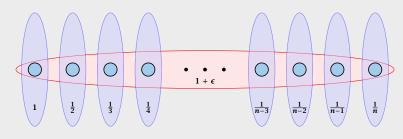
Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 4: The Greedy Algorithm

A tight example:

307/571



306

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

EADS II

Pr[u not covered in one round]

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_i uniformly at random with probability $1 - x_i$ (for all j). **Version A:** Repeat rounds until you nearly have a cover. Cover

remaining elements by some simple heuristic. **Version B:** Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

EADS II

13.5 Randomized Rounding

308/571

13.5 Randomized Rounding

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j)$$

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_i} (1 - x_j) \le \prod_{j:u \in S_i} e^{-x_j}$$

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

$$Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j}$$

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

$$Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}.$$

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

 $\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{a\ell}$.

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

$$\begin{aligned} \Pr[u \text{ not covered in one round}] \\ &= \prod_{j: u \in S_j} (1 - x_j) \leq \prod_{j: u \in S_j} e^{-x_j} \\ &= e^{-\sum_{j: u \in S_j} x_j} \leq e^{-1} \ . \end{aligned}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

Probability that $u \in U$ is not covered (in one round):

$$\begin{aligned} \Pr[u \text{ not covered in one round}] \\ &= \prod_{j: u \in S_j} (1 - x_j) \leq \prod_{j: u \in S_j} e^{-x_j} \\ &= e^{-\sum_{j: u \in S_j} x_j} \leq e^{-1} \ . \end{aligned}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} \le e^{-1}.$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

- = $\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$
- $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}]$

Probability that $u \in U$ is not covered (in one round):

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

- = $\Pr[u_1 \text{ not covered} \vee u_2 \text{ not covered} \vee ... \vee u_n \text{ not covered}]$
- $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$.

Probability that $u \in U$ is not covered (in one round):

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{a\ell}$$
.

- = $\Pr[u_1 \text{ not covered} \vee u_2 \text{ not covered} \vee ... \vee u_n \text{ not covered}]$
- $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$.

Lemma 71

With high probability $O(\log n)$ rounds suffice.

Probability that $u \in U$ is not covered (in one round):

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

 $= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{a\ell}$$
.

- = $Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$
- $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$.

Lemma 71

With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1-n^{-\alpha}$.

Probability that $u \in U$ is not covered (in one round):

Pr[u not covered in one round]

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j} \le e^{-1}.$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

Proof: We have

$$\Pr[\#\text{rounds} \ge (\alpha+1)\ln n] \le ne^{-(\alpha+1)\ln n} = n^{-\alpha}.$$

$$\begin{split} \Pr[\exists u \in U \text{ not covered after } \ell \text{ round}] \\ &= \Pr[u_1 \text{ not covered} \vee u_2 \text{ not covered} \vee \ldots \vee u_n \text{ not covered}] \\ &\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} \enspace. \end{split}$$

Lemma 71

With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1 - n^{-\alpha}$.

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

Proof: We have

$$\Pr[\#\mathsf{rounds} \ge (\alpha+1) \ln n] \le n e^{-(\alpha+1) \ln n} = n^{-\alpha} \ .$$

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

E[cost]

Proof: We have

 $\Pr[\#\text{rounds} \ge (\alpha + 1) \ln n] \le ne^{-(\alpha + 1) \ln n} = n^{-\alpha}$.

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha}$$

Proof: We have

$$\Pr[\#\text{rounds} \ge (\alpha+1) \ln n] \le n e^{-(\alpha+1) \ln n} = n^{-\alpha} \ .$$

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Proof: We have

$$\Pr[\#\mathsf{rounds} \ge (\alpha+1) \ln n] \le n e^{-(\alpha+1) \ln n} = n^{-\alpha} \ .$$

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[cost] =$$

Expected Cost

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}] \\ + \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

Expected Cost

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}] + \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means

E[cost | success]

Expected Cost

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success]$$

$$+ \Pr[no success] \cdot E[\cos t \mid no success]$$

This means

$$E[\cos t \mid success]$$

$$= \frac{1}{\Pr[succ.]} (E[\cos t] - \Pr[\text{no success}] \cdot E[\cos t \mid \text{no success}])$$

Expected Cost

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = O(\ln n) \cdot OPT$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}] + \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means

$$E[\cos t \mid \text{success}]$$

$$= \frac{1}{\Pr[\text{succ.}]} \left(E[\cos t] - \Pr[\text{no success}] \cdot E[\cos t \mid \text{no success}] \right)$$

$$\leq \frac{1}{\Pr[\text{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \cos t(\text{LP})$$

Expected Cost

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}]$$
$$+ \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means

$$E[\cos t \mid \text{success}]$$

$$= \frac{1}{\Pr[\text{succ.}]} \left(E[\cos t] - \Pr[\text{no success}] \cdot E[\cos t \mid \text{no success}] \right)$$

$$\leq \frac{1}{\Pr[\text{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \text{cost}(\text{LP})$$

$$\leq 2(\alpha + 1) \ln n \cdot \text{OPT}$$

Expected Cost

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}]$$
$$+ \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means *E*[cost | success]

$$| \text{cost} | \text{success} |$$

$$= \frac{1}{\Pr[\text{succ.}]} \left(E[\text{cost}] - \Pr[\text{no success}] \cdot E[\text{cost} | \text{no success}] \right)$$

$$\leq \frac{1}{\Pr[\text{succ.}]} E[\text{cost}] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \text{cost(LP)}$$

$$\leq 2(\alpha + 1) \ln n \cdot \text{OPT}$$

13.5 Randomized Rounding

Expected Cost

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that

contains u. $E[\cos t] \leq (\alpha+1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success]$$

$$+ \Pr[no success] \cdot E[\cos t \mid no success]$$

This means

$$E[\cos t \mid success]$$

$$= \frac{1}{\Pr[succ.]} \left(E[\cos t] - \Pr[no \ success] \cdot E[\cos t \mid no \ success] \right)$$

$$\leq \frac{1}{\Pr[succ.]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \cos(LP)$$

$$\leq 2(\alpha + 1) \ln n \cdot OPT$$
for $n \geq 2$ and $\alpha \geq 1$.

EADS II 13.5 Randomized Rounding 313/571 Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 72 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2} \log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2\text{poly}(\log n)$

Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success]$$

$$+ \Pr[no success] \cdot E[\cos t \mid no success]$$

This means

$$E[\cos t \mid success]$$

$$= \frac{1}{\Pr[succ.]} \Big(E[\cos t] - \Pr[no \ success] \cdot E[\cos t \mid no \ success] \Big)$$

$$\leq \frac{1}{\Pr[succ.]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \cos t(LP)$$

$$\leq 2(\alpha + 1) \ln n \cdot OPT$$
for $n > 2$ and $\alpha > 1$.

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n = 2^k 1$
- ► Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$S_{\vec{\mathbf{v}}} := \{ \vec{\mathbf{x}} \mid \vec{\mathbf{x}}^T \vec{\mathbf{y}} = 1 \}$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $\chi_i = \frac{1}{2k-1} = \frac{2}{n+1}$ is fractional solution.

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 72 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text{poly}(\log n)}$).

Integrality Gap

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

$$n = 2^k - 1$$

- Elements are all vectors \vec{x} over GF[2] of length k (excluding
- zero vector). • Every vector \vec{v} defines a set as follows

$$S_{\vec{\mathbf{v}}} := \{ \vec{\mathbf{x}} \mid \vec{\mathbf{x}}^T \vec{\mathbf{y}} = 1 \}$$

- \blacktriangleright each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_i = \frac{1}{2k-1} = \frac{2}{n+1}$ is fractional solution.

- Every collection of p < k sets does not cover all elements.
- Hence, we get a gap of $\Omega(\log n)$.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

14.1 Local Search

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

14.1 Local Search

Let for a given schedule C_i denote the finishing time of machine j, and let C_{max} be the makespan.

$$C_{\max}^* \ge \max p_j$$

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{i,i}$ is the decision variable that describes whether job i is assigned to machine i.

Let for a given schedule C_j denote the finishing time of machine j, and let C_{\max} be the makespan.

Let C_{\max}^* denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max p_j$$

as the langest job needs to be scheduled somewhere

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1,\ldots,n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

min
$$L$$
 s.t. \forall machines i $\sum_{j} p_{j} \cdot x_{j,i} \leq L$ \forall jobs j $\sum_{i} x_{j,i} \geq 1$ $\forall i,j$ $x_{j,i} \in \{0,1\}$

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

Let for a given schedule C_i denote the finishing time of machine j, and let C_{max} be the makespan.

Let C_{max}^* denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max_i p_j$$

as the longest job needs to be scheduled somewhere.

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

min
$$L$$
s.t. \forall machines i $\sum_{j} p_{j} \cdot x_{j,i} \leq L$
 \forall jobs j $\sum_{i} x_{j,i} \geq 1$
 $\forall i,j$ $x_{j,i} \in \{0,1\}$

Here the variable $x_{i,i}$ is the decision variable that describes whether job i is assigned to machine i.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$.

$$C_{\max}^* \ge \frac{1}{m} \sum p$$

Let for a given schedule C_j denote the finishing time of machine j, and let C_{\max} be the makespan.

Let C_{max}^* denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max_i p_j$$

as the longest job needs to be scheduled somewhere.

The average work performed by a machine is $\frac{1}{m} \sum_{i} p_{j}$.

$$C_{\max}^* \ge \frac{1}{m} \sum_{i} p_i$$

Lower Bounds on the Solution

Let for a given schedule C_i denote the finishing time of machine j, and let C_{max} be the makespan.

Let C_{max}^* denote the makespan of an optimal solution.

$$C_{\max}^* \ge \max_i p_j$$

as the longest job needs to be scheduled somewhere.

Therefore,

Local Search

ssively makes certain small s to a solution until it does not

It is conceptionally very different from a Greedy algorithm as a

,

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m}\sum_j p_j$. Therefore, $C^*_{\max} \geq \frac{1}{m}\sum_i p_j$

Sometimes the running time is difficult to prove.

Harald Räcke

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{i} p_{i}$. Therefore, $C_{\max}^* \ge \frac{1}{m} \sum_{i} p_i$

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{i} p_{i}$. Therefore, $C_{\max}^* \ge \frac{1}{m} \sum_{i} p_i$

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

The average work performed by a machine is $\frac{1}{m} \sum_{i} p_{i}$. Therefore, $C_{\max}^* \ge \frac{1}{m} \sum_{i} p_i$

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

DEDEAT

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

RFPFAT

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Let ℓ be the ich that finishes last in the produced schedule

Lat C. ha its start time, and lat C. ha its completion times

Note that every machine is busy before time S_{ℓ} , because

otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

RFPFAT

Inn EADS II 14.1 Local Search

Let ℓ be the job that finishes last in the produced schedule.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

RFPFAT

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_ℓ , because otherwise we could move the job ℓ and hence our schedu would not be locally optimal.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

RFPFAT

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_ℓ , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

RFPFAT

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$

During the first interval $[0, S_{\ell}]$ all processors are busy, and hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence the length of the schedule is at mos-

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_ℓ be its start time, and let C_ℓ be its completion time.

Note that every machine is busy before time S_ℓ , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

The interval $[S_\ell, C_\ell]$ is of length $p_\ell \le C_{\max}^*$

During the first interval $[0, S_{\ell}]$ all processors are busy, and hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hance the length of the schedule is at most

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_ℓ be its start time, and let C_ℓ be its completion time.

Note that every machine is busy before time S_ℓ , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{i \neq \ell} p_j$$
.

Honor the length of the schodule is at most

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_ℓ be its start time, and let C_ℓ be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hance the length of the schedule is at mo

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_ℓ be its start time, and let C_ℓ be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

 $p_{\ell} + \frac{1}{m} \sum_{i \neq \ell} p_{j} = (1 - \frac{1}{m})p_{\ell} + \frac{1}{m} \sum_{i \neq \ell} p_{j} \le (2 - \frac{1}{m})C_{\max}^{*}$

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

Hence, the length of the schedule is at most
$$p_\ell + \frac{1}{m} \sum_{i \neq \ell} p_j = (1 - \frac{1}{m}) p_\ell + \frac{1}{m} \sum_i p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_ℓ , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

 $p_{\ell} + \frac{1}{m} \sum_{i \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_{i} p_j \le (2 - \frac{1}{m}) C_{\text{max}}^*$

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

A Tight Example

$$p_{\ell} \approx S_{\ell} + \frac{S_{\ell}}{m-1}$$

$$\frac{\text{ALG}}{\text{OPT}} = \frac{S_{\ell} + p_{\ell}}{p_{\ell}} \approx \frac{2 + \frac{1}{m-1}}{1 + \frac{1}{m-1}} = 2 - \frac{1}{m}$$

We can split the total processing time into two intervals one from 0 to S_ℓ the other from S_ℓ to C_ℓ .

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0,S_\ell]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\text{max}}^*$$

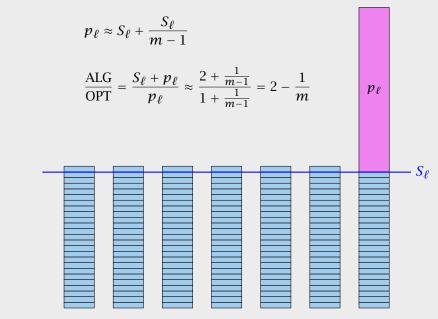
List Schedulin

Order all processes in a list. When a machine runs empty assig the next yet unprocessed job to it.

Alternatively

Consider processes in some order. Assign the i-th process to th least loaded machine.

It is easy to see that the result of these greedy strategies fulfil the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.



List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively

Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

$$p_{\ell} \approx S_{\ell} + \frac{S_{\ell}}{m-1}$$

$$\frac{ALG}{OPT} = \frac{S_{\ell} + p_{\ell}}{p_{\ell}} \approx \frac{2 + \frac{1}{m-1}}{1 + \frac{1}{m-1}} = 2 - \frac{1}{m}$$

$$p_{\ell}$$

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

$$p_{\ell} \approx S_{\ell} + \frac{S_{\ell}}{m-1}$$

$$\frac{ALG}{OPT} = \frac{S_{\ell} + p_{\ell}}{p_{\ell}} \approx \frac{2 + \frac{1}{m-1}}{1 + \frac{1}{m-1}} = 2 - \frac{1}{m}$$

$$p_{\ell}$$

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

$$p_{\ell} \approx S_{\ell} + \frac{S_{\ell}}{m-1}$$

$$\frac{ALG}{OPT} = \frac{S_{\ell} + p_{\ell}}{p_{\ell}} \approx \frac{2 + \frac{1}{m-1}}{1 + \frac{1}{m-1}} = 2 - \frac{1}{m}$$

$$p_{\ell}$$

Lemma 73

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

14.2 Greedy

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- ▶ Wlog. the last job to finish is *n* (otw. deleting this job give another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* .$$

A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- ▶ Wlog. the last job to finish is *n* (otw. deleting this job gives another counter-example with fewer jobs).

A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

EADS II Harald Räcke

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- ▶ Wlog. the last job to finish is *n* (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$
.

A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- \triangleright Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3}C_{\max}^* .$$

- Hence, $p_n > C_{\text{max}}^*/3$. ► This means that all jobs must have a processing time
- $> C_{\rm max}^*/3.$

A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times the approximation quarantee of the list scheduling strategy improves to 4/3.

EADS II

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- \triangleright Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3}C_{\max}^* .$$

- Hence, $p_n > C_{\text{max}}^*/3$. ► This means that all jobs must have a processing time
- $> C_{\rm max}^*/3.$ ▶ But then any machine in the optimum schedule can handle
- at most two jobs.

A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times the approximation quarantee of the list scheduling strategy improves to 4/3.

14.2 Greedy

jobs that form a counter-example. \triangleright Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).

Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of

If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3}C_{\max}^* .$$

- Hence, $p_n > C_{\text{max}}^*/3$.
- ► This means that all jobs must have a processing time
- $> C_{\rm max}^*/3.$
- ▶ But then any machine in the optimum schedule can handle
- at most two jobs.

Lemma 73 If we order the list according to non-increasing processing times

the approximation quarantee of the list scheduling strategy

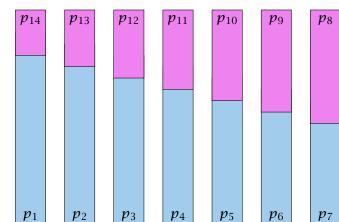
improves to 4/3.

A Greedy Strategy

327/571

- For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy



Proof:

- ▶ Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- \blacktriangleright Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$
.

Hence, $p_n > C_{\text{max}}^*/3$.

- ► This means that all jobs must have a processing time
- $> C_{\text{max}}^*/3.$ ▶ But then any machine in the optimum schedule can handle
- at most two jobs. ► For such instances Longest-Processing-Time-First is optimal.

EADS II

14.2 Greedy

328/571

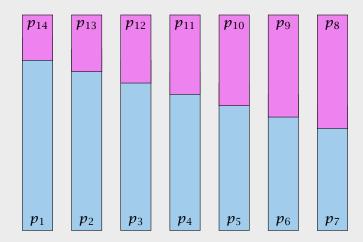
14.2 Greedy

327

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ▶ Repeat the above argument for the remaining machines.

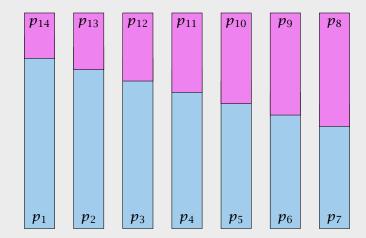
14.2 Greedy

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.



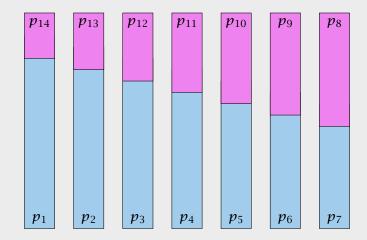
EADS II
Harald Räcke

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan
- Repeat the above argument for the remaining machines.



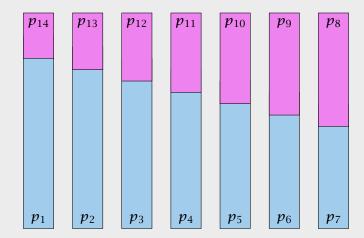
14.2 Greedy

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.



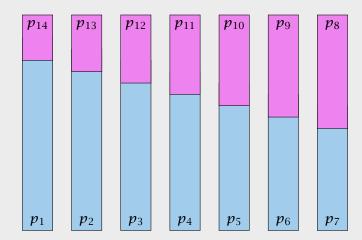
EADS II
Harald Räcke

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ▶ Repeat the above argument for the remaining machines.



14.2 Greedy

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.



14.2 Greedy

 \triangleright 2m+1 jobs



- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)

- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*



- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ► Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*

- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*

- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*

- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

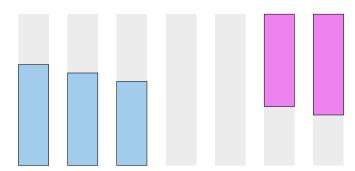
- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*

- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ► Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

330/571

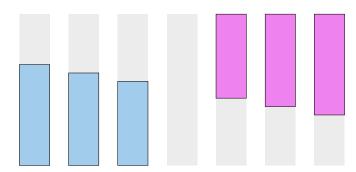
329

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*



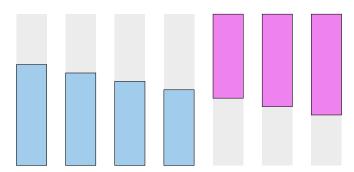
- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*



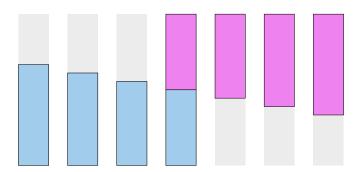
- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ► Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- \triangleright 3 jobs of length m



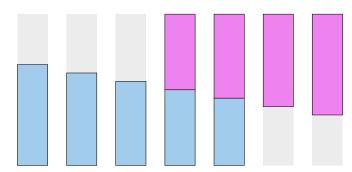
- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*



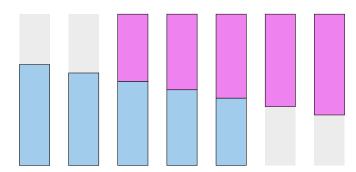
- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ► Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ▶ Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*



- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*

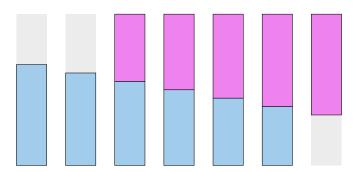


- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

330/571

329

- \triangleright 2m + 1 jobs
- ightharpoonup 2 jobs with length 2m, 2m-1, 2m-2, ..., m+1 (2m-2jobs in total)
- ▶ 3 jobs of length *m*

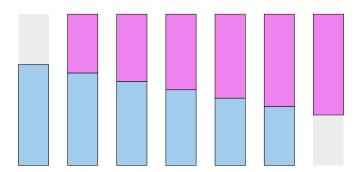


- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- \blacktriangleright Let p_A and p_B be the other job scheduled on A and B, respectively.
- $ightharpoonup p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ▶ Repeat the above argument for the remaining machines.

330/571

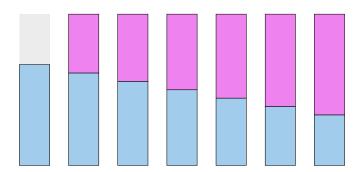
329

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*



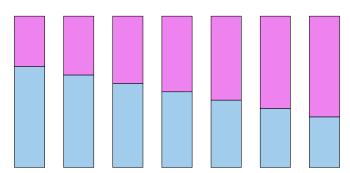
- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*



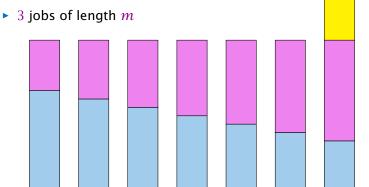
- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ▶ Repeat the above argument for the remaining machines.

- \triangleright 2m + 1 jobs
- ightharpoonup 2 jobs with length 2m, 2m-1, 2m-2, ..., m+1 (2m-2jobs in total)
- ▶ 3 jobs of length *m*



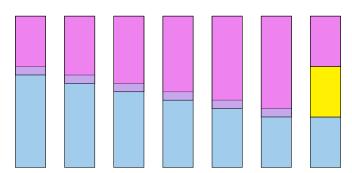
- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- \blacktriangleright Let p_A and p_B be the other job scheduled on A and B, respectively.
- $ightharpoonup p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ▶ Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)



- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ► Repeat the above argument for the remaining machines.

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*



- ▶ We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ▶ Repeat the above argument for the remaining machines.

Given a set of cities $(\{1,\ldots,n\})$ and a symmetric matrix $C=(c_{ij}), c_{ij}\geq 0$ that specifies for every pair $(i,j)\in [n]\times [n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

is minimized.

15 TSP

Theorem 74

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Traveling Salesman

Given a set of cities $(\{1, ..., n\})$ and a symmetric matrix $C = (c_{ij}), c_{ij} \ge 0$ that specifies for every pair $(i, j) \in [n] \times [n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

15 TSP

is minimized.

Theorem 74

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

Traveling Salesman

Given a set of cities $(\{1,\ldots,n\})$ and a symmetric matrix $C=(c_{ij}),\,c_{ij}\geq 0$ that specifies for every pair $(i,j)\in [n]\times [n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

is minimized.

Theorem 74

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This
- ► There exists a Hamiltonian Path iff there exists a tour with
- An $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these

Traveling Salesman

Given a set of cities $(\{1,\ldots,n\})$ and a symmetric matrix $C=(c_{ij})$, $c_{ij}\geq 0$ that specifies for every pair $(i,j)\in [n]\times [n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

is minimized.

Theorem 74

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- ▶ If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- ► There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than n2n
- An $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these

Traveling Salesman

Given a set of cities $(\{1,\ldots,n\})$ and a symmetric matrix $C=(c_{ij}),\,c_{ij}\geq 0$ that specifies for every pair $(i,j)\in [n]\times [n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum^{n-1} c_{\pi(i)\pi(i+1)}$$

15 TSP

is minimized.

Theorem 74

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- ▶ If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- ► There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than $n2^n$.
- An $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these

Traveling Salesman

Given a set of cities $(\{1,\ldots,n\})$ and a symmetric matrix $C=(c_{ij}),\,c_{ij}\geq 0$ that specifies for every pair $(i,j)\in [n]\times [n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

15 TSP

is minimized.

Theorem 74

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for
- TSP. ▶ If $(i, j) \notin E$ then set $c_{i,i}$ to $n2^n$ otw. set $c_{i,i}$ to 1. This
- instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with
- cost n. Otw. any tour has cost strictly larger than $n2^n$. \triangleright An $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these

15 TSP

Traveling Salesman

Given a set of cities $(\{1,\ldots,n\})$ and a symmetric matrix $C = (c_{ij}), c_{ij} \ge 0$ that specifies for every pair $(i, j) \in [n] \times [n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

is minimized.

cases. Hence, cannot exist unless P = NP.

15 TSP

Metric Traveling Salesman

In the metric version we assume for every triple $i, j, k \in \{1, ..., n\}$

$$c_{ij} \le c_{ij} + c_{jk} .$$

Traveling Salesman Theorem 74

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there

exists a simple cycle that contains all nodes in G.

Given an instance to HAMPATH we create an instance for

TSP.

▶ If $(i, j) \notin E$ then set $c_{i,i}$ to $n2^n$ otw. set $c_{i,i}$ to 1. This

instance has polynomial size. ▶ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than $n2^n$.

 \blacktriangleright An $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these

Metric Traveling Salesman

Theorem 74

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

In the metric version we assume for every triple $i,j,k\in\{1,\ldots,n\}$ $c_{ij}\leq c_{ij}+c_{jk}\ .$

 $+ c_{jk}$.

It is convenient to view the input as a complete undirected graph G=(V,E), where c_{ij} for an edge (i,j) defines the distance between nodes i and j.

15 TSP

Hamiltonian Cycle:

Traveling Salesman

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

TSP. • If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This

Given an instance to HAMPATH we create an instance for

- instance has polynomial size.

 ► There exists a Hamiltonian Path iff there exists a tour wit
- ► There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than $n2^n$.

15 TSP

► An $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.

TSP: Lower Bound I

Lemma 75 The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

15 TSP

EADS II

Metric Traveling Salesman

In the metric version we assume for every triple $i, j, k \in \{1, \ldots, n\}$ $c_{ij} \leq c_{ij} + c_{jk}$.

It is convenient to view the input as a complete undirected graph G = (V, E), where c_{ij} for an edge (i, j) defines the distance between nodes i and j.

TSP: Lower Bound I

Lemma 75

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

Proof:

- Take the optimum TSP-tour.

Metric Traveling Salesman

In the metric version we assume for every triple $i, j, k \in \{1, \ldots, n\}$ $c_{ij} \leq c_{ij} + c_{jk}$.

It is convenient to view the input as a complete undirected graph G = (V, E), where $c_{i,i}$ for an edge (i, j) defines the distance between nodes i and j.

15 TSP

TSP: Lower Bound I

Lemma 75

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

Proof:

- ► Take the optimum TSP-tour.
- Delete one edge.
- This rivers are relief to a first at most ONT. (6)

Metric Traveling Salesman

In the metric version we assume for every triple $i,j,k\in\{1,\dots,n\}$ $c_{ij}\leq c_{ij}+c_{jk} \ .$

It is convenient to view the input as a complete undirected graph G=(V,E), where c_{ij} for an edge (i,j) defines the distance between nodes i and j.

15 TSP

TSP: Lower Bound I

Lemma 75

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

Proof:

- ► Take the optimum TSP-tour.
- Delete one edge.
- ▶ This gives a spanning tree of cost at most $OPT_{TSP}(G)$.

Metric Traveling Salesman

In the metric version we assume for every triple $i, j, k \in \{1, ..., n\}$ $c_{ij} \leq c_{ij} + c_{jk}$.

It is convenient to view the input as a complete undirected graph G = (V, E), where $c_{i,i}$ for an edge (i, j) defines the distance between nodes i and j.

- ► Start with a tour on a subset *S* containing a single node.
- ▶ Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ▶ Reneat until all nodes have been processed

TSP: Lower Bound I

Lemma 75

The cost $\mathrm{OPT}_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $\mathrm{OPT}_{MST}(G)$ of a minimum spanning tree in G.

Proof:

- ► Take the optimum TSP-tour.
- ► Delete one edge.
- ► This gives a spanning tree of cost at most $OPT_{TSP}(G)$.

- ► Start with a tour on a subset *S* containing a single node.
- ▶ Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ▶ Reneat until all nodes have been processed

TSP: Lower Bound I

Lemma 75

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

Proof:

- ► Take the optimum TSP-tour.
- ► Delete one edge.
- ▶ This gives a spanning tree of cost at most $OPT_{TSP}(G)$.

15 TSP

- ► Start with a tour on a subset *S* containing a single node.
- ▶ Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

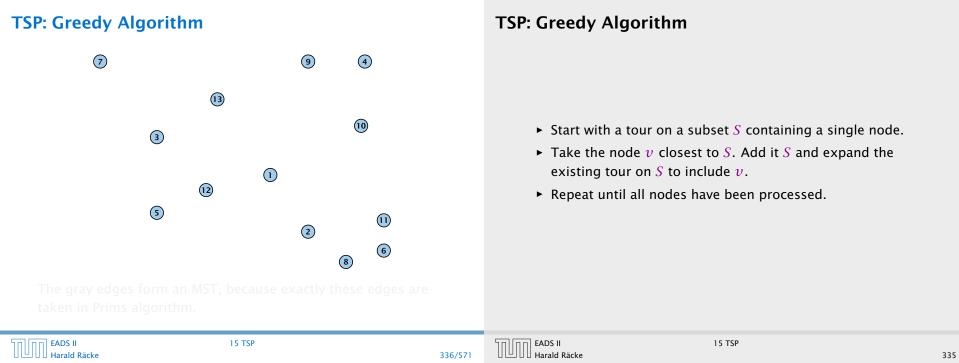
TSP: Lower Bound I

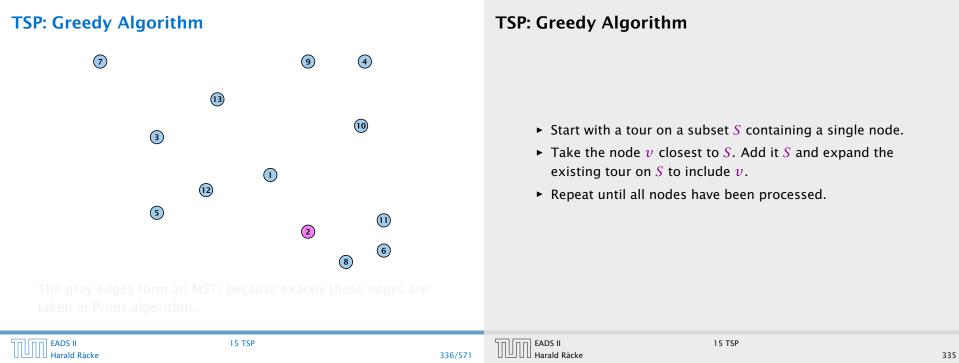
Lemma 75

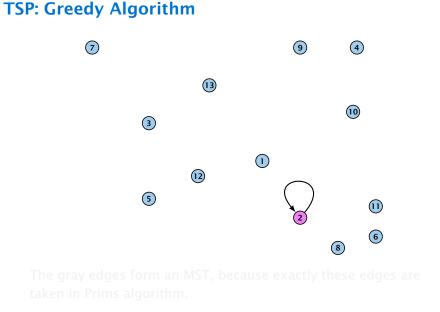
The cost $\mathrm{OPT}_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $\mathrm{OPT}_{MST}(G)$ of a minimum spanning tree in G.

Proof:

- ► Take the optimum TSP-tour.
- ► Delete one edge.
- ▶ This gives a spanning tree of cost at most $OPT_{TSP}(G)$.



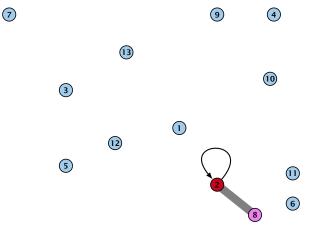




- ▶ Start with a tour on a subset *S* containing a single node.
- \blacktriangleright Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

15 TSP

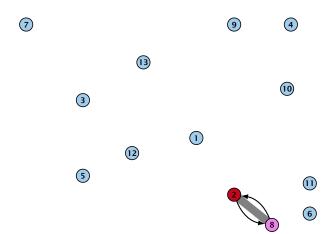
Harald Räcke



The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

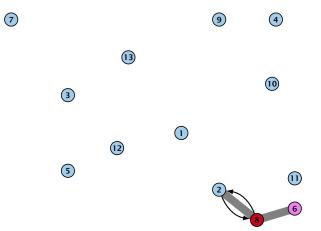
- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.



The gray edges form an MST, because exactly these edges are taken in Prims algorithm

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.



The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

TSP: Greedy Algorithm 7 4 13 10 (3) 1 (12) (5)

TSP: Greedy Algorithm

- \blacktriangleright Start with a tour on a subset S containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

EADS II
Harald Räcke

15 TSP

)

- 9
- 4

10

- 13
- 3

1

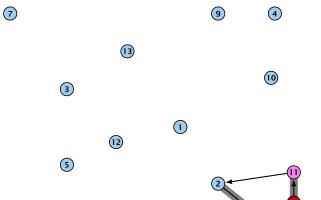
- (5)

(12)

The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

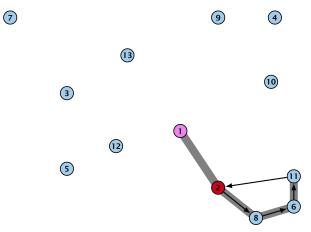
- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.



The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

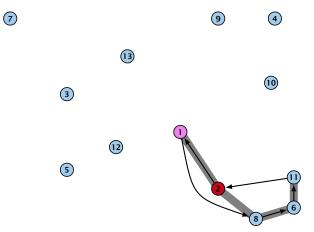
- ► Start with a tour on a subset *S* containing a single node.
- ▶ Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.



The gray edges form an MST, because exactly these edges are

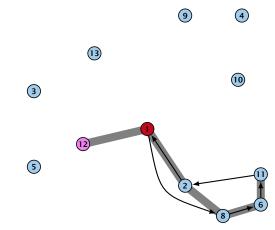
TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

336/571

335

7

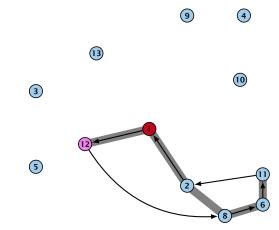


The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

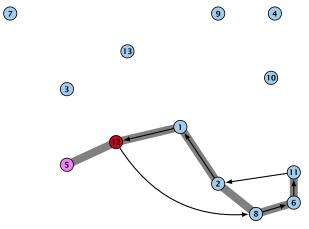
7



The gray edges form an MST, because exactly these edges are taken in Prims algorithm

TSP: Greedy Algorithm

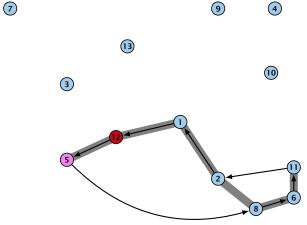
- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.



The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.



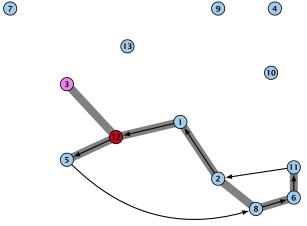
The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.

15 TSP

► Repeat until all nodes have been processed.

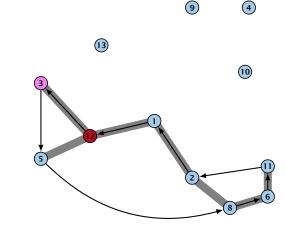


The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

7

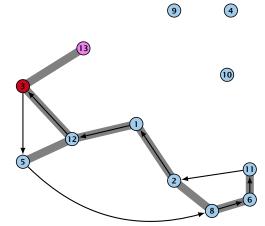


The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

7

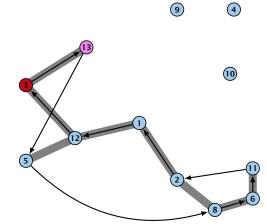


The gray edges form an MST, because exactly these edges are taken in Prims algorithm

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

7

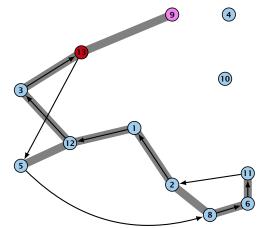


The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

7

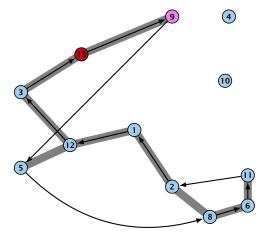


The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

7

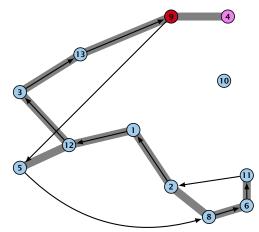


The gray edges form an MST, because exactly these edges are taken in Prims algorithm

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

7

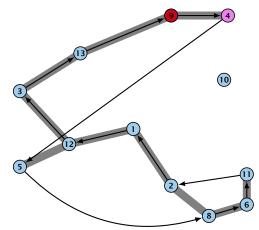


The gray edges form an MST, because exactly these edges are taken in Prims algorithm

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

7



The gray edges form an MST, because exactly these edges are taken in Prims algorithm

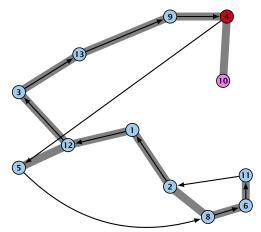
TSP: Greedy Algorithm

► Start with a tour on a subset *S* containing a single node.

15 TSP

- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

7



The gray edges form an MST, because exactly these edges are taken in Prims algorithm

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

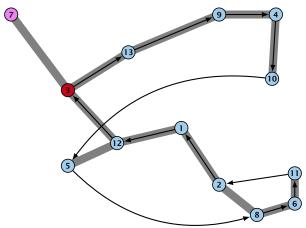
7



The gray edges form an MST, because exactly these edges are taken in Prims algorithm

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

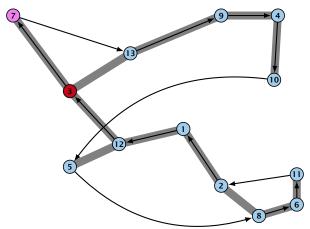


The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

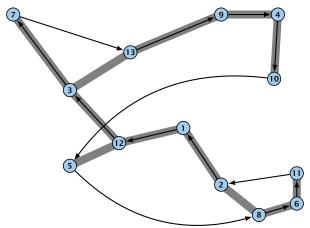
335



The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

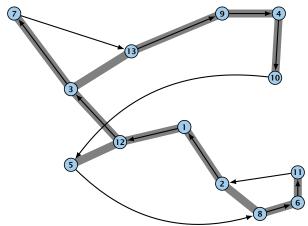
- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.



The gray edges form an MST, because exactly these edges are

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ► Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

TSP: Greedy Algorithm

- ► Start with a tour on a subset *S* containing a single node.
- ▶ Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ► Repeat until all nodes have been processed.

Lemma 76

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the i-th iteration, and let v denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

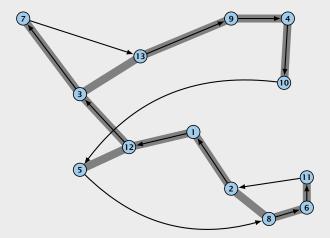
Let r_i denote the successor of s_i in the tour before inserting v_i

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

$$c_{s_i,v_i} + c_{v_i,r_i} - c_{s_i,r_i} \le 2c_{s_i,v_i}$$

TSP: Greedy Algorithm



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

Lemma 76

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the i-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

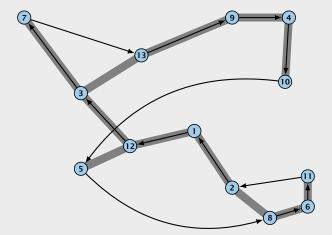
Let r_i denote the successor of s_i in the tour before inserting v_i

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

$$c_{S_i,v_i} + c_{v_i,r_i} - c_{S_i,r_i} \le 2c_{S_i,v_i}$$

TSP: Greedy Algorithm



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

337/571

336

Lemma 76

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the i-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

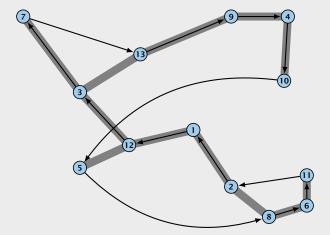
Let r_i denote the successor of s_i in the tour before inserting v_i

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

$$c_{s_i,v_i} + c_{v_i,r_i} - c_{s_i,r_i} \le 2c_{s_i,v_i}$$

TSP: Greedy Algorithm



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

15 TSP

Lemma 76

The Greedy algorithm is a 2-approximation algorithm.

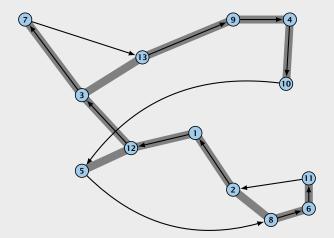
Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

$$c_{s_i,v_i} + c_{v_i,r_i} - c_{s_i,r_i} \le 2c_{s_i,v_i}$$

TSP: Greedy Algorithm



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

337/571

336

Lemma 76

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the i-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

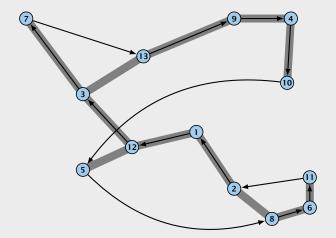
Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

 $c_{s_i,v_i} + c_{v_i,r_i} - c_{s_i,r_i} \le 2c_{s_i,v_i}$

TSP: Greedy Algorithm



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

Lemma 76

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the i-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

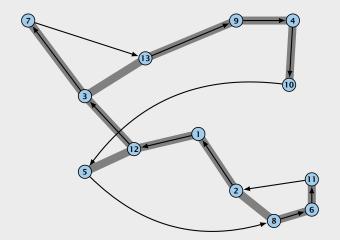
Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

$$c_{\mathcal{S}_i,\nu_i} + c_{\nu_i,r_i} - c_{\mathcal{S}_i,r_i} \le 2c_{\mathcal{S}_i,\nu_i}$$

TSP: Greedy Algorithm



The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Lonco

$$\sum_{i} c_{s_i,v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

TSP: Greedy Algorithm

Lemma 76

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the i-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i)

This increases the cost by

and (v_i, r_i) .

$$c_{S_i,v_i} + c_{v_i,r_i} - c_{S_i,r_i} \le 2c_{S_i,v_i}$$

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$\sum_{i} c_{s_i,v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

TSP: Greedy Algorithm

Lemma 76

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i)

and (v_i, r_i) .

This increases the cost by

$$c_{s_i,v_i} + c_{v_i,r_i} - c_{s_i,r_i} \le 2c_{s_i,v_i}$$

EADS II

15 TSP

ind a TSP-tour of cost at most
$$\sum c'(e)$$

$$e \in E'$$

The edges (s_i, v_i) considered during the Greedy algorithm are

Hence,

$$\sum_{i} c_{s_{i},v_{i}} = \mathrm{OPT}_{\mathrm{MST}}(G)$$

exactly the edges considered during PRIMs MST algorithm.

15 TSP

which with the previous lower bound gives a 2-approximation.

EADS II

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

$$\sum_{e \in E'} c'(e)$$

TSP: Greedy Algorithm

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

 $\sum c_{s_i,v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$

15 TSP

which with the previous lower bound gives a 2-approximation.

Hence,

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

TSP: Greedy Algorithm

exactly the edges considered during PRIMs MST algorithm.

Hence,

 $\sum c_{s_i,v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$

The edges (s_i, v_i) considered during the Greedy algorithm are

15 TSP

which with the previous lower bound gives a 2-approximation.

339/571

EADS II 15 TSP

338

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in F'} c'(e)$$

- . Find an Follow to of C
- Find an Euler tour of G'.
- ► The cost of this TSP tour is at most the cost of the Euler tour

This technique is known as short cutting the Euler tour.

TSP: Greedy Algorithm

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$\sum_{i} c_{s_i, v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- Find an Fuler tour of G'.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.

TSP: Greedy Algorithm

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$\sum_{i} c_{s_i,v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

15 TSP

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.

TSP: Greedy Algorithm

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$\sum_{i} c_{s_i,v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

15 TSP

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- Find an Fuler tour of G'.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing
- the Euler tour and only note the first occurrence of a city. ▶ The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

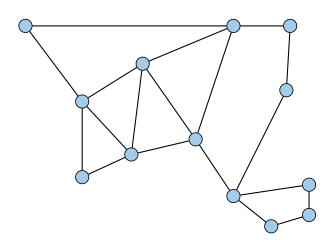
TSP: Greedy Algorithm

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

 $\sum c_{s_i,v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$

which with the previous lower bound gives a 2-approximation.



TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

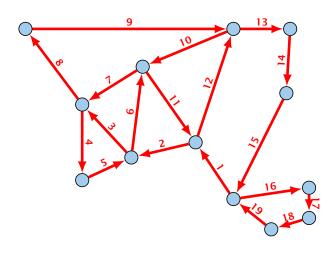
Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Euler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

15 TSP

This technique is known as short cutting the Euler tour.



TSP: A different approach

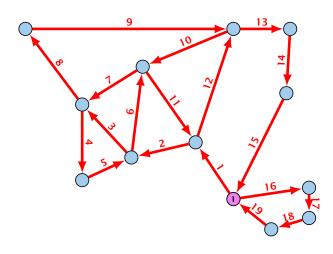
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Euler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

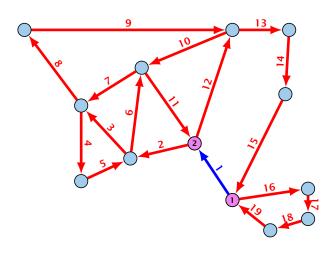
Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.

339



TSP: A different approach

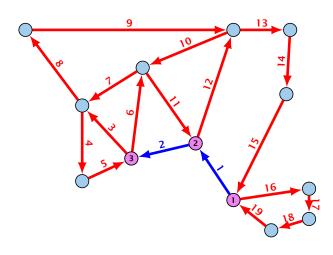
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



TSP: A different approach

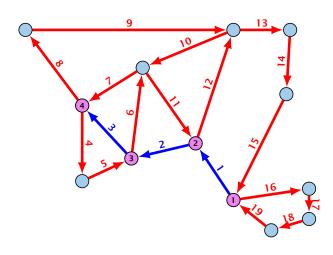
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



TSP: A different approach

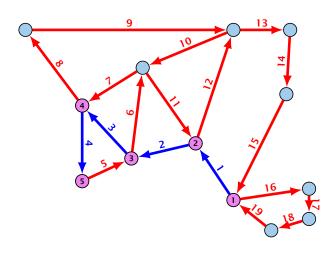
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



TSP: A different approach

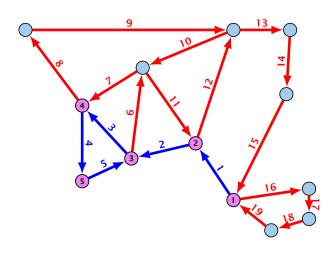
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



TSP: A different approach

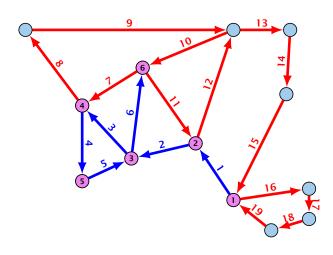
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

15 TSP



TSP: A different approach

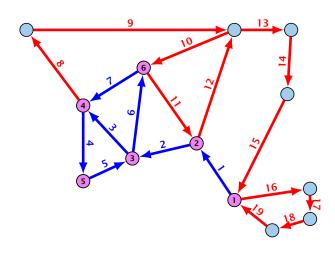
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

15 TSP

This technique is known as short cutting the Euler tour.



TSP: A different approach

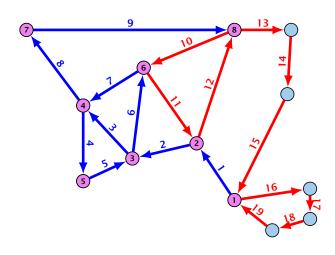
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

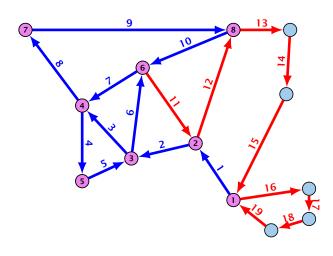
Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

15 TSP

This technique is known as short cutting the Euler tour.



TSP: A different approach

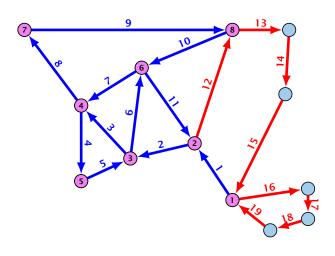
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

15 TSP



TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

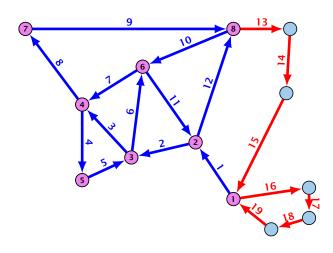
Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

15 TSP

This technique is known as short cutting the Euler tour.



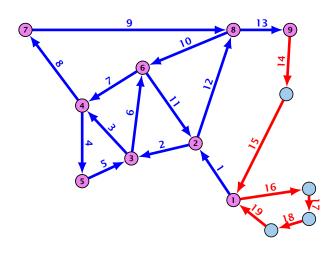
TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.



15 TSP

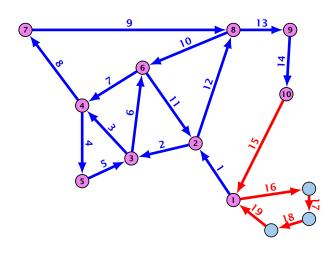
TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.



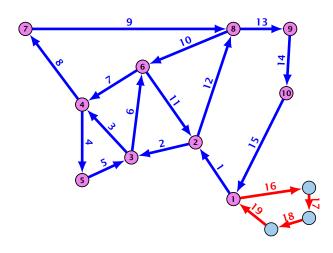
TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.



TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

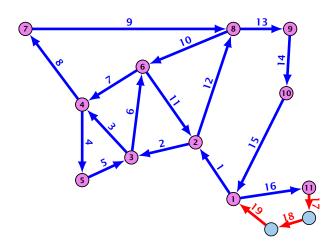
Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Euler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

15 TSP

This technique is known as short cutting the Euler tour.



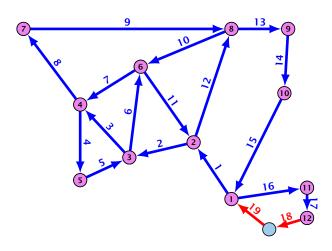
TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Euler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.



15 TSP

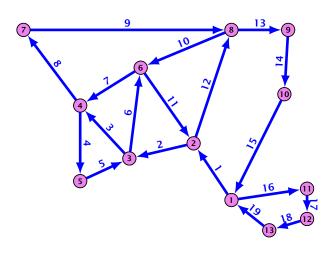
TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.



15 TSP

TSP: A different approach

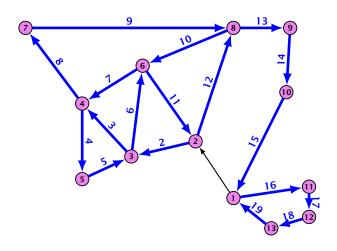
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



15 TSP

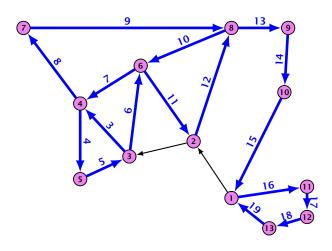
TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.



TSP: A different approach

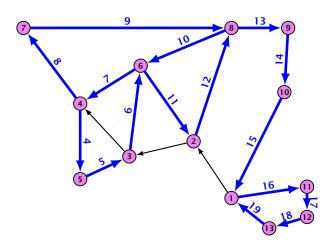
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Euler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



15 TSP

TSP: A different approach

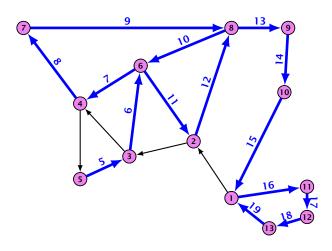
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



15 TSP

TSP: A different approach

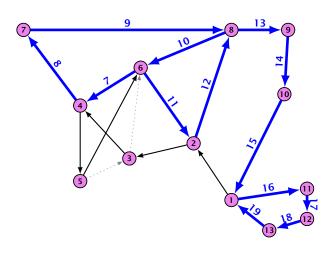
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



15 TSP

TSP: A different approach

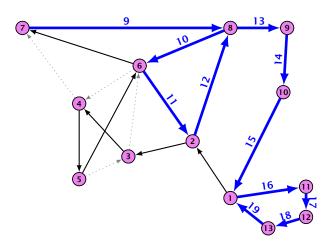
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



15 TSP

TSP: A different approach

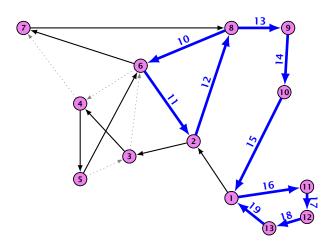
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Euler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



15 TSP

TSP: A different approach

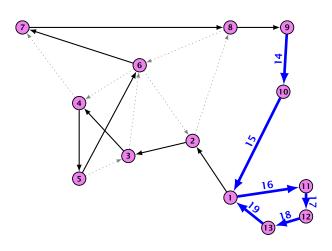
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Euler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



15 TSP

TSP: A different approach

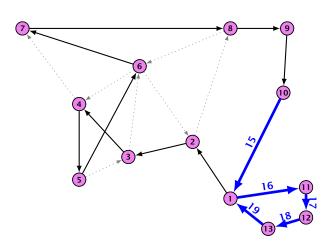
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



15 TSP

TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

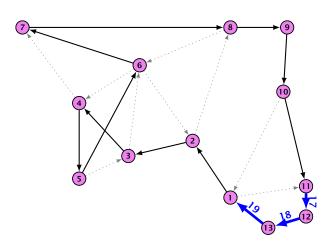
Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

15 TSP

This technique is known as short cutting the Euler tour.



TSP: A different approach

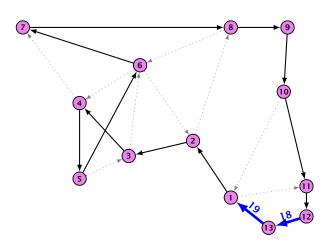
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



15 TSP

TSP: A different approach

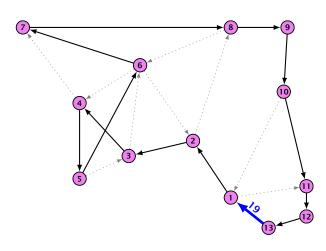
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

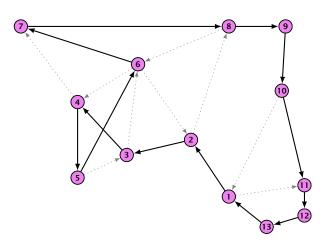
Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

15 TSP

This technique is known as short cutting the Euler tour.



TSP: A different approach

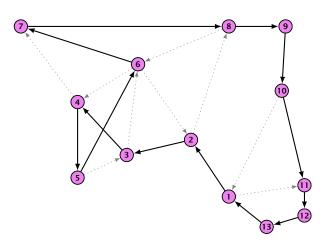
Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.



TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ► Find an Fuler tour of G'.
- ► Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ► The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.

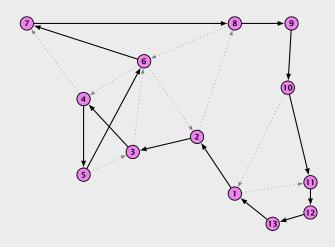
Consider the following graph:

- Compute an MST of G.
- Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot OPT_{MST}(G)$.

Hence, short-cutting gives a tour of cost no more than $2 \cdot OPT_{MST}(G)$ which means we have a 2-approximation

TSP: A different approach



15 TSP

Consider the following graph:

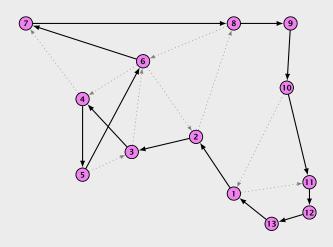
- Compute an MST of G.
- Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \mathrm{OPT}_{\mathrm{MST}}(G)$.

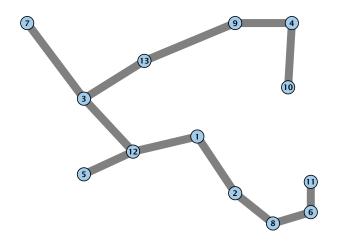
15 TSP

Hence, short-cutting gives a tour of cost no more than $2 \cdot OPT_{MST}(G)$ which means we have a 2-approximation.

TSP: A different approach



15 TSP

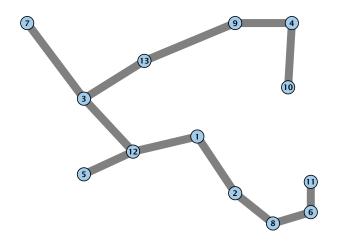


TSP: A different approach

Consider the following graph:

- ► Compute an MST of *G*.
- ► Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \mathrm{OPT}_{\mathrm{MST}}(G)$.

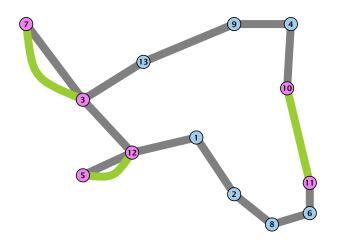


TSP: A different approach

Consider the following graph:

- ► Compute an MST of *G*.
- ► Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \mathrm{OPT}_{\mathrm{MST}}(G)$.

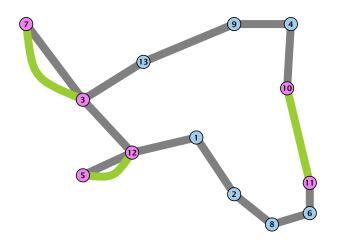


TSP: A different approach

Consider the following graph:

- ► Compute an MST of *G*.
- ► Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \mathrm{OPT}_{\mathrm{MST}}(G)$.

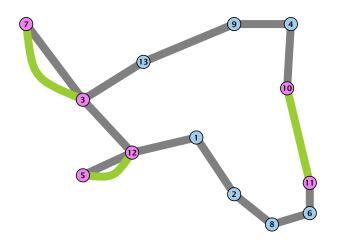


TSP: A different approach

Consider the following graph:

- ► Compute an MST of *G*.
- ► Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \mathrm{OPT}_{\mathrm{MST}}(G)$.

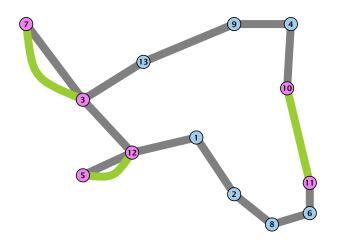


TSP: A different approach

Consider the following graph:

- ► Compute an MST of *G*.
- ► Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \mathrm{OPT}_{\mathrm{MST}}(G)$.



TSP: A different approach

Consider the following graph:

- ► Compute an MST of *G*.
- ► Duplicate all edges.

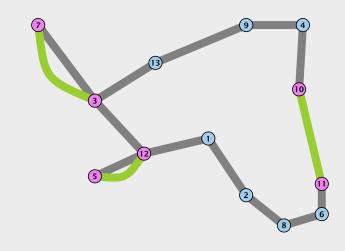
This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \mathrm{OPT}_{\mathrm{MST}}(G)$.

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them)

TSP: Can we do better?



Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them)

TSP: Can we do better?



EADS II

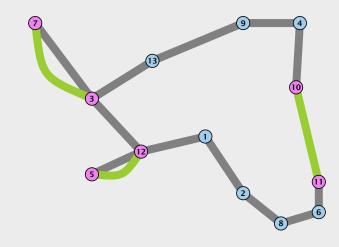
342

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them)

TSP: Can we do better?



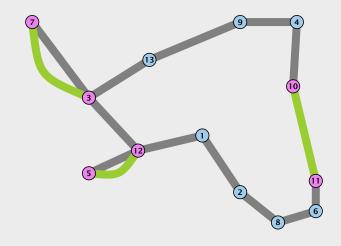
EADS II

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

TSP: Can we do better?



TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number

344/571

of them).

343

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

15 TSP

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $\mathrm{OPT}_{\mathrm{TSP}}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{5}$ -approximation for metric TSP

This is the best that is known

EADS II

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $\mathrm{OPT}_{\mathrm{TSP}}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP

This is the best that is known

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

15 TSP

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

of them).

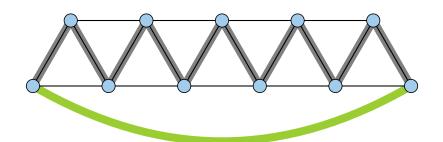
TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number

Christofides. Tight Example



- optimal tour: n edges.
- ▶ MST: n-1 edges.
- weight of matching (n+1)/2-1
- ► MST+matching $\approx 3/2 \cdot n$

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most $\mathrm{OPT}_{\mathrm{TSP}}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $\mathrm{OPT}_{\mathrm{TSP}}(G)/2$.

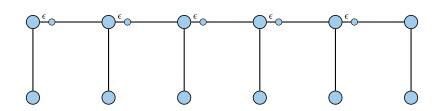
Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

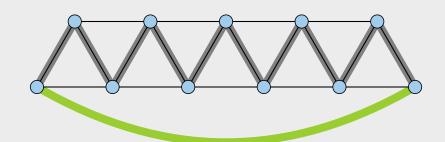
This is the best that is known.

Tree shortcutting. Tight Example



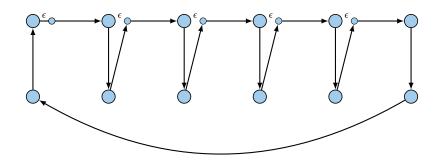
• edges have Euclidean distance.

Christofides. Tight Example



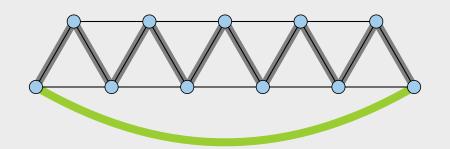
- ▶ optimal tour: n edges.
- ► MST: n-1 edges.
- weight of matching (n+1)/2-1
- ► MST+matching $\approx 3/2 \cdot n$

Tree shortcutting. Tight Example



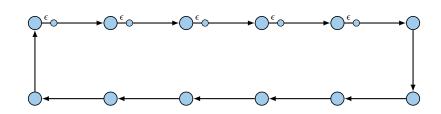
• edges have Euclidean distance.

Christofides. Tight Example



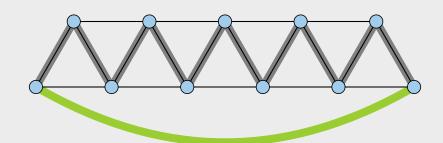
- ► optimal tour: *n* edges.
- ► MST: n-1 edges.
- weight of matching (n+1)/2-1
- ► MST+matching $\approx 3/2 \cdot n$

Tree shortcutting. Tight Example



edges have Euclidean distance.

Christofides. Tight Example



- ► optimal tour: *n* edges.
- ► MST: n-1 edges.
- weight of matching (n+1)/2-1
- ► MST+matching $\approx 3/2 \cdot n$

16 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i\in\mathbb{N}$ and profit $p_i\in\mathbb{N}$, and given a threshold W. Find a subset $I\subseteq\{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i\leq W$).

$$\begin{array}{cccc} \max & \sum_{i=1}^n p_i x_i \\ \text{s.t.} & \sum_{i=1}^n w_i x_i & \leq & W \\ & \forall i \in \{1,\dots,n\} & x_i & \in & \{0,1\} \end{array}$$

16 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

max		$\sum_{i=1}^{n} p_i x_i$		
s.t.		$\sum_{i=1}^n w_i x_i$	≤	W
	$\forall i \in \{1, \ldots, n\}$	x_i	\in	$\{0, 1\}$

Algorithm 1 Knapsack 1: $A(1) \leftarrow [(0,0),(p_1,w_1)]$ 2: for $j \leftarrow 2$ to n do 3: $A(j) \leftarrow A(j-1)$ 4: for each $(p,w) \in A(j-1)$ do 5: if $w + w_j \leq W$ then 6: add $(p + p_j, w + w_j)$ to A(j)7: remove dominated pairs from A(j)8: return $\max_{(p,w) \in A(n)} p$

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

16 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i\in\mathbb{N}$ and profit $p_i\in\mathbb{N}$, and given a threshold W. Find a subset $I\subseteq\{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i\leq W$).

$$\begin{bmatrix} \max & \sum_{i=1}^n p_i x_i \\ \text{s.t.} & \sum_{i=1}^n w_i x_i \leq W \\ \forall i \in \{1, \dots, n\} & x_i \in \{0, 1\} \end{bmatrix}$$

Definition 77

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

16 Rounding Data + Dynamic Programming

```
Algorithm 1 Knapsack

1: A(1) \leftarrow [(0,0),(p_1,w_1)]
2: for j \leftarrow 2 to n do
3: A(j) \leftarrow A(j-1)
4: for each (p,w) \in A(j-1) do
5: if w + w_j \leq W then
6: add (p + p_j, w + w_j) to A(j)
7: remove dominated pairs from A(j)
8: return \max_{(p,w) \in A(n)} p
```

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

ightharpoonup Let M be the maximum profit of an element.

16 Rounding Data + Dynamic Programming

Definition 77

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.

16 Rounding Data + Dynamic Programming

Definition 77

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ▶ Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.

16 Rounding Data + Dynamic Programming

Definition 77

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

16.1 Knapsack

- ▶ Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

16 Rounding Data + Dynamic Programming

Definition 77

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP')$$

16 Rounding Data + Dynamic Programming

Definition 77

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p_i'\right)$$

16 Rounding Data + Dynamic Programming

Definition 77

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right)$$

16 Rounding Data + Dynamic Programming

Definition 77

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

16 Rounding Data + Dynamic Programming

Definition 77

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i\in S}p_i$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i}p'_{i}\right) = \mathcal{O}\left(n\sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M/n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) \; .$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \geq \mu \sum_{i \in S} p_i'$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i}p'_{i}\right) = \mathcal{O}\left(n\sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M/n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) \; .$$

Let *S* be the set of items returned by the algorithm, and let *O* be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i}p'_{i}\right) = \mathcal{O}\left(n\sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M/n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) \; .$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

16 Rounding Data + Dynamic Programming

- ▶ Let *M* be the maximum profit of an element.
- ightharpoonup Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ► Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\begin{split} \sum_{i \in S} p_i &\geq \mu \sum_{i \in S} p_i' \\ &\geq \mu \sum_{i \in O} p_i' \\ &\geq \sum_{i \in O} p_i - |O| \mu \\ &\geq \sum_{i \in O} p_i - n \mu \\ &= \sum_{i \in O} p_i - \epsilon M \end{split}$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ► Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

Let *S* be the set of items returned by the algorithm, and let *O* be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

16 Rounding Data + Dynamic Programming

- ▶ Let *M* be the maximum profit of an element.
- ► Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_i p_i'\right) = \mathcal{O}\left(n\sum_i \left\lfloor \frac{p_i}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^3}{\epsilon}\right) \; .$$

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

16 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3} C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

16 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

Partition the input into long jobs and short jobs.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\text{max}}^*$ then LPT is optimal this gave a 4/3-approximation.

16.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\text{max}}^*$ then LPT is optimal this gave a 4/3-approximation.

16.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of $\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \geq \frac{1}{3}C_{\text{max}}^*$ then LPT is optimal this gave a 4/3-approximation.

16.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute
- force. 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of $\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$

$$m = m = m = m$$
 where ℓ is the last job to complete.

Together with the obervation that if each $p_i \geq \frac{1}{3}C_{\text{max}}^*$ then LPT is optimal this gave a 4/3-approximation.

352

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_ℓ).

16.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute
- force.

 2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

EADS II

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ρ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

16.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

 $\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$

We still have a cost of

$$\overline{m} \sum_{j \neq \ell} p_j + p$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ρ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

which is at most $C_{\rm max}^*/k$.

 $p_{\ell} \leq \sum_{j} p_{j}/(mk)$

Partition the input into long jobs and short jobs.

16.2 Scheduling Revisited

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

1. Find the optimum Makespan for the long jobs by brute

force.

16.2 Scheduling Revisited

2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

- 16.2 Scheduling Revisited EADS II 354/571

Hence we get a schedule of length at most

 $\left(1+\frac{1}{\nu}\right)C_{\max}^*$

16.2 Scheduling Revisited

EADS II

355/571

which is at most C_{max}^*/k .

short jobs.

We still have a cost of

busy before time S_{ρ}).

If ℓ is a short job its length is at most

 $\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$

where ℓ is the last job (this only requires that all machines are

consists of an optimal schedule of long jobs plus a schedule for

16.2 Scheduling Revisited

If ℓ is a long job, then the schedule must be optimal, as it

 $p_{\ell} \leq \sum_{j} p_{j}/(mk)$

354

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

short jobs.

If ℓ is a short job its length is at most

We still have a cost of

which is at most $C_{\rm max}^*/k$.

where ℓ is the last job (this only requires that all machines are busy before time S_{ρ}).

 $\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for

 $p_{\ell} \leq \sum_{i} p_{j}/(mk)$

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 78 The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m

Hence we get a schedule of length at most

identical machines if m is constant. We choose $k = \lceil \frac{1}{6} \rceil$.

which is at most $C_{\rm max}^*/k$.

where ℓ is the last job (this only requires that all machines are busy before time S_{ρ}).

We still have a cost of

short jobs. If ℓ is a short job its length is at most

If ℓ is a long job, then the schedule must be optimal, as it

consists of an optimal schedule of long jobs plus a schedule for

 $\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$

16.2 Scheduling Revisited

 $\left(1+\frac{1}{\nu}\right)C_{\max}^*$

Hence we get a schedule of length at most

$$1+\frac{1}{k}C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 78

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on midentical machines if m is constant.

16.2 Scheduling Revisited

We choose $k = \lceil \frac{1}{6} \rceil$.

EADS II

We first design an algorithm that works as follows:

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 78 The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on midentical machines if m is constant.

We choose $k = \lceil \frac{1}{6} \rceil$.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1 + \frac{1}{\nu})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{i} p_{i}$).

 $\left(1+\frac{1}{\nu}\right)C_{\max}^*$

Hence we get a schedule of length at most

$$(1+\frac{1}{k})C_{\max}$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 78

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on midentical machines if m is constant.

We choose $k = \lceil \frac{1}{6} \rceil$.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1 + \frac{1}{\nu})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{i} p_{i}$).

We partition the jobs into long jobs and short jobs:

- ightharpoonup A job is long if its size is larger than T/k.
- Otw. it is a short job.

 $\left(1+\frac{1}{\nu}\right)C_{\max}^*$

Hence we get a schedule of length at most

$$+\frac{1}{k}C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 78 The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on midentical machines if m is constant.

We choose $k = \lceil \frac{1}{6} \rceil$.

16.2 Scheduling Revisited

- We round all long jobs down to multiples of T/k^2 .
- ▶ For these rounded sizes we first find an optimal schedule
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ▶ If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- ▶ A job is long if its size is larger than T/k.
- ► Otw. it is a short job.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- ▶ A job is long if its size is larger than T/k.
- ► Otw. it is a short job.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ▶ If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- ▶ A job is long if its size is larger than T/k.
- ► Otw. it is a short job.

- We round all long jobs down to multiples of T/k^2 .
- ▶ For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- ▶ A job is long if its size is larger than T/k.
- ► Otw. it is a short job.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

$$\left(1+\frac{1}{k}\right)T$$
.

- We round all long jobs down to multiples of T/k^2 .
- ► For these rounded sizes we first find an optimal schedule.
- ► If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ► If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most \mathcal{T} .

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

$$\left(1+\frac{1}{k}\right)T$$
.

- We round all long jobs down to multiples of T/k^2 .
- ► For these rounded sizes we first find an optimal schedule.
- ► If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ► If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

$$\left(1+\frac{1}{\nu}\right)T$$
.

- ▶ We round all long jobs down to multiples of T/k^2 .
- ► For these rounded sizes we first find an optimal schedule.
- ► If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ▶ If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T$$

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most \mathcal{T} .

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T$.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T .$$

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most \mathcal{T} .

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$ Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k}T$). This is polynomial

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T.$$

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describe the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T .$$

360/571

359

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T.$$

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{L} \le \left(1 + \frac{1}{L}\right)T$$
.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, \ldots, n_{\nu_2}) \leq m$ we can schedule the input.

We have

 $OPT(n_1,\ldots,n_{k^2})$

 $= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\ \infty & \text{otw.} \end{cases}$

where C is the set of all configurations

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

Wa haya

$$OPT(n_1 = n_{12})$$

$$\begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$OPT(n_1,...,n_{k^2}) = \begin{cases}
0 & (n_1,...,n_{k^2}) = 0 \\
1 + \min_{(s_1,...,s_{k^2}) \in \mathcal{C}} OPT(n_1 - s_1,...,n_{k^2} - s_{k^2}) & (n_1,...,n_{k^2}) \ge 0 \\
\infty & \text{otw.}
\end{cases}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, \dots, k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

360

Let $OPT(n_1,...,n_{k^2})$ be the number of machines that are required to schedule input vector $(n_1,...,n_{k^2})$ with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$\begin{aligned}
& \mathsf{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \mathsf{otw}.
\end{aligned}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, \dots, k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are stronaly NP-hard

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

362/571

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \text{otw.}
\end{aligned}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

361

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are stronaly NP-hard.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

362/571

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \text{otw.}
\end{aligned}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are stronaly NP-hard

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

362/571

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \text{otw.}
\end{aligned}$$

361

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are strongly NP-hard.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$\begin{aligned}
& \mathsf{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \mathsf{otw}.
\end{aligned}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- ▶ We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optima solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$\mathsf{ALG} \leq \left(1 + \frac{1}{k}\right)\mathsf{OPT} \leq \mathsf{OPT} + \frac{1}{2}$$

- But this means that the algorithm computes the optima solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optima solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ► Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ► But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 79

There is no FPTAS for problems that are strongly NP-hard.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector (n_1, \dots, n_A) with Makespan at most T (A: number of different sizes).

$$OPT(n_1,\ldots,n_A)$$

$$= \begin{cases} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} \text{OPT}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\ \infty & \text{otw.} \end{cases}$$

- ► Suppose we have an instance with polynomially bounded processing times $p_i \leq q(n)$
- ▶ We set $k := [2nq(n)] \ge 2 \text{ OPT}$
- ► Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector (n_1, \ldots, n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \leq m$ we can schedule the input.

$$\begin{array}{ll}
1 + \min_{(s_1, \dots, s_A) \in C} \text{OPI}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \ge 0 \\
\infty & \text{otw.}
\end{array}$$

- ► Suppose we have an instance with polynomially bounded processing times $p_i \leq q(n)$
- ▶ We set $k := [2nq(n)] \ge 2 \text{ OPT}$
- ► Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$$OPT(n_1,\ldots,n_A)$$

$$= \begin{cases} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\ \infty & \mathsf{otw}. \end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ► Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 80

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unles P = NP

More General

Let $\mathrm{OPT}(n_1,\ldots,n_A)$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \leq m$ we can schedule the input.

$$OPT(n_1, ..., n_A) = \begin{cases}
0 & (n_1, ..., n_A) = 0 \\
1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \geq 0 \\
\infty & \text{otw.}
\end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 80

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

More General

Let $\mathrm{OPT}(n_1,\ldots,n_A)$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1,...,n_A) \leq m$ we can schedule the input.

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_A) \\
&= \begin{cases}
0 & (n_1, \dots, n_A) = 0 \\
1 + \min_{(s_1, \dots, s_A) \in C} \text{OPT}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\
& & \text{otw.}
\end{aligned}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 hins or not
- ▶ A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal
- ► Hence such an algorithm can solve Partition

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 80

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence such an algorithm can solve Partition

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 80

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence such an algorithm can solve Partition

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 80

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- ▶ A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition.

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 80

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Definition 81

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon)\mathrm{OPT}+c$ for minimization problems.

Bin Packing

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ► We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- ► A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition.

Definition 81

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon)\mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Rin Packing

Bin Packing

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ► We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- ► A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition.

Definition 81

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon)\mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

Bin Packing

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ► We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- ► A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition.

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

Bin Packing

Definition 81

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon){\rm OPT}+c$ for minimization problems.

- ► Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ▶ Hence, $r(1 y) \le SIZE(I)$ where r is the number of nearly-full bins.
- ► This gives the lemma

Bin Packing

Definition 81

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon){\rm OPT}+c$ for minimization problems.

- ► Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 y) \le SIZE(I)$ where r is the number of nearly-full bins.
- ► This gives the lemma

Bin Packing

Definition 81

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon){\rm OPT}+c$ for minimization problems.

- ► Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 y) \le SIZE(I)$ where r is the number of nearly-full bins.
- ► This gives the lemma.

Bin Packing

Definition 81

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon)\mathrm{OPT}+c$ for minimization problems.

- ► Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Bin Packing

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

- ▶ If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 y) \le SIZE(I)$ where r is the number of nearly-full bins.
- ► This gives the lemma.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- ▶ Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- ► Delete items in the first group:
- Round items in the remaining groups to the size of the largest item in the group.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group
- Round items in the remaining groups to the size of the largest item in the group.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Linear Grouping:

Generate an instance I' (for large items) as follows.

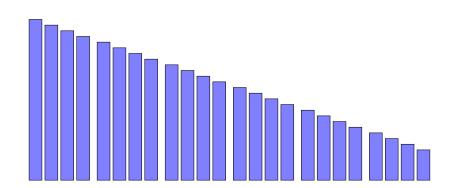
- Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

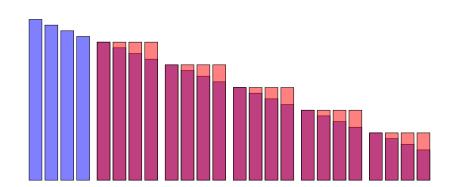
It remains to find an algorithm for the large items.



Bin Packing

Linear Grouping:

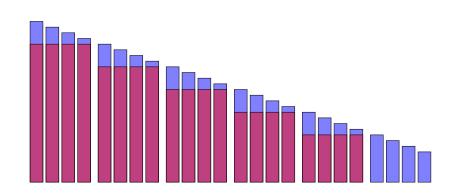
- ► Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- ► Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.



Bin Packing

Linear Grouping:

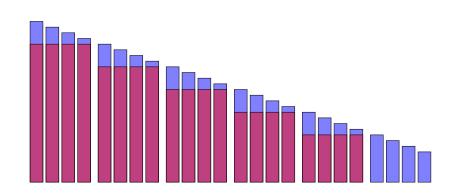
- ► Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- ► Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.



Bin Packing

Linear Grouping:

- ► Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- ► Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.



Bin Packing

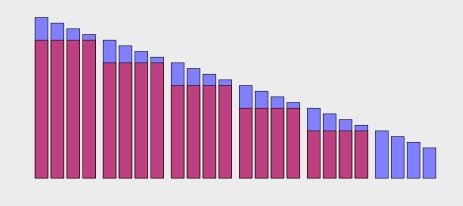
Linear Grouping:

- ► Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- ► Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1

Linear Grouping

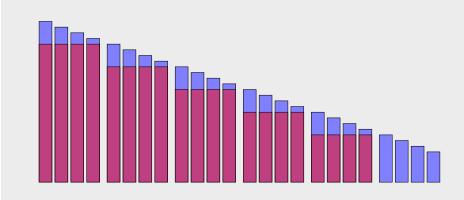


$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ▶ Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- •

Linear Grouping



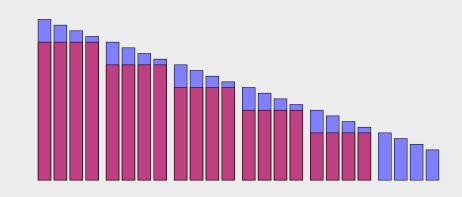
□□ EADS II

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ▶ Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;

Linear Grouping

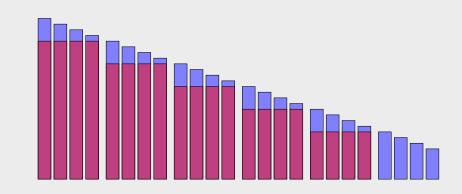


$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;

Linear Grouping

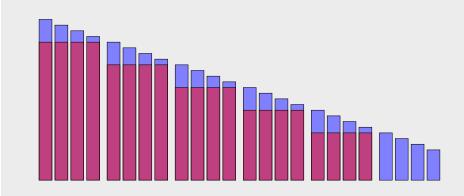


$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- **...**

Linear Grouping



$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 2:

- ightharpoonup Any bin packing for I' gives a bin packing for I as follows.
- \triangleright Pack the items of group 1 into k new bins
- ▶ Pack the items of groups 2, where in the packing for *I'* the items for group 2 have been packed;

•

Lemma 83

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- ▶ Any bin packing for I gives a bin packing for I' as follows.
- ► Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- **>** ...

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 2:

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- ▶ Pack the items of group 1 into *k* new bins;
- ▶ Pack the items of groups 2, where in the packing for *I'* the items for group 2 have been packed;

Lemma 83

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- ▶ Any bin packing for I gives a bin packing for I' as follows.
- ► Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- ▶ ...

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- ightharpoonup Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- ▶ Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

Lemma 83

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- \blacktriangleright Any bin packing for I gives a bin packing for I' as follows.
- ► Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- **>** ...

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- ▶ Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

...

Lemma 83

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- ▶ Any bin packing for I gives a bin packing for I' as follows.
- ► Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- **>** ...

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$

▶ running time
$$\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$$
.

Lemma 84

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- \blacktriangleright Pack the items of group 1 into k new bins:
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

We set $k = |\epsilon SIZE(I)|$.

$$\sim \text{running time } O((\frac{2}{3}n)^{\frac{3}{4}/\epsilon^2})$$

Lemma 84

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- \blacktriangleright Pack the items of group 1 into k new bins:
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

16.3 Bin Packing

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then $n/k \le n/|\epsilon^2 n/2| \le 4/\epsilon^2$ (here we used $|\alpha| \ge \alpha/2$ for $\alpha \geq 1$).

running time
$$\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$$
.

Lemma 84

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- \blacktriangleright Pack the items of group 1 into k new bins:
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- **>** ...

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

Lemma 84

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- \blacktriangleright Pack the items of group 1 into k new bins:
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- ▶ ...

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then $n/k \le n/|\epsilon^2 n/2| \le 4/\epsilon^2$ (here we used $|\alpha| \ge \alpha/2$ for $\alpha \geq 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

Lemma 84

$$\mathsf{OPT}(I') \leq \mathsf{OPT}(I) \leq \mathsf{OPT}(I') + k$$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- \blacktriangleright Pack the items of group 1 into k new bins:
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- ▶ ...

 $\epsilon/2$. Then SIZE(I) $\geq \epsilon n/2$. We set $k = |\epsilon SIZE(I)|$.

Assume that our instance does not contain pieces smaller than

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

Proof 2:

Lemma 84

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- ▶ Pack the items of group 1 into k new bins; \blacktriangleright Pack the items of groups 2, where in the packing for I' the
- items for group 2 have been packed;

Can we do better?

In the following we show how to obtain a solution where the

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$

Note that this is usually better than a guarantee of

Assume that our instance does not contain pieces smaller than
$$\epsilon/2$$
. Then $\mathrm{SIZE}(I) \geq \epsilon n/2$.

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes
$$(4/\epsilon^2)$$
 and at most a constant number $(2/\epsilon)$ can fit into any bin.

previous Dynamic Programming approach.

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

We can find an optimal packing for such instances by the

16.4 Advanced Rounding for Bin Packing

ing 375/571 ► running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee $(1+\epsilon) \mathrm{OPT}(I) + 1 \ .$

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then ${\rm SIZE}(I) \geq \epsilon n/2$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

► cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

EADS II 16.4 Advanced Rounding for Bin Packing

Funning time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

 $((2a)4/\epsilon^2)$

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)\text{OPT}(I)+1$$
.

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then SIZE(I) $\geq \epsilon n/2$.

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes
$$(4/\epsilon^2)$$
 and at most a constant number $(2/\epsilon)$ can fit into any bin.

previous Dynamic Programming approach.

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

We can find an optimal packing for such instances by the

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- \blacktriangleright s_2 is second largest size and b_2 number of pieces of size s_2 ;
- $ightharpoonup s_m$ smallest size and b_m number of pieces of size s_m

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)\text{OPT}(I)+1$$
.

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- \blacktriangleright s_2 is second largest size and b_2 number of pieces of size s_2 ;
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)\text{OPT}(I)+1$$
.

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **>**
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)\text{OPT}(I)+1$$
.

Change of Notation:

- ► Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **...**
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)OPT(I)+1$$
.

376/571

EADS II

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **...**
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)\text{OPT}(I)+1$$
.

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i .

$$\sum_{i} t_i \cdot s_i \le 1$$

Configuration LP

Change of Notation:

- ► Group pieces of identical size.
- ▶ Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- \triangleright s₂ is second largest size and b_2 number of pieces of size s₂;
- **...**
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration

Configuration LP

Change of Notation:

- ► Group pieces of identical size.
- ▶ Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **...**
- s_m smallest size and b_m number of pieces of size s_m .

A possible packing of a bin can be described by an m-tuple (t_1,\ldots,t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Change of Notation:

- ► Group pieces of identical size.
- ▶ Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **.**..
- s_m smallest size and b_m number of pieces of size s_m .

Let N be the number of configurations (exponential)

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Let N be the number of configurations (exponential).

$$\begin{array}{llll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall i \in \{1, \dots, N\} & x_j & \text{integral} \end{array}$$

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

$$\begin{array}{lll} \min & \sum_{j=1}^{N} x_{j} \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_{j} & \geq & b_{i} \\ \forall j \in \{1, \dots, N\} & x_{j} & \geq & 0 \\ & \forall i \in \{1, \dots, N\} & x_{i} & \text{integral} \end{array}$$

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1,\ldots,t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Let N be the number of configurations (exponential).

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1,\ldots,t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

How to solve this LP?

later...

Configuration LP

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

```
\begin{array}{llll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & x_j & \text{integral} \end{array}
```

We can assume that each item has size at least $1/\mathrm{SIZE}(I)$.

How to solve this LP?

later...

- Sort items according to size (monotonically decreasing).

We can assume that each item has size at least 1/SIZE(I).

16.4 Advanced Rounding for Bin Packing

- Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1}
- Only the size of items in the last group G_r may sum up to less than 2

We can assume that each item has size at least 1/SIZE(I).

- Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- Only the size of items in the last group G_r may sum up to less than 2

16.4 Advanced Rounding for Bin Packing

We can assume that each item has size at least 1/SIZE(I).

- Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_{γ} may sum up to less than 2.

We can assume that each item has size at least 1/SIZE(I).

From the grouping we obtain instance I' as follows:

- ► Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G₁ and G₂
- ▶ For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

Harmonic Grouping

- ► Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_{γ} may sum up to less than 2.

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .

Harmonic Grouping

- ► Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- \blacktriangleright Only the size of items in the last group G_r may sum up to less than 2.

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ► For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ightharpoonup Observe that $n_i > n_{i-1}$

Harmonic Grouping

- ► Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_r may sum up to less than 2.

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

Harmonic Grouping

- ► Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- \triangleright Only the size of items in the last group G_r may sum up to less than 2.

The number of different sizes in I' is at most SIZE(I)/2.

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- ► Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ▶ For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

The number of different sizes in I' is at most SIZE(I)/2.

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- \blacktriangleright Hence, the number of surviving groups is at most SIZE(I)/2
- \triangleright All items in a group have the same size in I'.

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ► For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

The number of different sizes in I' is at most SIZE(I)/2.

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- \blacktriangleright All items in a group have the same size in I'

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ► For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

The number of different sizes in I' is at most SIZE(I)/2.

- ▶ Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.

16.4 Advanced Rounding for Bin Packing

• All items in a group have the same size in I'.

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ▶ For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

The total size of deleted items is at most $O(\log(SIZE(I)))$.

Lemma 85

- ▶ Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- \blacktriangleright All items in a group have the same size in I'.

The total size of deleted items is at most $\mathcal{O}(\log(\text{SIZE}(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \leq \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Lemma 85

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ▶ All items in a group have the same size in I'.

The total size of deleted items is at most $\mathcal{O}(\log(\text{SIZE}(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Lemma 85

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ▶ All items in a group have the same size in I'.

The total size of deleted items is at most $\mathcal{O}(\log(\text{SIZE}(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Lemma 85

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ▶ All items in a group have the same size in I'.

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- \triangleright Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

- since the smallest piece has size at most $3/n_i$.
- Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

most
$$\sum_{i=1}^{n_{r-1}} \frac{3}{j} \leq \mathcal{O}(\log(\mathrm{SIZE}(I))) \ .$$

(note that
$$n_r \leq \text{SIZE}(I)$$
 since we assume that the size of each item is at least $1/\text{SIZE}(I)$).

Lemma 85

- \blacktriangleright Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- \blacktriangleright Hence, the number of surviving groups is at most SIZE(I)/2.
- \blacktriangleright All items in a group have the same size in I'.

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 then
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\operatorname{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

Lemma 86

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ► The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ► Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

• Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

$$OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$$

Proof:

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- e: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP

EADS II

- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$

16.4 Advanced Rounding for Bin Packing

- \triangleright | x_i | is feasible solution for I_1 (even integral).
- $\triangleright x_i \lfloor x_i \rfloor$ is feasible solution for I_2

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{LP}(I') ≤ OPT_{LP}(I)
- ▶ $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).

 $\triangleright x_i - |x_i|$ is feasible solution for I_2

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\mathrm{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

EADS II

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{LP}(I') ≤ OPT_{LP}(I)
- $ightharpoonup \lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_i \lfloor x_i \rfloor$ is feasible solution for I_2 .

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.

$$O(\log(\text{SI7F}(I)))$$
.

Analysis

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- \blacktriangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- \triangleright | x_i | is feasible solution for I_1 (even integral). ▶ $x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .

$$O(\log(\text{SI7F}(I)))$$
.

Analysis

$$OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$$

Proof:

- \blacktriangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- \triangleright | x_i | is feasible solution for I_1 (even integral).

▶ $x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

$$O(\log(\text{SI7F}(I)))$$
.

Analysis

$$OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$$

Proof:

- \blacktriangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$

 $\blacktriangleright x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

 \triangleright | x_i | is feasible solution for I_1 (even integral).

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{IP} many bins.

$$O(\log(\text{SI7F}(I)))$$
.

Analysis

$$OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$$

Proof:

 \blacktriangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$

16.4 Advanced Rounding for Bin Packing

- \triangleright | x_i | is feasible solution for I_1 (even integral). $\blacktriangleright x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed

Pieces of type 1 are packed into at most

into at most OPT_{IP} many bins.

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

Analysis

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- \blacktriangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- \triangleright | x_i | is feasible solution for I_1 (even integral).

EADS II Harald Räcke

387/571

 $\blacktriangleright x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(\text{SIZE}(I_{\text{original}})))$ in total.

Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{LP} many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

many bins where L is the number of recursion levels.

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(\text{SIZE}(I_{\text{original}})))$ in total.

- The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).

16.4 Advanced Rounding for Bin Packing

Analysis

- Each level of the recursion partitions pieces into three types
 - 1. Pieces discarded at this level.
 - **2.** Pieces scheduled because they are in I_1 . **3.** Pieces in I_2 are handed down to the next level.
- Pieces of type 2 summed over all recursion levels are packed into at most OPT_{IP} many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

many bins where L is the number of recursion levels.

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ► The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

388/571

387

How to solve the LP?

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

In total we have b_i pieces of size s_i .

Primal

min $\sum_{j=1}^{N} x_{j}$ s.t. $\forall i \in \{1...m\}$ $\sum_{j=1}^{N} T_{ji}x_{j} \geq b_{i}$ $\forall j \in \{1,...,N\}$ $x_{j} \geq 0$

Davol

 $\begin{array}{lll} \max & \sum_{i=1}^m y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^m T_{ji} y_i & \leq & 1 \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$

Analysis

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{Original})))$ in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ▶ The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

$$\begin{array}{lll} \min & \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \end{array}$$

Dual

 $\max \qquad \qquad \sum_{i=1}^{m} y_i b_i$ s.t. $\forall j \in \{1, \dots, N\} \quad \sum_{i=1}^{m} T_{ji} y_i \leq 1$ $\forall i \in \{1, \dots, m\} \qquad \qquad y_i \geq 0$

16.4 Advanced Rounding for Bin Packing

Analysis

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes ($\leq SIZE(I)/2$).
- ► The total size of items in I_2 can be at most $\sum_{j=1}^N x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i). In total we have b_i pieces of size s_i .

$$\begin{array}{llll} \min & \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \end{array}$$

Analysis

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(\text{SIZE}(I_{\text{original}})))$ in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes ($\leq SIZE(I)/2$).
- ▶ The total size of items in I_2 can be at most $\sum_{i=1}^N x_i \lfloor x_i \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

Suppose that I am given variable assignment γ for the dual.

How do I find a violated constraint?

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

min $\sum_{j=1}^{N} x_{j}$ s.t. $\forall i \in \{1...m\}$ $\sum_{j=1}^{N} T_{ji}x_{j} \geq b_{i}$ $\forall j \in \{1,...,N\}$ $x_{j} \geq 0$

Dual

 $\begin{array}{lll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$

16.4 Advanced Rounding for Bin Packing

Suppose that I am given variable assignment γ for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

$$\begin{array}{|c|c|c|c|c|} \hline \min & & \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ \hline \end{array}$$

Dual

Suppose that I am given variable assignment \boldsymbol{y} for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \leq 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

How to solve the LP?

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

Dual

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

Suppose that I am given variable assignment \boldsymbol{y} for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, ..., T_{im})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

How to solve the LP?

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

In total we have b_i pieces of size s_i .

Primal

min $\sum_{j=1}^{N} x_{j}$ s.t. $\forall i \in \{1 \dots m\}$ $\sum_{j=1}^{N} T_{ji} x_{j} \geq b_{i}$ $\forall j \in \{1, \dots, N\}$ $x_{j} \geq 0$

Dual

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{lll} \max & \sum_{i=1}^m y_i b_i \\ \text{s.t.} & \forall j \in \{1,\dots,N\} & \sum_{i=1}^m T_{ji} y_i & \leq & 1+\epsilon' \\ & \forall i \in \{1,\dots,m\} & y_i & \geq & 0 \end{array}$$

Primal

min
$$(1 + \epsilon') \sum_{j=1}^{N} x_j$$
s.t.
$$\forall i \in \{1 \dots m\}$$

$$\sum_{j=1}^{N} T_{ji} x_j \geq b_i$$

$$\forall j \in \{1, \dots, N\}$$

$$x_j \geq 0$$

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

► is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

► and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual

$$\max \qquad \qquad \sum_{i=1}^{m} y_i b_i$$
 s.t. $\forall j \in \{1, \dots, N\}$ $\sum_{i=1}^{m} T_{ji} y_i \leq 1 + \epsilon'$ $\forall i \in \{1, \dots, m\}$ $y_i \geq 0$

Primal

min
$$(1 + \epsilon') \sum_{j=1}^{N} x_j$$
s.t. $\forall i \in \{1 \dots m\}$
$$\sum_{j=1}^{N} T_{ji} x_j \geq b_i$$

$$\forall j \in \{1, \dots, N\}$$

$$x_j \geq 0$$

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

► is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

► and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal

$$\begin{aligned} & \min & & (1+\epsilon') \sum_{j=1}^N x_j \\ & \text{s.t.} & & \forall i \in \{1 \dots m\} & & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & & \forall j \in \{1, \dots, N\} & & x_j & \geq & 0 \end{aligned}$$

Separation Oracle

Suppose that I am given variable assignment \boldsymbol{y} for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

► is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

► and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1 - \epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal'

$$\begin{array}{lll} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ & \forall j \in \{1, \dots, N\} & x_j \geq 0 \end{array}$$

Separation Oracle

Suppose that I am given variable assignment γ for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

$$\begin{array}{lll} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ & \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{array}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ▶ The constraints used when computing z certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{bmatrix} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{bmatrix}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{lll} \min & (1+\epsilon') \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j \geq b_i \\ & \forall j \in \{1, \dots, N\} & x_j \geq 0 \end{array}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{llll} \min & & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & & \sum_{j=1}^N T_{ji}x_j & \geq & b \\ & \forall j \in \{1,\dots,N\} & & x_j & \geq & 0 \end{array}$$

This gives that overall we need at most

$$(1 + \epsilon')$$
OPT_{IP} $(I) + \mathcal{O}(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon'=\frac{1}{\mathrm{OPT}}$ as $\mathrm{OPT}\leq$ #items and since we have fully polynomial time approximation scheme (FPTAS) for knapsack.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ► We can compute the corresponding solution in polytime.

This gives that overall we need at most

$$(1 + \epsilon')$$
OPT_{IP} $(I) + \mathcal{O}(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon' = \frac{1}{\mathrm{OPT}}$ as $\mathrm{OPT} \leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
 - ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ► We can compute the corresponding solution in polytime.

Lemma 87 (Chernoff Bounds)

Let $X_1, ..., X_n$ be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^{n} X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L,$$

Lemma 88

For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Lemma 87 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$, $L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L,$$

Markovs Inequality:

Let \boldsymbol{X} be random variable taking non-negative values. Then

$$\Pr[X \ge a] \le \mathrm{E}[X]/a$$

Triviall

Lemma 87 (Chernoff Bounds)

Let $X_1, ..., X_n$ be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
 ,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L ,$$

Markovs Inequality:

Let X be random variable taking non-negative values.

Then

$$\Pr[X \ge a] \le \mathrm{E}[X]/a$$

Trivial!

Lemma 87 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L,$$

Hence:

$$\Pr[X \ge (1+\delta)U] \le \frac{\mathrm{E}[X]}{(1+\delta)U}$$

Lemma 87 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$, $L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
 ,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L,$$

Hence:

$$\Pr[X \ge (1+\delta)U] \le \frac{E[X]}{(1+\delta)U} \approx \frac{1}{1+\delta}$$

Lemma 87 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$, $L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L,$$

Hence:

$$\Pr[X \ge (1+\delta)U] \le \frac{\mathbb{E}[X]}{(1+\delta)U} \approx \frac{1}{1+\delta}$$

That's awfully weak :(

Lemma 87 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L,$$

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Lemma 87 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L,$$

Set
$$p_i = \Pr[X_i = 1]$$
. Assume $p_i > 0$ for all i .

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Lemma 87 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L,$$

Set
$$p_i = \Pr[X_i = 1]$$
. Assume $p_i > 0$ for all i .

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}}$$
.

Lemma 87 (Chernoff Bounds)

Let $X_1, ..., X_n$ be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L$$
,

Set
$$p_i = \Pr[X_i = 1]$$
. Assume $p_i > 0$ for all i .

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}}$$
.

This may be a lot better (!?)

Lemma 87 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L,$$

394

$$\mathbb{E}\left[e^{tX}
ight]$$

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Proof of Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{\rho^{t(1+\delta)U}}.$$

17.1 Chernoff Bounds

$$= e^{t(1+\delta)U}$$

398

This may be a lot better (!?)

 $E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right]$

Set
$$p_i = \Pr[X_i = 1]$$
. Assume $p_i > 0$ for all i .

 $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

Cool Trick:

Proof of Chernoff Bounds

 $\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{\rho t(1+\delta)U}$.

$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right] = E\left[\prod_{i}e^{tX_{i}}\right]$$

399/571

17.1 Chernoff Bounds

Cool Trick:

Proof of Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

 $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

17.1 Chernoff Bounds

This may be a lot better (!?)

 $\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{\rho^{t(1+\delta)U}}$.

Now, we apply Markov:

398

$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right] = E\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}E\left[e^{tX_{i}}\right]$$

$$\begin{bmatrix} a \end{bmatrix} = \prod_i \mathbb{E}\left[e^{tX_i}\right]$$

Now, we apply Markov:
$$\Pr[e^{tX}]$$

Cool Trick:

$$\Pr[e^{tX}]$$

Proof of Chernoff Bounds

Markov:
$$\Pr[e^{tX} \geq e^{t(1+\delta)U}] \leq rac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)U}}$$
 .

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

398

EADS II 17.1 Chernoff Bounds 17.1 Chernoff Bounds 399/571

EADS II

$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right] = E\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}E\left[e^{tX_{i}}\right]$$

$$\mathbb{E}\left[e^{tX_i}
ight]$$

399/571

$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Proof of Chernoff Bounds

Cool Trick:

$$e^{t(1+\delta)U_1} < \frac{\mathbb{E}[e^{tX}]}{-1}$$

17.1 Chernoff Bounds

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)U}} \ .$$

$$\geq e^{t(1+\delta)U}] \leq \frac{2tU}{e^{t(1+\delta)U}}.$$

$$1 \ge e^{t(1+\delta)U} \Big] \le \frac{-t^2}{e^{t(1+\delta)U}} .$$

$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right] = E\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}E\left[e^{tX_{i}}\right]$$

$$\mathbb{E}\left[e^{tX_i}\right] = (1 - p_i) + p_i e^t$$

17.1 Chernoff Bounds

Now, we apply Markov:
$$\Pr[e^{tX}]$$

Cool Trick:

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Proof of Chernoff Bounds

 $\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}}$.

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

398

399/571

$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right] = E\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}E\left[e^{tX_{i}}\right]$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1)$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1)$$

17.1 Chernoff Bounds

399/571

Cool Trick:

Proof of Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Now, we apply Markov:
$$\Pr[e^{tX} \geq e^{t(1+\delta)U}] \leq \frac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)U}} \ .$$

 $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

17.1 Chernoff Bounds

$$\frac{X}{\delta)U}$$
.

$$\frac{1}{\delta)U}$$
 .

398

EADS II

$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right] = E\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}E\left[e^{tX_{i}}\right]$$

$$+ p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

17.1 Chernoff Bounds

Now, we apply Markov:
$$\Pr[e^{tX}]$$

399/571

Cool Trick:

Proof of Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Markov:
$$\Pr[e^{tX} \geq e^{t(1+\delta)U}] \leq \frac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)U}} \ .$$

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{L[t-1]}{e^{t(1+\delta)U}}.$$

17.1 Chernoff Bounds

 $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$-\mathbf{L}[\prod_{i}e^{-t}]-\prod_{i}\mathbf{L}[e^{-t}]$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

$$\prod_i \mathrm{E} \left[e^{tX_i}
ight]$$

$$\prod_i \operatorname{E}\left[e^{tX_i}
ight]$$

Markov:
$$\Pr[e^{tX} \geq e^{t(1+\delta)U}] \leq \frac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)U}} \ .$$

$$\Pi[X \geq (1 + 0)0]$$

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Proof of Chernoff Bounds

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

$$\frac{\mathbb{E}[e^{tX}]}{(1+\delta)U}$$
 .

398

$$X \ge e^{t(1+\delta)U}] \le \frac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)U}} .$$

$$e^{i(1+\delta)0}$$

17.1 Chernoff Bounds

EADS II

$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right] = E\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}E\left[e^{tX_{i}}\right]$$

$$p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{t}-1)}$$

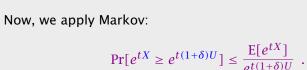
17.1 Chernoff Bounds

$$\prod_{i} \mathbf{E} \left[e^{tX_{i}} \right] \leq \prod_{i} e^{p_{i}(e^{t}-1)}$$

$$e^{p_i(e^t-1)}$$

399/571

Cool Trick:



This may be a lot better (!?)

Proof of Chernoff Bounds

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

17.1 Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

$$e^{t(1+\delta)U}$$
]

 $\mathbb{E}\left[e^{tX}\right] = \mathbb{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbb{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbb{E}\left[e^{tX_{i}}\right]$

 $E\left|e^{tX_{i}}\right| = (1 - p_{i}) + p_{i}e^{t} = 1 + p_{i}(e^{t} - 1) \le e^{p_{i}(e^{t} - 1)}$

 $\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{t}-1)} = e^{\sum p_{i}(e^{t}-1)}$

17.1 Chernoff Bounds

399/571

This may be a lot better (!?)

Cool Trick:

Proof of Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

 $\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}}$.

17.1 Chernoff Bounds

 $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

EADS II

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i(e^t - 1)}$$

$$\prod_i \mathbb{E}\left[e^{tX_i}\right] \leq \prod_i e^{p_i(e^t-1)} = e^{\sum p_i(e^t-1)} = e^{(e^t-1)U}$$

$$\prod_i \mathbb{E}\left[e^{tX_i}\right] \le \prod_i e^{p_i(e^t - 1)} = e^{\sum p_i(e^t - 1)} = e^{(e^t - 1)U}$$

17.1 Chernoff Bounds

$$(e^{t-1}) = e^{\sum p_i(e^t-1)} = e^{(e^t-1)U}$$

Now, we apply Markov:
$$\Pr[e^{tX} \geq e^{t(1+\delta)U}] \leq \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \ .$$

This may be a lot better (!?)

Proof of Chernoff Bounds

Cool Trick:

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

 $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

17.1 Chernoff Bounds

$$tY_1$$

Now, we apply Markov:

w, we apply Markov:
$$\Pr[X \geq (1+\delta)U] = \Pr[e^{tX} \geq e^{t(1+\delta)U}]$$

$$\leq \frac{\operatorname{E}[e^{tX}]}{e^{t(1+\delta)U}}$$

Proof of Chernoff Bounds

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{t}-1)} = e^{\sum p_{i}(e^{t}-1)} = e^{(e^{t}-1)U}$$

Now, we apply Markov:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$
$$\le \frac{E[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}}$$

17.1 Chernoff Bounds

$$\frac{1}{(1+\delta)U} \le \frac{1}{e^{t(1+\delta)U}}$$

$$\prod_i \mathbf{E} \left[e^{t \cdot t} \right]$$

Proof of Chernoff Bounds

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

 $E[e^{tX}] = E[e^{t\sum_i X_i}] = E[\prod_i e^{tX_i}] = \prod_i E[e^{tX_i}]$

$$) \le e^{p_i(e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{t}-1)} = e^{\sum p_{i}(e^{t}-1)} = e^{(e^{t}-1)U}$$

400/571

Now, we apply Markov: $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

$$|U| = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

$$\le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}}$$

We choose $t = \ln(1 + \delta)$.

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i(e^t - 1)}$$

Proof of Chernoff Bounds

$$\prod_i \mathbb{E}\left[e^{tX_i}\right] \leq \prod_i e^{p_i(e^t-1)} = e^{\sum p_i(e^t-1)} = e^{(e^t-1)U}$$

399

 $E[e^{tX}] = E[e^{t\sum_i X_i}] = E[\prod_i e^{tX_i}] = \prod_i E[e^{tX_i}]$

Now, we apply Markov: $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

 $\leq \frac{\mathbb{E}[e^{tX}]}{\rho^{t(1+\delta)U}} \leq \frac{e^{(e^t-1)U}}{\rho^{t(1+\delta)U}} \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U}$

17.1 Chernoff Bounds

We choose $t = \ln(1 + \delta)$.

$$\mathbb{E}\left[e^{tX}\right] = \mathbb{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbb{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbb{E}\left[e^{tX_{i}}\right]$$

Proof of Chernoff Bounds

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i(e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{t}-1)} = e^{\sum p_{i}(e^{t}-1)} = e^{(e^{t}-1)U}$$

400/571

399

Lemma 89

For $0 < \delta < 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^2/3}$$

and

$$\left(\frac{(1+\delta)^{1+\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \le e^{-L\delta^{2}/2}$$

Now, we apply Markov:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

$$\le \frac{E[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}} \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$

We choose $t = \ln(1 + \delta)$.

401/571

Show:

 $\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^{2}/3}$

For $0 \le \delta \le 1$ we have that

Lemma 89

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^{2}/3}$$

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

17.1 Chernoff Bounds

Harald Räcke

17.1 Chernoff Bounds

402/571

Show:

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U\delta^{2}/3}$$
 as:

$$U(\delta - (1+\delta)\ln(1+\delta)) \le -U\delta^2/3$$

and

For $0 \le \delta \le 1$ we have that

Lemma 89

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^2/3}$$

$$(1+\delta)^{1+}$$

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

401

17.1 Chernoff Bounds

EADS II

Harald Räcke

Show:

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^{2}/3}$$
 ms:

$$U(\delta - (1+\delta)\ln(1+\delta)) \le -U\delta^2/3$$

True for
$$\delta = 0$$
.

17.1 Chernoff Bounds

402/571

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

17.1 Chernoff Bounds

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^{2}/3}$$

401

For $0 \le \delta \le 1$ we have that

Lemma 89

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \leq e^{-U\delta^2/3}$$
 Take logarithms:
$$U(\delta-(1+\delta)\ln(1+\delta)) \leq -U\delta^2/3$$
 True for $\delta=0$. Divide by U and take derivatives:
$$-\ln(1+\delta) \leq -2\delta/3$$

 $\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^{2}/3}$ and $\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$

Reason: As long as derivative of left side is smaller than derivative of right side the inequality holds.

402/571

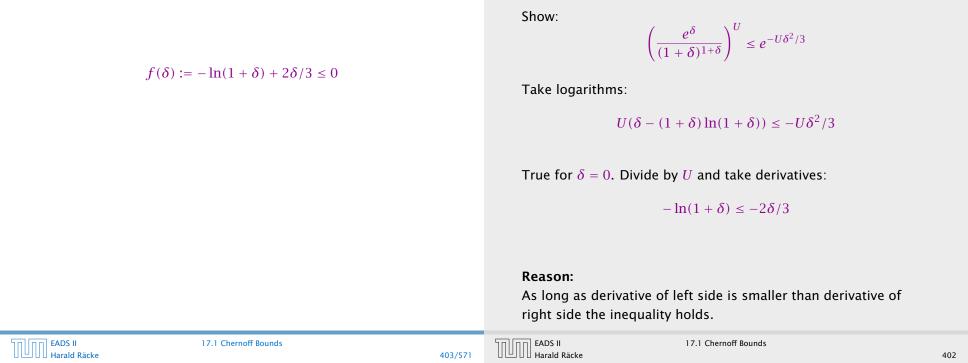
Lemma 89

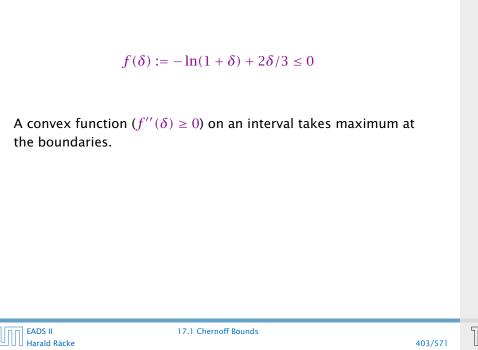
For $0 \le \delta \le 1$ we have that

401

Harald Räcke

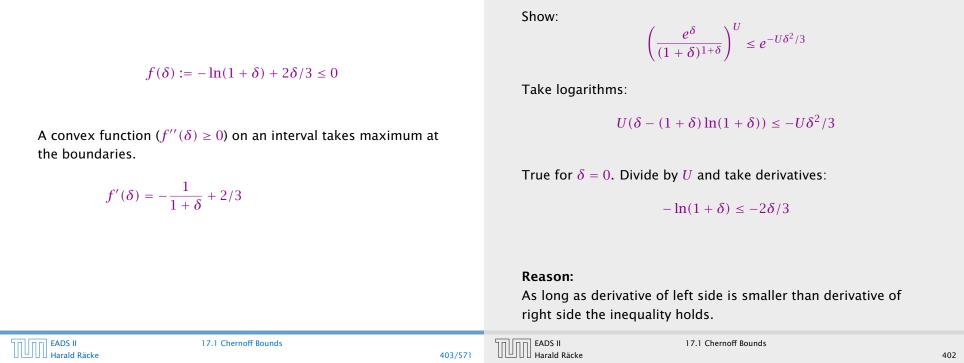
Show:

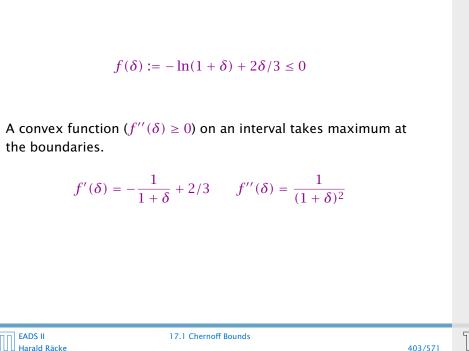




 $\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^2/3}$ Take logarithms: $U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta^2/3$ True for $\delta = 0$. Divide by U and take derivatives: $-\ln(1+\delta) < -2\delta/3$ Reason: As long as derivative of left side is smaller than derivative of

Show:





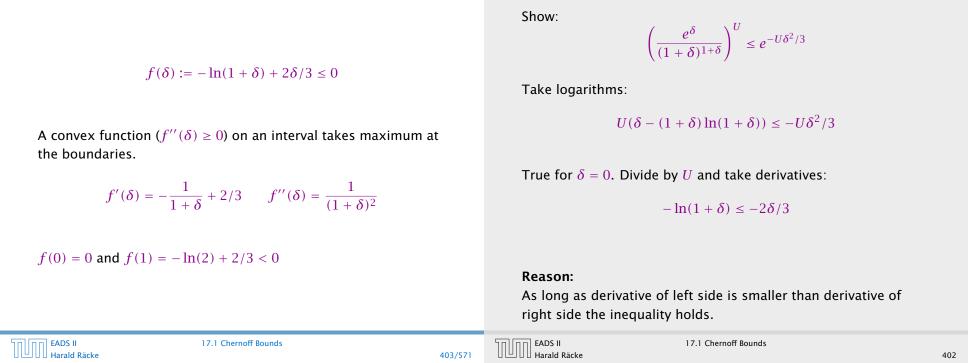
Take logarithms: $U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta^2/3$ True for $\delta = 0$. Divide by U and take derivatives: $-\ln(1+\delta) < -2\delta/3$

 $\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^2/3}$

402

Show:

17.1 Chernoff Bounds



For $\delta \geq 1$ we show

$$f^{\prime}(0)=0$$
 and

A convex function (
$$f''(\delta) \ge 0$$
) on an interval takes maximum at the boundaries.
$$f'(\delta) = -\frac{1}{1+\delta} + 2/3 \qquad f''(\delta) = \frac{1}{(1+\delta)^2}$$

$$f(0) = 0 \text{ and } f(1) = -\ln(2) + 2/3 < 0$$

404/571

403

 $\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta/3}$

 $f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$

For $\delta > 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta/3}$$

17.1 Chernoff Bounds

$$U(\delta - (1+\delta)\ln(1+\delta)) \le -U\delta/3$$

404/571

$$f(0) = 0$$
 and $f(1) = -\ln(2) + 2/3 < 0$

$$)=0$$
 and j

the boundaries.
$$f'(\delta) = -\frac{1}{2} + 2/3$$

 $f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$

A convex function (
$$f''(\delta) \ge 0$$
) on an interval takes maximum at the boundaries.

$$f''(\delta) = \frac{1}{(1-\epsilon)^2}$$

$$\delta(\delta) = \frac{1}{(1+\delta)^2}$$

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

For $\delta > 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta/3}$$

Take logarithms:

$$U(\delta - (1+\delta)\ln(1+\delta)) \le -U\delta/3$$

True for $\delta = 0$.

$$-(1+\delta)\ln(1+\delta)) \le -\delta$$

17.1 Chernoff Bounds

404/571

$$f(0) = -\frac{1}{1+\delta} + \frac{2}{3}$$

$$f(0) = 0 \text{ and } f(1) = -\ln(2) + \frac{2}{3} < 0$$

the boundaries.

$$''(\delta) =$$

 $f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$

17.1 Chernoff Bounds

A convex function (
$$f''(\delta) \ge 0$$
) on an interval takes maximum at the boundaries.

403

$$) = \frac{1}{(1+\delta)^2}$$

$$(1+0)^2$$

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

Take logarithms:

For $\delta > 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta/3}$$

$$U(\delta - (1+\delta)\ln(1+\delta)) \le -U\delta/3$$

True for
$$\delta=0$$
. Divide by U and take derivatives:

$$-\ln(1+\delta) \le -1/3 \iff \ln(1+\delta) \ge 1/3$$
 (true)

17 1 Chernoff Bounds

right side the inequality holds.

EADS II

Harald Räcke

404/571

$$f'(\delta$$

f(0) = 0 and $f(1) = -\ln(2) + 2/3 < 0$

 $f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$

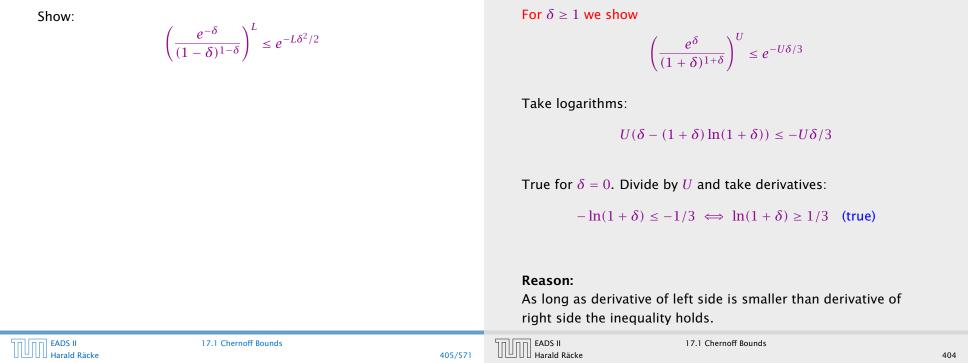
17.1 Chernoff Bounds

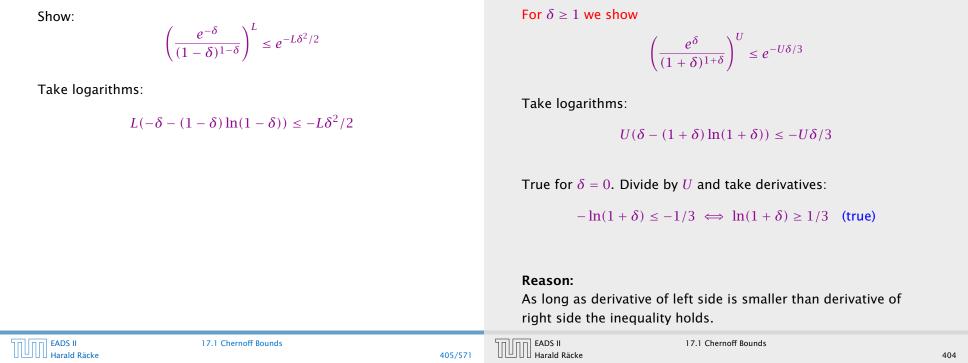
A convex function (
$$f^{\prime\prime}(\delta)\geq 0$$
) on an interval takes maximum at the boundaries.

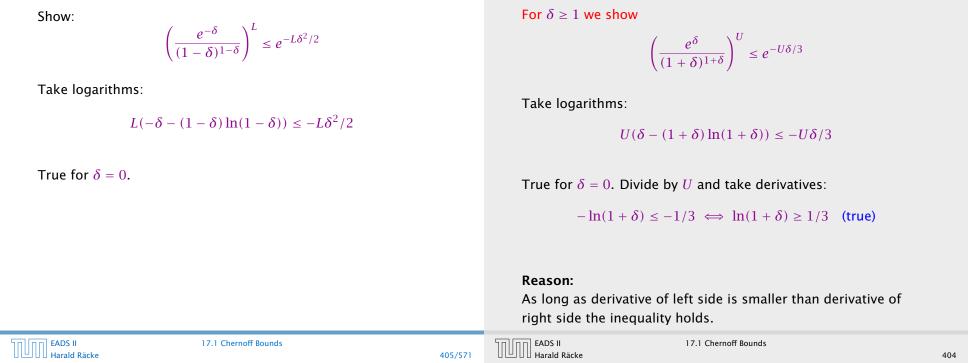
$$b'(\delta) = \frac{1}{(1+\delta)^2}$$

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

$$(1+\delta)^2$$







$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \leq e^{-L\delta^2/2}$$
 Take logarithms:
$$L(-\delta-(1-\delta)\ln(1-\delta)) \leq -L\delta^2/2$$
 True for $\delta=0$. Divide by L and take derivatives:
$$\ln(1-\delta) \leq -\delta$$

 $U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta/3$ True for $\delta = 0$. Divide by *U* and take derivatives: $-\ln(1+\delta) \le -1/3 \iff \ln(1+\delta) \ge 1/3$ (true)

 $\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta/3}$

Show:

As long as derivative of left side is smaller than derivative of

Reason: As long as derivative of left side is smaller than derivative of

EADS II

Harald Räcke

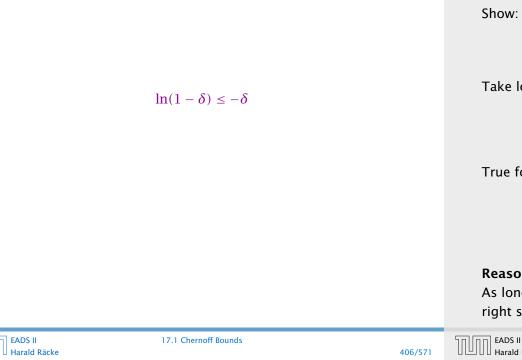
17.1 Chernoff Bounds

405/571

For $\delta > 1$ we show

Take logarithms:

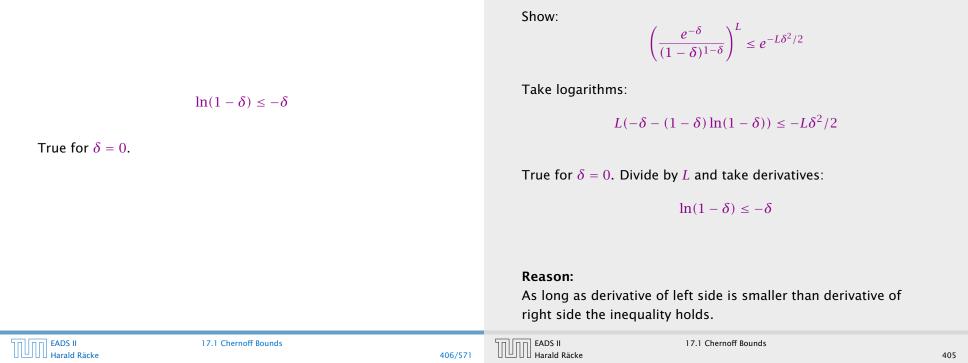
- right side the inequality holds. 17 1 Chernoff Bounds

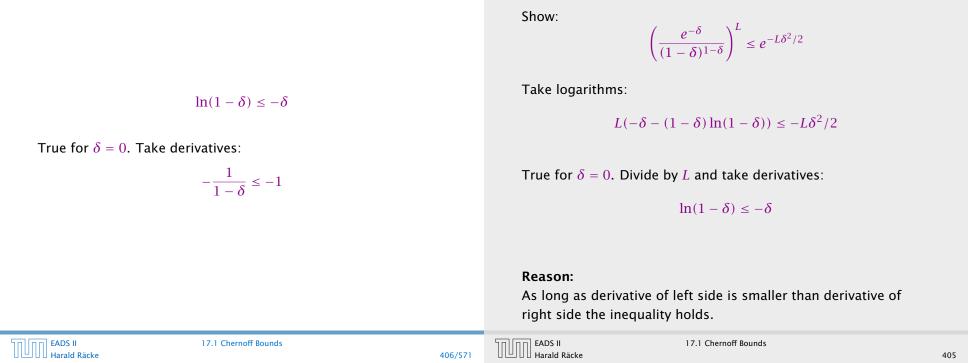


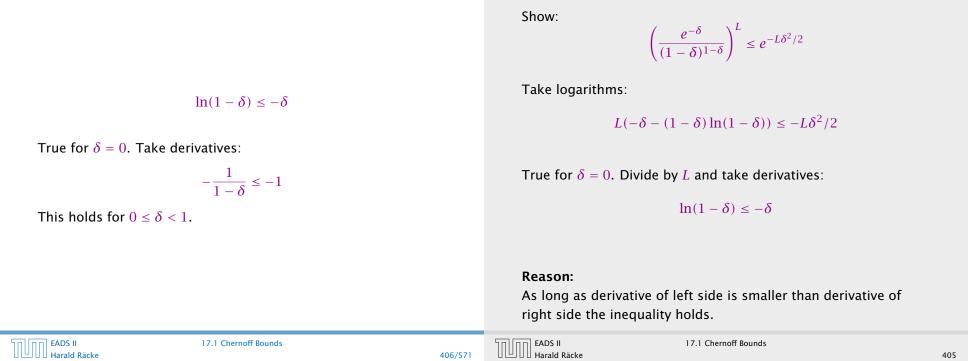
Take logarithms: $L(-\delta - (1 - \delta) \ln(1 - \delta)) \le -L\delta^2/2$ True for $\delta = 0$. Divide by L and take derivatives: $ln(1-\delta) \leq -\delta$

 $\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$

17.1 Chernoff Bounds







- Given s_i - t_i pairs in a graph.
- Connect each pair by a path such that not too many path use any given edge.

$$\ln(1-\delta) \le -\delta$$

True for $\delta = 0$. Take derivatives:

$$-\frac{1}{1-\delta} \le -1$$

This holds for $0 \le \delta < 1$.

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming solution.

Integer Multicommodity Flows

- Given s_i - t_i pairs in a graph.
- ► Connect each pair by a path such that not too many path use any given edge.

Theorem 90

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 91

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming solution.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

Theorem 90

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 91

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

Theorem 90

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 91

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

410/571

409

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

Theorem 90

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 91

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i \text{ } n \in P: o \in n} x_p^* = \sum_{mo \in P} x_p^* \le W^*$$

Theorem 90

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 91

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i} \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

Theorem 90

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 91

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i} \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

Theorem 90

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 91

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.

-

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{W^6}$$

Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i} \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.

Then
$$\Pr[Y_e \ge (1+\delta) W^*] < e^{-W^* \delta^2/3} = \frac{1}{n^{c/3}}$$

Integer Multicommodity Flows

Let X_o^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i} \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

Problem definition:

- n Boolean variables

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}$$

Integer Multicommodity Flows

Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.

Then

 $\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$

- Problem definition: n Boolean variables
- ightharpoonup m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

Integer Multicommodity Flows

Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.

 $\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$

Problem definition:

- n Boolean variables
- ightharpoonup m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_i for each clause C_i .

Integer Multicommodity Flows

Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

Problem definition:

- n Boolean variables
- ightharpoonup m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_i for each clause C_i .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

17.3 MAXSAT

Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

17.3 MAXSAT

Terminology:

- ▶ A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_i$ is **not** a clause).
- ▶ We assume a clause does not contain x_i and \bar{x}_i for any i
- \triangleright x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_i .
- Clauses of length one are called unit clauses

17.3 MAXSAT

Problem definition:

- ▶ n Boolean variables
- \blacktriangleright *m* clauses C_1, \ldots, C_m . For example

$$C_7 = \chi_3 \vee \bar{\chi}_5 \vee \bar{\chi}_9$$

- ▶ Non-negative weight w_i for each clause C_i .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Terminology:

- ▶ A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_i$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i
- \triangleright x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_i .
- ► Clauses of length one are called unit clauses

17.3 MAXSAT

Problem definition:

- ▶ n Boolean variables
- \blacktriangleright *m* clauses C_1, \ldots, C_m . For example

$$C_7 = \chi_3 \vee \bar{\chi}_5 \vee \bar{\chi}_9$$

- ▶ Non-negative weight w_i for each clause C_i .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

173 MAXSAT

Terminology:

- ▶ A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_i$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- \triangleright x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- ▶ For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_i .
- Clauses of length one are called unit clauses

17.3 MAXSAT

Problem definition:

- n Boolean variables
- \blacktriangleright *m* clauses C_1, \ldots, C_m . For example

$$C_7 = \chi_3 \vee \bar{\chi}_5 \vee \bar{\chi}_9$$

- ▶ Non-negative weight w_i for each clause C_i .
- ► Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Terminology:

- ▶ A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_i .
- Clauses of length one are called unit clauses

17.3 MAXSAT

Problem definition:

- ▶ n Boolean variables
- \blacktriangleright m clauses C_1, \ldots, C_m . For example

$$C_7 = \chi_3 \vee \bar{\chi}_5 \vee \bar{\chi}_9$$

- ▶ Non-negative weight w_i for each clause C_i .
- ► Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Terminology:

- ▶ A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_i$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_i .
- Clauses of length one are called unit clauses

17.3 MAXSAT

Problem definition:

- ▶ n Boolean variables
- \blacktriangleright m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- ▶ Non-negative weight w_i for each clause C_i .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_i .
- Clauses of length one are called unit clauses.

17.3 MAXSAT

Problem definition:

- ▶ n Boolean variables
- \blacktriangleright m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- ▶ Non-negative weight w_i for each clause C_i .
- ► Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

17.3 MAXSAT

17.3 MAXSAT

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_i$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- ► For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_i .
- ► Clauses of length one are called unit clauses.

Define random variable X_i with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

$$W = \sum w_j X_j$$

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

MAXSAT: Flipping Coins

Define random variable X_i with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{i} w_{j} X_{j}$$

17.3 MAXSAT

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{i} w_{j} X_{j}$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} Pr[C_{j} \text{ is satisified}]$$

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight ${\it W}$ of satisfied clauses is given by

$$W = \sum_{i} w_{j} X_{j}$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} Pr[C_{j} \text{ is satisified}]$$

$$= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$$

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight $\it W$ of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$$

$$\geq \frac{1}{2} \sum_{j} w_{j}$$

Define random variable X_i with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$$

$$\geq \frac{1}{2} \sum_{j} w_{j}$$

$$\geq \frac{1}{2} \text{OPT}$$

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

MAXSAT: LP formulation

Let for a clause C_j , P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \vee \bigvee_{j \in N_j} \bar{x}_i$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$$

$$\geq \frac{1}{2} \sum_{j} w_{j}$$

$$\geq \frac{1}{2} \text{OPT}$$

MAXSAT: LP formulation

Let for a clause C_j , P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \vee \bigvee_{j \in N_j} \bar{x}_i$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$$

$$\geq \frac{1}{2} \sum_{j} w_{j}$$

$$\geq \frac{1}{2} \text{OPT}$$

MAXSAT: Randomized Rounding

hence, to false with probability $(1 - y_i)$.

Set each x_i independently to true with probability y_i (and,

MAXSAT: LP formulation

► Let for a clause C_j , P_j be the set of positive literals and N_j

the set of negative literals.
$$C_j = \bigvee_{j \in P_j} x_i \vee \bigvee_{j \in N_j} \bar{x}_i$$

417

MAXSAT: Randomized Rounding

Lemma 92 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

Definition 93

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 94

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda)$$

for $\lambda \in [0,1]$.

Lemma 92 (Geometric Mean \leq Arithmetic Mean) For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

17.3 MAXSAT

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 94

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

17.3 MAXSAT

for
$$\lambda \in [0,1]$$
.

Lemma 92 (Geometric Mean \leq Arithmetic Mean) For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 94

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

17.3 MAXSAT

for $\lambda \in [0,1]$.

 $\textbf{Lemma 92 (Geometric Mean} \leq \textbf{Arithmetic Mean)}$

For any nonnegative
$$a_1, \ldots, a_k$$

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

A function f on an interval I is concave if for any two points sand r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 94

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

17.3 MAXSAT

for
$$\lambda \in [0,1]$$
.

Lemma 92 (Geometric Mean ≤ Arithmetic Mean) For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

 $Pr[C_i \text{ not satisfied}]$

A function f on an interval I is concave if for any two points s

Definition 93

and r from I and any $\lambda \in [0,1]$ we have $f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda) f(r)$

Let f be a concave function on the interval [0,1], with f(0) = a

and
$$f(1) = a + b$$
. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

 $= a + \lambda b$

for
$$\lambda \in [0,1]$$
.

$Pr[C_j \text{ not satisfied}] = \prod (1 - y_i) \prod y_i$

Definition 93 A function f on an interval I is concave if for any two points s

and r from I and any $\lambda \in [0,1]$ we have $f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda) f(r)$

Let
$$f$$
 be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for
$$\lambda \in [0, 1]$$

EADS II

17.3 MAXSAT

for $\lambda \in [0,1]$. 17.3 MAXSAT

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \end{aligned}$$

A function f on an interval I is concave if for any two points sand r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 94

Let
$$f$$
 be

Let
$$f$$
 be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

 $= a + \lambda b$

for
$$\lambda \in [0,1]$$
.

$$Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$

$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$

$$= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j}$$

17.3 MAXSAT

Definition 93

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 94

Let f be a concave function on the interval [0,1], with f(0) = a

and
$$f(1)=a+b$$
. Then
$$f(\lambda)=f((1-\lambda)0+\lambda 1)$$

$$\geq (1-\lambda)f(0)+\lambda f(1)$$

$$= a + \lambda b$$

$$for \ \Lambda \in [0, 1]$$

for $\lambda \in [0,1]$.

EADS II

421/571

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \\ &\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j} \end{aligned}$$

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

17.3 MAXSAT

Lemma 94

Let
$$f$$
 be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for
$$\lambda \in [0,1]$$
.

The function
$$f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$$
 is concave. Hence,

17.3 MAXSAT

$$Pr[C_j \text{ satisfied}]$$

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \\ &\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j} \end{aligned}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

17.3 MAXSAT

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$

$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$

$$= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j}$$

$$\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j}.$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

17.3 MAXSAT

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \\ &\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j} \end{split}.$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j.$$

 $f''(z)=-rac{\ell-1}{\ell}\Big[1-rac{z}{\ell}\Big]^{\ell-2}\leq 0$ for $z\in[0,1].$ Therefore, f is concave.

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \\ &\leq \left(1 - \frac{z_j}{\ell_i} \right)^{\ell_j} \end{aligned}$$

concave.

 $\geq \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j$. $f''(z) = -\frac{\ell-1}{\ell} \left[1 - \frac{z}{\ell}\right]^{\ell-2} \le 0$ for $z \in [0,1]$. Therefore, f is

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

 $\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_i}\right)^{\ell_j}$

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_i}\right)^{\ell_j}$$

$$\geq \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

 $f''(z)=-rac{\ell-1}{\ell}\Big[1-rac{z}{\ell}\Big]^{\ell-2}\leq 0$ for $z\in[0,1].$ Therefore, f is concave.

EADS II

17.3 MAXSAT

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}} \right)^{\ell_{j}} \right]$$

17.3 MAXSAT

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

 $\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_i}\right)^{\ell_j}$

 $\geq \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j$.

17.3 MAXSAT

 $f''(z) = -\frac{\ell-1}{\ell} \left[1 - \frac{z}{\ell}\right]^{\ell-2} \le 0$ for $z \in [0,1]$. Therefore, f is

423/571

concave.

EADS II

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}} \right)^{\ell_{j}} \right]$$

$$\geq \left(1 - \frac{1}{\rho} \right) \text{ OPT }.$$

•

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j.$$

 $f''(z)=-rac{\ell-1}{\ell}\Big[1-rac{z}{\ell}\Big]^{\ell-2}\leq 0$ for $z\in[0,1].$ Therefore, f is concave.

MAXSAT: The better of two

Theorem 95

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

$$\begin{split} E[W] &= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}] \\ &\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}} \right)^{\ell_{j}} \right] \\ &\geq \left(1 - \frac{1}{e} \right) \text{OPT }. \end{split}$$

obtained by coin flipping. $E[\max\{W_1, W_2\}]$

17.3 MAXSAT

Let W_1 be the value of randomized rounding and W_2 the value

MAXSAT: The better of two

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

425/571

Theorem 95

$$E[\max\{W_1, W_2\}]$$

$$\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2]$$

17.3 MAXSAT

MAXSAT: The better of two

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

424

$$\begin{split} E[\max\{W_1, W_2\}] \\ &\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ &\geq \frac{1}{2} \sum_{j} w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j} \right] + \frac{1}{2} \sum_{j} w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \end{split}$$

MAXSAT: The better of two

Theorem 95

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

$$E[\max\{W_1, W_2\}]$$

$$\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2]$$

$$\geq \frac{1}{2} \sum_{j} w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j} \right] + \frac{1}{2} \sum_{j} w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)$$

$$\geq \sum_{j} w_j z_j \left[\frac{1}{2} \left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2} \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \right]$$

$$\geq \frac{3}{4} \text{ for all integers}$$

MAXSAT: The better of two

Theorem 95

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

$$E[\max\{W_1, W_2\}]$$

$$\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2]$$

$$\geq \frac{1}{2} \sum_{j} w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j} \right] + \frac{1}{2} \sum_{j} w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)$$

$$\geq \sum_{j} w_j z_j \left[\frac{1}{2} \left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2} \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \right]$$

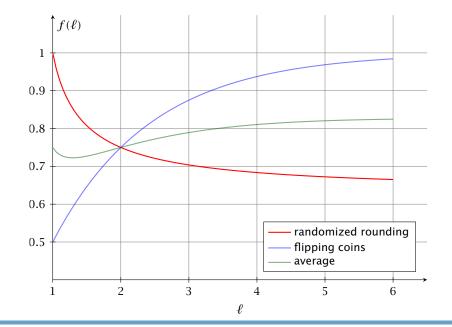
$$\geq \frac{3}{4} \text{for all integers}$$

$$\geq \frac{3}{4} \text{OPT}$$

MAXSAT: The better of two

Theorem 95

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.



17.3 MAXSAT

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

$$E[\max\{W_1, W_2\}]$$

$$\geq E\left[\frac{1}{2}W_1 + \frac{1}{2}W_2\right]$$

$$\geq \frac{1}{2}\sum_{j}w_jz_j\left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_{j}w_j\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)$$

$$\geq \sum_{j}w_jz_j\left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)\right]$$

$$\geq \frac{3}{4} \text{for all integers}$$

17.3 MAXSAT

 $\geq \frac{3}{4}OPT$

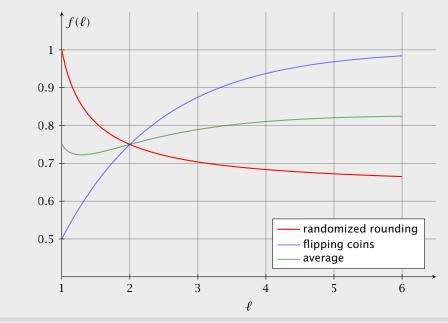
426/571

EADS II

Harald Räcke

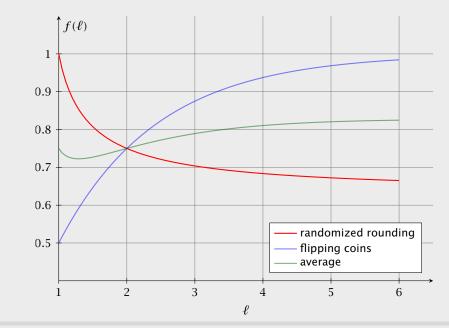
So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(y_i)$.



So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(y_i)$.



Let $f:[0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x - 1}$$

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(\gamma_i)$.

Let $f:[0,1] \rightarrow [0,1]$ be a function with

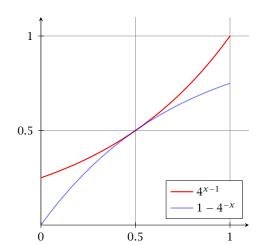
$$1 - 4^{-x} \le f(x) \le 4^{x - 1}$$

Theorem 96 Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(\gamma_i)$.



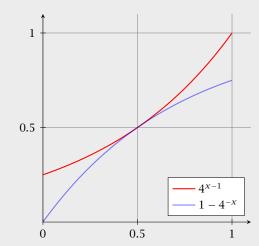
Let $f:[0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x - 1}$$

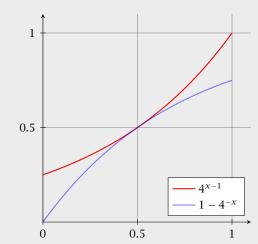
Theorem 96

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

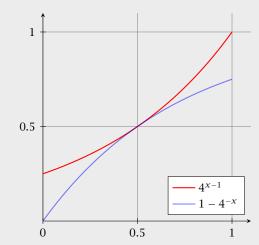
 $Pr[C_j \text{ not satisfied}]$



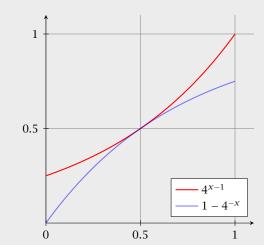
$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$



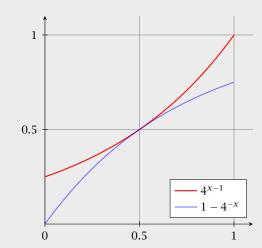
$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \end{split}$$



$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \end{split}$$



$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{split}$$



The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence,

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{split}$$

The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence, $\Pr[C_j \text{ satisfied}]$

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{aligned}$$

The function $g(z) = 1 - 4^{-z}$ is concave on [0, 1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j}$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{split}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

17.3 MAXSAT

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{aligned}$$

17.3 MAXSAT

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

17.3 MAXSAT

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{aligned}$$

17.3 MAXSAT

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

 $\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{aligned}$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}]$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$

$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$

$$= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))}$$

$$\leq 4^{-z_j}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

17.3 MAXSAT

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j}$$

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{aligned}$$

17.3 MAXSAT

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

 $\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{aligned}$

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 97 (Integrality Gap

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation

The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

Therefore.

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

Not if we compare ourselves to the value of an optimum LP-solution.

The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore.

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 97 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 97 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

The function $g(z) = 1 - 4^{-z}$ is concave on [0, 1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 97 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore.

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

Lemma 98

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 97 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

Lemma 98

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- hence, the LP has value 4.

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 97 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

MaxCut

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Lemma 98

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

Trivial 2-approximation

the parts.

Given a weighted graph G = (V, E, w), $w(v) \ge 0$, partition the vertices into two parts. Maximize the weight of edges between

▶ any solution can satisfy at most 3 clauses
 ▶ we can set y₁ = y₂ = 1/2 in the LP; this allows to set

 $z_1 = z_2 = z_3 = z_4 = 1$

► hence, the LP has value 4.

Semidefinite Programming

- linear objective, linear contraints
- we can constrain a square matrix of variables to be symmetric positive definite

MaxCut

MaxCut

Given a weighted graph G=(V,E,w), $w(v)\geq 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

Trivial 2-approximation

Vector Programming

- variables are vectors in n-dimensional space
- objective functions and contraints are linear in inner products of the vectors

This is equivalent!

Semidefinite Programming

- ► linear objective, linear contraints
- we can constrain a square matrix of variables to be symmetric positive definite

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

Vector Programming

- ► variables are vectors in *n*-dimensional space
- objective functions and contraints are linear in inner products of the vectors

This is equivalent!

Quadratic Programs

Quadratic Program for MaxCut:

$$\max_{\substack{\frac{1}{2}\sum_{i,j}w_{ij}(1-y_iy_j)\\\forall i}} \frac{\frac{1}{2}\sum_{i,j}w_{ij}(1-y_iy_j)}{y_i \in \{-1,1\}}$$

This is exactly MaxCut!

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

Semidefinite Relaxation

- this is clearly a relaxation the solution will be vectors on the unit sphere

Quadratic Programs

Quadratic Program for MaxCut:

$$\max \frac{\frac{1}{2} \sum_{i,j} w_{ij} (1 - y_i y_j)}{\forall i} \quad \forall i \quad \forall i \in \{-1, 1\}$$

This is exactly MaxCut!

- ▶ Choose a random vector r such that $r/\|r\|$ is uniformly distributed on the unit sphere.
- If $r^t v_i > 0$ set $y_i = 1$ else set $y_i = -1$

Semidefinite Relaxation

$$\begin{array}{cccc}
\max & \frac{1}{2} \sum_{i,j} w_{ij} (1 - v_i^t v_j) \\
\forall i & v_i^t v_i = 1 \\
\forall i & v_i \in \mathbb{R}^n
\end{array}$$

17.4 MAXCUT

- ▶ this is clearly a relaxation
- ► the solution will be vectors on the unit sphere

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0,1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, ..., x_n)]$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot ... \cdot e^{x_n^2/2} dx_1 \cdot ... \cdot dx_n$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + ... + x_n^2)} dx_1 \cdot ... \cdot dx_n$$

Hence the probability for a point only depends on its distance to the origin.

Rounding the SDP-Solution

- ► Choose a random vector r such that $r/\|r\|$ is uniformly distributed on the unit sphere.
- ▶ If $r^t v_i > 0$ set $y_i = 1$ else set $y_i = -1$

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0,1)$.

Density function:

the origin.

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, ..., x_n)]$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot ... \cdot e^{x_n^2/2} dx_1 \cdot ... \cdot dx_n$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + ... + x_n^2)} dx_1 \cdot ... \cdot dx_n$$

Hence the probability for a point only depends on its distance to

Rounding the SDP-Solution

- ▶ Choose a random vector r such that $r/\|r\|$ is uniformly distributed on the unit sphere.
- If $r^t v_i > 0$ set $v_i = 1$ else set $v_i = -1$

F- -

Fact
The projection of r onto two unit vectors e_1 and e_2 are independent and are normally distributed with mean 0 and variance 1 iff e_1 and e_2 are orthogonal.

Note that this is clear if e_1 and e_2 are standard basis vectors.

17.4 MAXCUT

Rounding the SDP-Solution

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0,1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, ..., x_n)]$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot ... \cdot e^{x_n^2/2} dx_1 \cdot ... \cdot dx_n$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + ... + x_n^2)} dx_1 \cdot ... \cdot dx_n$$

Hence the probability for a point only depends on its distance to the origin.

6 11

Corollary
If we project r onto a hyperplane its normalized projection $(r'/\|r'\|)$ is uniformly distributed on the unit circle within the hyperplane.

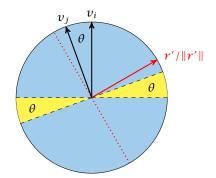
17.4 MAXCUT

Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e_1 and e_2 are independent and are normally distributed with mean 0 and variance 1 iff e_1 and e_2 are orthogonal.

Note that this is clear if e_1 and e_2 are standard basis vectors.



- if the normalized projection falls into the shaded region, v_i and v_i are rounded to different values
- this happens with probability θ/π

Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection $(r'/\|r'\|)$ is uniformly distributed on the unit circle within the hyperplane.

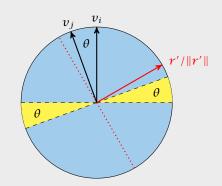
• contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\big(1-v_i^tv_j\big)$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{i,i} \arccos(v_i^t v_i)/\pi$
- ratio is at most

$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.87$$

Rounding the SDP-Solution



- ightharpoonup if the normalized projection falls into the shaded region, v_i and v_j are rounded to different values
- this happens with probability θ/π

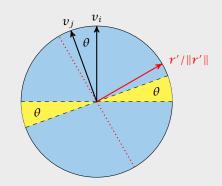
• contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\big(1-v_i^tv_j\big)$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{ij} \arccos(v_i^t v_j)/\pi$
- ratio is at most

$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.87$$

Rounding the SDP-Solution



- \blacktriangleright if the normalized projection falls into the shaded region, v_i and v_j are rounded to different values
- this happens with probability θ/π

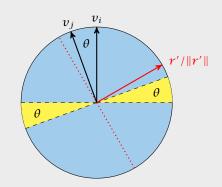
• contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\big(1-v_i^tv_j\big)$$

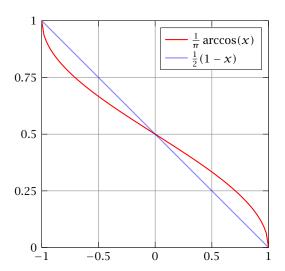
- (expected) contribution of edge (i, j) to the rounded instance $w_{ij} \arccos(v_i^t v_j)/\pi$
- ratio is at most

$$\min_{x \in \mathbb{R}^{n}} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.87$$

Rounding the SDP-Solution



- if the normalized projection falls into the shaded region, v_i and v_i are rounded to different values
- \blacktriangleright this happens with probability θ/π



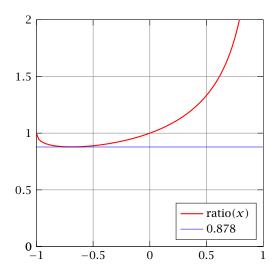
Rounding the SDP-Solution

 \blacktriangleright contribution of edge (i, j) to the SDP-relaxation:

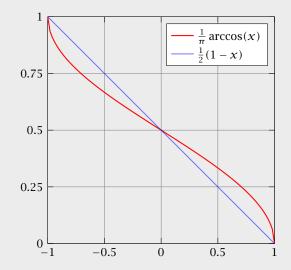
$$\frac{1}{2}w_{ij}\big(1-v_i^tv_j\big)$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{ij} \arccos(v_i^t v_j)/\pi$
- ► ratio is at most

$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.878$$



Rounding the SDP-Solution



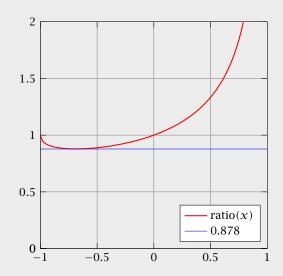
Theorem 99

Given the unique games conjecture, there is no α -approximation for the maximum cut problem with constant

$$\alpha > \min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)}$$

unless P = NP.

Rounding the SDP-Solution



Primal Relaxation:

min
$$\sum_{i=1}^{k} w_i x_i$$
s.t.
$$\forall u \in U \quad \sum_{i:u \in S_i} x_i \geq 1$$

$$\forall i \in \{1, ..., k\} \qquad x_i \geq 0$$

Dual Formulation:

$$\max \qquad \qquad \sum_{u \in U} y_u$$
s.t. $\forall i \in \{1, ..., k\}$ $\sum_{u: u \in S_i} y_u \leq w_i$

$$y_u \geq 0$$

Primal Relaxation:

min
$$\sum_{i=1}^{k} w_i x_i$$
s.t.
$$\forall u \in U \quad \sum_{i:u \in S_i} x_i \geq 1$$

$$\forall i \in \{1, ..., k\} \qquad x_i \geq 0$$

Dual Formulation:

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- \triangleright While x not feasible

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
$$\sum_{i=1}^{k} w_i x_i$$
s.t.
$$\forall u \in U \quad \sum_{i:u \in S_i} x_i \geq 1$$

$$\forall i \in \{1, ..., k\} \qquad x_i \geq 0$$

Dual Formulation:

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - ► Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
$$\sum_{i=1}^{k} w_i x_i$$
s.t.
$$\forall u \in U \quad \sum_{i:u \in S_i} x_i \geq 1$$

$$\forall i \in \{1, ..., k\} \qquad x_i \geq 0$$

Dual Formulation:

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - ▶ Identify an element *e* that is not covered in current primal integral solution.
 - ► Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 00).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution)

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
$$\sum_{i=1}^{k} w_i x_i$$
s.t.
$$\forall u \in U \quad \sum_{i:u \in S_i} x_i \geq 1$$

$$\forall i \in \{1, ..., k\} \qquad x_i \geq 0$$

Dual Formulation:

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - ► Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution)

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
$$\sum_{i=1}^{k} w_i x_i$$
s.t.
$$\forall u \in U \quad \sum_{i:u \in S_i} x_i \geq 1$$

$$\forall i \in \{1, ..., k\} \quad x_i \geq 0$$

Dual Formulation:

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - ► Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
$$\sum_{i=1}^{k} w_i x_i$$
s.t.
$$\forall u \in U \quad \sum_{i:u \in S_i} x_i \geq 1$$

$$\forall i \in \{1, ..., k\} \quad x_i \geq 0$$

Dual Formulation:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- ► While x not feasible
 - ► Identify an element *e* that is not covered in current primal integral solution.
 - ► Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - ► If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Repetition: Primal Dual for Set Cover

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- ► While x not feasible
 - ► Identify an element *e* that is not covered in current primal integral solution.
 - ► Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - ► If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

Repetition: Primal Dual for Set Cover

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- ► While x not feasible
 - ► Identify an element *e* that is not covered in current primal integral solution.
 - ► Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Analysis:

For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j}$$

Repetition: Primal Dual for Set Cover

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- ► While x not feasible
 - ► Identify an element *e* that is not covered in current primal integral solution.
 - ► Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - ► If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Analysis:

For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e}$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- ► While x not feasible
 - Identify an element e that is not covered in current primal integral solution.
 - ► Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - ► If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Analysis:

▶ For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_j x_j = \sum_{j} \sum_{e \in S_j} y_e = \sum_{e} |\{j : e \in S_j\}| \cdot y_e$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- ► While x not feasible
 - Identify an element e that is not covered in current primal integral solution.
 - ► Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - ► If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Analysis:

▶ For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$

$$\leq f \cdot \sum_{e} y_{e} \leq f \cdot \text{OPT}$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- ► While x not feasible
 - Identify an element e that is not covered in current primal integral solution.
 - ► Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Analysis:

For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

► Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$

$$\leq f \cdot \sum_{e} y_{e} \leq f \cdot \text{OPT}$$

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

Repetition: Primal Dual for Set Cover

Analysis:

▶ For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

► Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$

$$\leq f \cdot \sum_{e} y_{e} \leq f \cdot \text{OPT}$$

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_i} x_j = 1$$

then the solution would be optimal!!!

Repetition: Primal Dual for Set Cover

Analysis:

For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$

$$\leq f \cdot \sum_{e} y_{e} \leq f \cdot \text{OPT}$$

18 1 Primal Dual Revisited

We don't fulfill these constraint but we fulfill an approximate version:

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_j} x_j = 1$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_i} x_j \le f$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_i} x_j = 1$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{i:e \in S_i} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_i} x_j = 1$$

then the solution would be optimal!!!

452

Suppose we have a primal/dual pair

1	min		$\sum_{j} c_{j} x_{j}$				max		$\sum_{i} b_{i} y_{i}$		
	s.t.	$\forall i$	$\sum_{j:} a_{ij} x_j$ $\sum_{j:} a_{ij} x_j$	≥	b_i		s.t.	$\forall j$	$\sum_i a_{ij} y_i$	≤	c_j
Į		$\forall j$	x_{j}	≥	0			$\forall i$	${\mathcal Y}_i$	≥	0
			<i>J</i>			, ,					

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair

$$\begin{bmatrix} \min & \sum_{j} c_{j} x_{j} \\ \text{s.t.} & \forall i & \sum_{j:} a_{ij} x_{j} \geq b_{i} \\ & \forall j & x_{j} \geq 0 \end{bmatrix} \begin{bmatrix} \max & \sum_{i} b_{i} y_{i} \\ \text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\ & \forall i & y_{i} \geq 0 \end{bmatrix}$$

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{i} a_{ij} x_{j} \le \beta b_{i}$$

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_i} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

$$\sum_{j} c_{j} x_{j}$$

Suppose we have a primal/dual pair

$$\begin{bmatrix} \min & \sum_{j} c_{j} x_{j} \\ \text{s.t.} & \forall i & \sum_{j} a_{ij} x_{j} \geq b_{i} \\ \forall j & x_{j} \geq 0 \end{bmatrix} \begin{bmatrix} \max & \sum_{i} b_{i} y_{i} \\ \text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\ \forall i & y_{i} \geq 0 \end{bmatrix}$$

and solutions that fulfill approximate slackness conditions:

$$x_j > 0 \Rightarrow \sum_i a_{ij} y_i \ge \frac{1}{\alpha} c_j$$

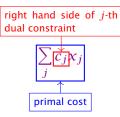
 $y_i > 0 \Rightarrow \sum_j a_{ij} x_j \le \beta b_i$

Suppose we have a primal/dual pair

$$\begin{bmatrix} \min & \sum_{j} c_{j} x_{j} \\ \text{s.t.} & \forall i & \sum_{j:} a_{ij} x_{j} \geq b_{i} \\ \forall j & x_{j} \geq 0 \end{bmatrix} \begin{bmatrix} \max & \sum_{i} b_{i} y_{i} \\ \text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\ \forall i & y_{i} \geq 0 \end{bmatrix}$$

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{j} a_{ij} x_{j} \le \beta b_{i}$$



Suppose we have a primal/dual pair

$$\begin{bmatrix} \min & \sum_{j} c_{j} x_{j} \\ \text{s.t.} & \forall i & \sum_{j:} a_{ij} x_{j} \geq b_{i} \\ \forall j & x_{j} \geq 0 \end{bmatrix} \begin{bmatrix} \max & \sum_{i} b_{i} y_{i} \\ \text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\ \forall i & y_{i} \geq 0 \end{bmatrix}$$

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{j} a_{ij} x_{j} \le \beta b_{i}$$

$$\frac{\sum_{j} c_{j} x_{j}}{\uparrow} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$
primal cost

Suppose we have a primal/dual pair

$$\begin{bmatrix} \min & \sum_{j} c_{j} x_{j} \\ \text{s.t.} & \forall i & \sum_{j} a_{ij} x_{j} \geq b_{i} \\ \forall j & x_{j} \geq 0 \end{bmatrix} \begin{bmatrix} \max & \sum_{i} b_{i} y_{i} \\ \text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\ \forall i & y_{i} \geq 0 \end{bmatrix}$$

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{j} a_{ij} x_{j} \le \beta b_{i}$$

Suppose we have a primal/dual pair

$$\begin{bmatrix} \min & \sum_{j} c_{j} x_{j} \\ \text{s.t.} & \forall i & \sum_{j:} a_{ij} x_{j} \geq b_{i} \\ \forall j & x_{j} \geq 0 \end{bmatrix} \begin{bmatrix} \max & \sum_{i} b_{i} y_{i} \\ \text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\ \forall i & y_{i} \geq 0 \end{bmatrix}$$

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{j} a_{ij} x_{j} \le \beta b_{i}$$

Suppose we have a primal/dual pair

$$\begin{bmatrix} \min & \sum_{j} c_{j} x_{j} \\ \text{s.t.} & \forall i & \sum_{j} a_{ij} x_{j} \geq b_{i} \\ \forall j & x_{j} \geq 0 \end{bmatrix} \begin{bmatrix} \max & \sum_{i} b_{i} y_{i} \\ \text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\ \forall i & y_{i} \geq 0 \end{bmatrix}$$

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{i} a_{ij} x_{j} \le \beta b_{i}$$

Suppose we have a primal/dual pair

$$\begin{bmatrix} \min & \sum_{j} c_{j} x_{j} \\ \text{s.t.} & \forall i & \sum_{j:} a_{ij} x_{j} \geq b_{i} \\ \forall j & x_{j} \geq 0 \end{bmatrix} \begin{bmatrix} \max & \sum_{i} b_{i} y_{i} \\ \text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\ \forall i & y_{i} \geq 0 \end{bmatrix}$$

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{i} a_{ij} x_{j} \le \beta b_{i}$$

Feedback Vertex Set for Undirected Graphs

• Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.

Then

Feedback Vertex Set for Undirected Graphs

- ▶ Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- ► Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

Then

We can encode this as an instance of Set Cover

► Each vertex can be viewed as a set that contains some cycles.

Feedback Vertex Set for Undirected Graphs

- ► Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- ► Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

- ► Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.

Feedback Vertex Set for Undirected Graphs

- ► Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- ► Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- ▶ However, this encoding gives a Set Cover instance of non-polynomial size.
- ▶ The $O(\log n)$ -approximation for Set Cover does not help us to get a good solution.

Feedback Vertex Set for Undirected Graphs

- Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- ► Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

Let \mathbb{C} denote the set of all cycles (where a cycle is identified by its set of vertices)

We can encode this as an instance of Set Cover

- ► Each vertex can be viewed as a set that contains some cycles.
- ► However, this encoding gives a Set Cover instance of non-polynomial size.
- ► The $O(\log n)$ -approximation for Set Cover does not help us to get a good solution.

EADS II

Let \mathbb{C} denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

$$\begin{bmatrix} \min & \sum_{v} w_{v} x_{v} \\ \text{s.t.} & \forall C \in \mathbb{C} & \sum_{v \in C} x_{v} \geq 1 \\ & \forall v & x_{v} \geq 0 \end{bmatrix}$$

Dual Formulation:

We can encode this as an instance of Set Cover

- ► Each vertex can be viewed as a set that contains some cycles.
- ► However, this encoding gives a Set Cover instance of non-polynomial size.
- ► The $O(\log n)$ -approximation for Set Cover does not help us to get a good solution.

• Start with x = 0 and y = 0

Let $\ensuremath{\mathbb{C}}$ denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

$$\begin{array}{cccc} \min & & \sum_{v} w_{v} x_{v} \\ \text{s.t.} & \forall C \in \mathbb{C} & \sum_{v \in C} x_{v} & \geq & 1 \\ & \forall v & x_{v} & \geq & 0 \end{array}$$

Dual Formulation:

- Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).

Let C denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

min
$$\sum_{v} w_{v} x_{v}$$

s.t. $\forall C \in \mathbb{C}$ $\sum_{v \in C} x_{v} \geq 1$
 $\forall v$ $x_{v} \geq 0$

Dual Formulation:

EADS II

- Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - ► Increase y_C until dual constraint for some vertex v becomes tight.

Let ${\mathbb C}$ denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

min
$$\sum_{v} w_{v} x_{v}$$
s.t.
$$\forall C \in \mathbb{C} \quad \sum_{v \in C} x_{v} \geq 1$$

$$\forall v \quad x_{v} \geq 0$$

Dual Formulation:

- Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - ► Increase y_C until dual constraint for some vertex v becomes tight.
 - set $x_v = 1$.

Let ${\mathbb C}$ denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

min
$$\sum_{v} w_{v} x_{v}$$
s.t.
$$\forall C \in \mathbb{C} \quad \sum_{v \in C} x_{v} \geq 1$$

$$\forall v \quad x_{v} \geq 0$$

Dual Formulation:

$$\sum_{v} w_{v} x_{v}$$

If we perform the previous dual technique for Set Cover we get the following:

- ► Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex vbecomes tight.
 - set $x_v = 1$.

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C: v \in C} y_{C} x_{v}$$

If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex vbecomes tight.
 - set $x_v = 1$.

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C: v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C: v \in C} y_{C}$$

where S is the set of vertices we choose.

If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- ► While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.
 - ightharpoonup set $x_v = 1$.

EADS II

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$

$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$

$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- ► While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.
 - set $x_v = 1$.

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$

$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$

$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic. If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- ► While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.
 - ightharpoonup set $x_v = 1$.

Algorithm 1 FeedbackVertexSet

- 1: *y* ← 0
- 2: *x* ← 0
- 3: while exists cycle C in G do
- 4: increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$
- 5: $x_v = 1$
- 6: remove v from G
- 7: repeatedly remove vertices of degree 1 from G

Then

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C: v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C: v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Algorithm 1 FeedbackVertexSet

- 1: $\gamma \leftarrow 0$
- 2: $x \leftarrow 0$
- 3: **while** exists cycle *C* in *G* **do**
- increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$ 4:
- $x_v = 1$
- remove *v* from *G*
- repeatedly remove vertices of degree 1 from G

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path *P* of vertices of degree 2 in *G* the algorithm chooses at most one vertex from P.

Algorithm 1 FeedbackVertexSet

- 1: $\gamma \leftarrow 0$
- 2: $x \leftarrow 0$

EADS II

- 3: while exists cycle C in G do
- 4: increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$
- 5: $x_v = 1$
- remove *v* from *G*
- repeatedly remove vertices of degree 1 from G

461

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path ${\cal P}$ of vertices of degree 2 in ${\cal G}$ the algorithm chooses at most one vertex from ${\cal P}.$

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 100

In any graph with no vertices of degree 1, there always exists a cycle that has at most $\mathcal{O}(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$\gamma_C > 0 \Rightarrow |S \cap C| \leq \mathcal{O}(\log n)$$
.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Given a graph G=(V,E) with two nodes $s,t\in V$ and edge-weights $c:E\to\mathbb{R}^+$ find a shortest path between s and t w.r.t. edge-weights c.

$$\begin{array}{lll} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S & \sum_{e:\delta(S)} x_{e} \geq 1 \\ & \forall e \in E & x_{e} \in \{0,1\} \end{array}$$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 100

In any graph with no vertices of degree 1, there always exists a cycle that has at most $\mathcal{O}(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$y_C > 0 \Rightarrow |S \cap C| \leq \mathcal{O}(\log n)$$
.

Given a graph G=(V,E) with two nodes $s,t\in V$ and edge-weights $c:E\to\mathbb{R}^+$ find a shortest path between s and t w.r.t. edge-weights c.

$$\begin{array}{|c|c|c|c|}\hline \min & \sum_{e} c(e) x_e \\ \text{s.t.} & \forall S \in S & \sum_{e: \delta(S)} x_e & \geq & 1 \\ & \forall e \in E & x_e & \in & \{0,1\} \\ \hline \end{array}$$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 100

In any graph with no vertices of degree 1, there always exists a cycle that has at most $\mathcal{O}(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$y_C > 0 \Rightarrow |S \cap C| \leq \mathcal{O}(\log n)$$
.

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S and $S = \{S \subset V : s \in S \mid t \notin S\}$

Primal Dual for Shortest Path

Given a graph G=(V,E) with two nodes $s,t\in V$ and edge-weights $c:E\to\mathbb{R}^+$ find a shortest path between s and t w.r.t. edge-weights c.

min
$$\sum_{e} c(e) x_{e}$$
s.t. $\forall S \in S$ $\sum_{e:\delta(S)} x_{e} \ge 1$

$$\forall e \in E$$
 $x_{e} \in \{0,1\}$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S=\{S\subseteq V:s\in S,t\notin S\}$.

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Primal Dual for Shortest Path

Given a graph G=(V,E) with two nodes $s,t\in V$ and edge-weights $c:E\to\mathbb{R}^+$ find a shortest path between s and t w.r.t. edge-weights c.

min
$$\sum_{e} c(e) x_{e}$$
s.t. $\forall S \in S$ $\sum_{e:\delta(S)} x_{e} \ge 1$

$$\forall e \in E$$
 $x_{e} \in \{0,1\}$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Primal Dual for Shortest Path

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

We can interpret the value y_S as the width of a moat surrounding the set S.

Fach set can have its own most but all mosts must be disjointed

An adda cannot be shorter than all the mosts that it has to cross

Primal Dual for Shortest Path

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S=\{S\subseteq V:s\in S,t\notin S\}$.

We can interpret the value y_S as the width of a moat surrounding the set S.

Each set can have its own moat but all moats must be disjoint.

Primal Dual for Shortest Path

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

We can interpret the value y_S as the width of a moat surrounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

Primal Dual for Shortest Path

The Dual:

$$\begin{array}{ccccc} \max & \sum_{S} y_{S} \\ \text{s.t.} & \forall e \in E & \sum_{S:e \in \delta(S)} y_{S} & \leq & c(e) \\ & \forall S \in S & y_{S} & \geq & 0 \end{array}$$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Algorithm 1 PrimalDualShortestPath

- 3: while there is no s-t path in (V, F) do
- 4: Let C be the connected component of (V, F) containing s
- 5: Increase y_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} y_S = c(e')$.
- 6: $F \leftarrow F \cup \{e'\}$
- 7: Let P be an s-t path in (V, F)
- 8: return P

Primal Dual for Shortest Path

We can interpret the value y_S as the width of a moat surrounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

At each point in time the set F forms a tree.

Proof:

Algorithm 1 PrimalDualShortestPath

3: **while** there is no s-t path in (V,F) **do**

Let C be the connected component of (V, F) containing s

5: Increase y_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} y_S = c(e')$.

6:
$$F \leftarrow F \cup \{e'\}$$

7: Let P be an s-t path in (V, F)

8: return P

At each point in time the set F forms a tree.

Proof:

- ▶ In each iteration we take the current connected component from (V,F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ► Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

Algorithm 1 PrimalDualShortestPath

- 1: $y \leftarrow 0$
- 2: *F* ← Ø
- 3: **while** there is no s-t path in (V, F) **do**
- Let C be the connected component of (V,F) containing \mathcal{S}
- Increase y_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} y_S = c(e')$.
- 6: $F \leftarrow F \cup \{e'\}$
- 7: Let P be an s-t path in (V, F)
- 8: return P

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V,F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ► Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

Algorithm 1 PrimalDualShortestPath

- 1: $y \leftarrow 0$
- 2: *F* ← Ø
- 3: **while** there is no s-t path in (V, F) **do**
- Let C be the connected component of (V,F) containing s
- Increase y_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} y_S = c(e')$.
- 6: $F \leftarrow F \cup \{e'\}$
- 7: Let P be an s-t path in (V, F)
- 8: return P

468/571

467

$$\sum_{e \in P} c(e)$$

At each point in time the set F forms a tree.

Proof:

- ▶ In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ► Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$

At each point in time the set F forms a tree.

Proof:

- ▶ In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ► Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

At each point in time the set F forms a tree.

Proof:

- ▶ In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ► Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le OPT$$

by weak duality.

Lemma 101

At each point in time the set F forms a tree.

Proof:

- ▶ In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ► Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le OPT$$

by weak duality.

Hence, we find a shortest path.

Lemma 101

At each point in time the set F forms a tree.

Proof:

- ▶ In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ► Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_S \le OPT$$

by weak duality.

Hence, we find a shortest path.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_S \le OPT$$

by weak duality.

Hence, we find a shortest path.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_S \le OPT$$

by weak duality.

Hence, we find a shortest path.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le OPT$$

by weak duality.

Hence, we find a shortest path.

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le OPT$$

by weak duality.

Hence, we find a shortest path.

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s_i, t_i , $i=1,\ldots,k$, and a cost function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

Steiner Forest Problem:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a cost function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that for every $i\in\{1,\ldots,k\}$ there is a path between s_i and t_i only using edges in F.

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

Steiner Forest Problem:

Given a graph G=(V,E), together with source-target pairs $s_i,t_i,$ $i=1,\ldots,k$, and a cost function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that for every $i\in\{1,\ldots,k\}$ there is a path between s_i and t_i only using edges in F.

Here S_i contains all sets S such that $S_i \in S$ and $t_i \notin S$.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

Steiner Forest Problem:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a cost function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that for every $i\in\{1,\ldots,k\}$ there is a path between s_i and t_i only using edges in F.

$$\begin{array}{lll} \min & \sum_{e} c(e) x_e \\ \text{s.t.} & \forall S \subseteq V : S \in S_i \text{ for some } i & \sum_{e \in \delta(S)} x_e & \geq & 1 \\ & \forall e \in E & x_e & \in & \{0,1\} \end{array}$$

18 4 Steiner Forest

Here S_i contains all sets S such that $S_i \in S$ and $t_i \notin S$.

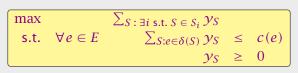
18.4 Steiner Forest

472/571

Harald Bäcke

Algorithm 1 FirstTry

- 1: *y* ← 0
- 2: *F* ← Ø
- 3: **while** not all s_i - t_i pairs connected in F **do**
- 4: Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- 5: Increase y_C until there is an edge $e' \in \delta(C)$ s.t.
- $\sum_{S \in S_i : e' \in \delta(S)} y_S = c_{e'}$
- 6: $F \leftarrow F \cup \{e'\}$ 7: **return** $\bigcup_i P_i$



The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

473/571

EADS II

$$\sum_{e \in F} c(e)$$

- 1: $y \leftarrow 0$
- 2: *F* ← ∅
- 3: **while** not all s_i - t_i pairs connected in F **do**
- 4: Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- 5: Increase $y_{\mathcal{C}}$ until there is an edge $e' \in \delta(\mathcal{C})$ s.t.
- $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$ 6: $F \leftarrow F \cup \{e'\}$
- 7: return $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S$$

- 1: $y \leftarrow 0$
- 2: *F* ← ∅
- 3: **while** not all s_i - t_i pairs connected in F **do**
- 4: Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- 5: Increase y_C until there is an edge $e' \in \delta(C)$ s.t.
- $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$ 6: $F \leftarrow F \cup \{e'\}$
- 6: $F \leftarrow F \cup \{e^r\}$ 7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

- 1: $y \leftarrow 0$
- 2: *F* ← ∅
- 3: **while** not all s_i - t_i pairs connected in F **do**
- 4: Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- 5: Increase $y_{\mathcal{C}}$ until there is an edge $e' \in \delta(\mathcal{C})$ s.t.
- $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$ 6: $F \leftarrow F \cup \{e'\}$
- 7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

- 1: $y \leftarrow 0$
- 2: *F* ← ∅
- 3: **while** not all s_i - t_i pairs connected in F **do**
- 4: Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- 5: Increase $y_{\mathcal{C}}$ until there is an edge $e' \in \delta(\mathcal{C})$ s.t.
- $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$ 6: $F \leftarrow F \cup \{e'\}$
- 7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

However, this is not true:

► Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.

Algorithm 1 FirstTry

- 1: $y \leftarrow 0$
- 2: *F* ← Ø
- 3: **while** not all s_i - t_i pairs connected in F **do**
- Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- Increase y_C until there is an edge $e' \in \delta(C)$ s.t.
- $\sum_{S \in S_i : e' \in \delta(S)} y_S = c_{e'}$ $F \leftarrow F \cup \{e'\}$
- 7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

However, this is not true:

- ▶ Take a complete graph on k+1 vertices v_0, v_1, \ldots, v_k .
- ▶ The *i*-th pair is v_0 - v_i .

Algorithm 1 FirstTry

- 1: $\gamma \leftarrow 0$
- 2: *F* ← Ø
- 3: **while** not all s_i - t_i pairs connected in F **do**
- Let C be some connected component of (V, F)such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- Increase γ_C until there is an edge $e' \in \delta(C)$ s.t. $\sum_{S \in S_i : e' \in \delta(S)} y_S = c_{e'}$
- $F \leftarrow F \cup \{e'\}$
- 7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

However, this is not true:

- ▶ Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.

Algorithm 1 FirstTry

- 1: $y \leftarrow 0$
- 2: *F* ← Ø
- 3: **while** not all s_i - t_i pairs connected in F **do**
- Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- Increase y_C until there is an edge $e' \in \delta(C)$ s.t. $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$
- 5: $F \leftarrow F \cup \{e'\}$
- 7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

However, this is not true:

- ▶ Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.

Algorithm 1 FirstTry

- 1: $y \leftarrow 0$
- 2: *F* ← Ø
- 3: **while** not all s_i - t_i pairs connected in F **do**
- Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- Increase y_C until there is an edge $e' \in \delta(C)$ s.t.
- $\sum_{S \in S_i : e' \in \delta(S)} y_S = c_{e'}$ $F \leftarrow F \cup \{e'\}$
- 7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

However, this is not true:

- ▶ Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- ▶ The final set *F* contains all edges $\{v_0, v_i\}$, i = 1, ..., k.

Algorithm 1 FirstTry

- 1: $y \leftarrow 0$
- 2: *F* ← Ø
- 3: **while** not all s_i - t_i pairs connected in F **do**
- Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- Increase y_C until there is an edge $e' \in \delta(C)$ s.t. $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$
- 5: $F \leftarrow F \cup \{e'\}$
- 7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

However, this is not true:

- ► Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- ▶ The final set *F* contains all edges $\{v_0, v_i\}$, i = 1, ..., k.
- $\gamma_{\{v_0\}} > 0$ but $|\delta(\{v_0\}) \cap F| = k$.

Algorithm 1 FirstTry

- 1: $y \leftarrow 0$
- 2: *F* ← Ø
- 3: **while** not all s_i - t_i pairs connected in F **do**
- Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- Increase y_C until there is an edge $e' \in \delta(C)$ s.t. $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$
- 6: $F \leftarrow F \cup \{e'\}$
- 7: **return** $\bigcup_i P_i$

Algorithm 1 SecondTry

1:
$$y \leftarrow 0$$
; $F \leftarrow \emptyset$; $\ell \leftarrow 0$

2: **while** not all
$$s_i$$
- t_i pairs connected in F **do**

3:
$$\ell \leftarrow \ell + 1$$

4: Let
$$\mathbb{C}$$
 be set of all connected components C of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i .

5: Increase
$$y_C$$
 for all $C \in \mathbb{C}$ uniformly until for some edge $e_\ell \in \delta(C')$, $C' \in \mathbb{C}$ s.t. $\sum_{S:e_\ell \in \delta(S)} y_S = c_{e_\ell}$

6:
$$F \leftarrow F \cup \{e_{\rho}\}$$

7:
$$F' \leftarrow F$$

8: **for**
$$k \leftarrow \ell$$
 downto 1 **do** // reverse deletion

9: **if**
$$F' - e_k$$
 is feasible solution **then**

10: remove
$$e_k$$
 from F'

11: return
$$F'$$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

If we show that $y_S>0$ implies that $|\delta(S)\cap F|\leq \alpha$ we are in good shape.

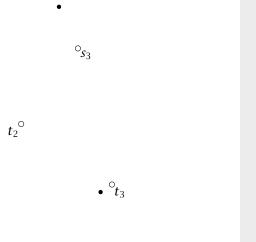
However, this is not true:

- ► Take a complete graph on k+1 vertices v_0, v_1, \ldots, v_k .
- ► The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.
- ▶ We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- ► The final set F contains all edges $\{v_0, v_i\}$, i = 1, ..., k.
- ► $y_{\{v_0\}} > 0$ but $|\delta(\{v_0\}) \cap F| = k$.

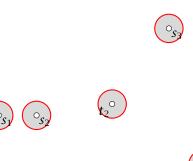
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

Algorithm 1 SecondTry

- 1: $y \leftarrow 0$; $F \leftarrow \emptyset$; $\ell \leftarrow 0$
- 2: **while** not all s_i - t_i pairs connected in F **do**
- 3: $\ell \leftarrow \ell + 1$
- Let \mathbb{C} be set of all connected components C of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- Increase y_C for all $C \in \mathbb{C}$ uniformly until for some edge $e_\ell \in \delta(C')$, $C' \in \mathbb{C}$ s.t. $\sum_{S:e_\ell \in \delta(S)} y_S = c_{e_\ell}$
- 6: $F \leftarrow F \cup \{e_{\ell}\}$
- 7: $F' \leftarrow F$
- 8: **for** $k \leftarrow \ell$ downto 1 **do** // reverse deletion
- 9: **if** $F' e_k$ is feasible solution **then**
- 10: remove e_k from F'
- 11: return F'

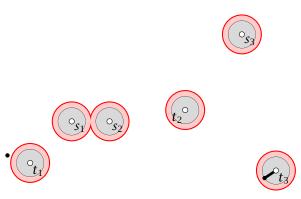


The reverse deletion step is not strictly necessary this way. It

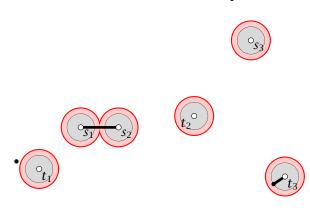


The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

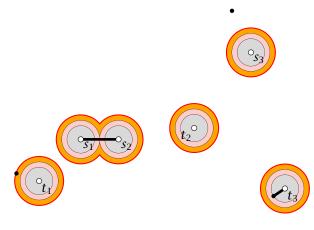
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



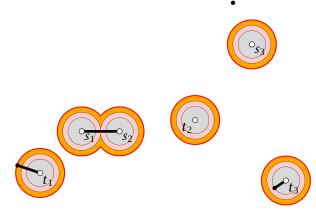
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



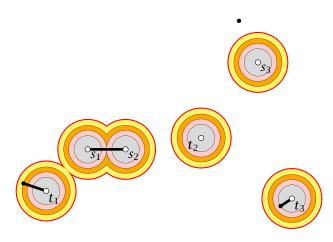
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



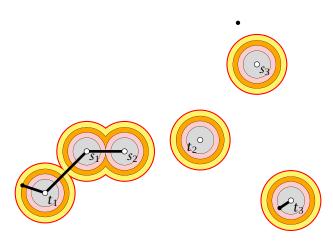
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



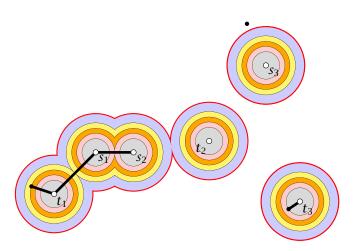
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

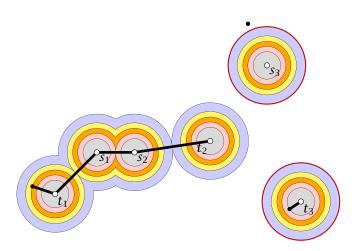


The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

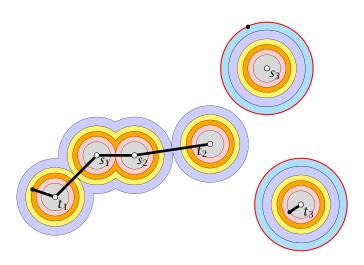


18.4 Steiner Forest

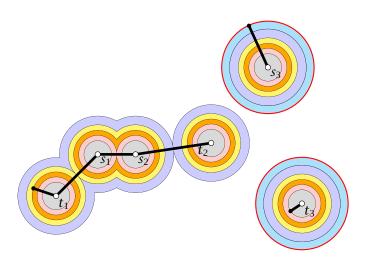
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



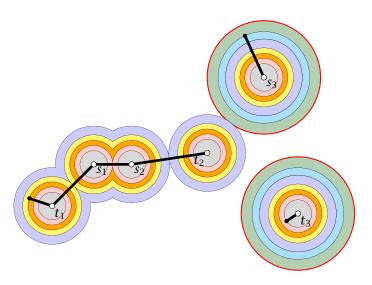
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



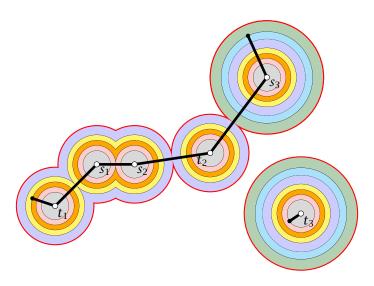
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



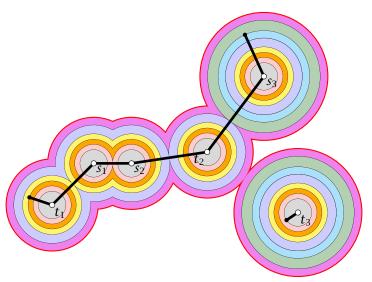
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



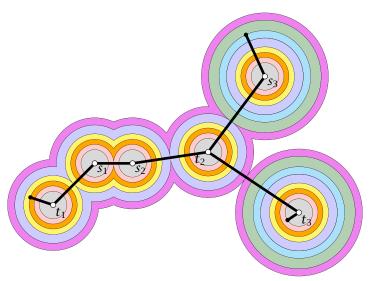
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



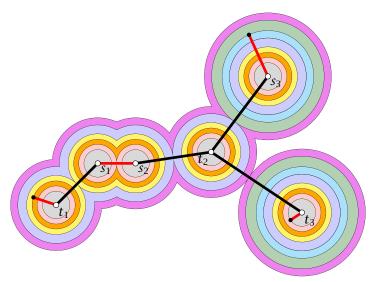
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

477/571

476

Lemma 102

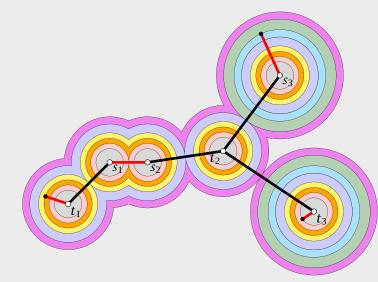
For any \mathbb{C} in any iteration of the algorithm

$$\sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

Example



$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| \cdot y_S.$$

We want to show th

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} j$$

For any $\mathbb C$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{T}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

Lemma 102

EADS II Harald Räcke

18.4 Steiner Forest

479/571

18.4 Steiner Forest

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| + y_S.$$

We want to show tha

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

the increase of the left-hand sale

Lemma 102

For any \mathcal{C} in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

EADS II Harald Räck

18.4 Steiner Forest
479/571

FADS II 18.4 Steiner Forest

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| \cdot y_S.$$

We want to show tha

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

Lemma 102

For any $\mathbb C$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| \cdot y_S.$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_{S} \le 2 \sum_{S} y_{S}$$

Lemma 102

For any \mathbb{C} in any iteration of the algorithm

$$\sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

18.4 Steiner Forest 479/571

18.4 Steiner Forest

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| \cdot y_S \ .$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

▶ In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in \mathfrak{C}} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |\mathfrak{C}|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

Lemma 102

For any ${\Bbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| \cdot y_S .$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

▶ In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in \mathscr{C}} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |\mathfrak{C}|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

Lemma 102

For any ${\Bbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathbb{C}|$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

For any set of connected components ${}^{\mbox{\it C}}$ in any iteration of the algorithm

$$\sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

Proof:

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S \ .$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

► In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in \mathcal{C}} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |\mathfrak{C}|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

For any set of connected components ${\mathbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathcal{C}|$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_i be the set of edges in F at the beginning of the iteration.
- ▶ Let $H = F' F_i$.
- ▶ All edges in *H* are necessary for the solution.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S \ .$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

► In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |\mathfrak{C}|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

For any set of connected components ${\mathbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathcal{C}|$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_i be the set of edges in F at the beginning of the iteration.
- $\blacktriangleright \text{ Let } H = F' F_i.$
- All edges in H are necessary for the solution.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S \ .$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

 \blacktriangleright In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in \mathbb{C}} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

For any set of connected components ${\mathbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathcal{C}|$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_i be the set of edges in F at the beginning of the iteration.
- ▶ Let $H = F' F_i$.
- ▶ All edges in *H* are necessary for the solution.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S \ .$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

► In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

For any set of connected components ${\mathbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_i be the set of edges in F at the beginning of the iteration.
- ▶ Let $H = F' F_i$.
- All edges in H are necessary for the solution.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S \ .$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

► In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in \mathcal{C}} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

For any set of connected components ${\mathbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

Proof:

- ► At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration *i*. Let *F*_{*i*} be the set of edges in *F* at the beginning of the iteration.
- ► Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ▶ We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

For any set of connected components ${\mathbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

Proof:

- ► At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration *i*. Let *F*_{*i*} be the set of edges in *F* at the beginning of the iteration.
- ► Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ▶ We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

For any set of connected components ${\mathbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

Proof:

- ► At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration *i*. Let *F*_{*i*} be the set of edges in *F* at the beginning of the iteration.
- ► Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

For any set of connected components ${\mathbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

Proof:

- ► At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration *i*. Let *F*_{*i*} be the set of edges in *F* at the beginning of the iteration.
- ► Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

18.4 Steiner Forest

18.4 Steiner Forest

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

For any set of connected components ${\mathbb C}$ in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

Proof:

- ► At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration i. Let F_i be the set of edges in F at the beginning of the iteration.
- ► Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

481/571

480

Suppose that no node in B has degree one.

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathfrak{C}| = 2|R|$$

- ▶ Suppose that no node in *B* has degree one.
- Then

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ► Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathcal{C}| = 2|R|$$

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v)$$

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathcal{C}| = 2|R|$$

481

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathfrak{C}| = 2|R|$$

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B|$$

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathfrak{C}| = 2|R|$$

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathfrak{C}| = 2|R|$$

18 4 Steiner Forest

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

Every blue vertex with non-zero degree must have degree at least two.

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ► Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.

- \blacktriangleright Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - ▶ But this means that the cluster corresponding to *b* must separate a source-target pair.

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \geq \sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \stackrel{?}{\leq} 2|\mathfrak{C}| = 2|R|$$

18.4 Steiner Forest

- ▶ Suppose that no node in *B* has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - ▶ But this means that the cluster corresponding to *b* must separate a source-target pair.
 - But then it must be a red node.

- \blacktriangleright Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- ▶ Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- ► We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathfrak{C}| = 2|R|$$

18.4 Steiner Forest

Shortest Path

S is the set of subsets that separate S from t.

The Dual:

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem

19 Cuts & Metrics

- ► Suppose that no node in *B* has degree one.
- ► Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- ► Every blue vertex with non-zero degree must have degree at least two.
 - ► Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - ► But this means that the cluster corresponding to *b* must separate a source-target pair.
 - But then it must be a red node.

Shortest Path

$$\begin{array}{llll} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S & \sum_{e \in \delta(S)} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \geq & 0 \end{array}$$

S is the set of subsets that separate s from t.

The Dual:

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem

- ► Suppose that no node in *B* has degree one.
- ► Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- ► Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

Shortest Path

min
$$\sum_{e} c(e)x_{e}$$

s.t. $\forall S \in S$ $\sum_{e \in \delta(S)} x_{e} \geq 1$
 $\forall e \in E$ $x_{e} \geq 0$

S is the set of subsets that separate s from t.

The Dual:

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

- ► Suppose that no node in *B* has degree one.
- ► Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- ► Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - ► But this means that the cluster corresponding to *b* must separate a source-target pair.
 - But then it must be a red node.

Minimum Cut

$$\begin{array}{llll} & & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \in & \{0,1\} \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

EADS II

Harald Räcke

max
$$\sum_{P} y_{P}$$

s.t. $\forall e \in E$ $\sum_{P:e \in P} y_{P} \leq c(e)$
 $\forall P \in P$ $y_{P} > 0$

19 Cuts & Metrics **Shortest Path**

 $\sum_{e} c(e) x_{e}$ s.t. $\forall S \in S$ $\sum_{e \in \delta(S)} x_e \ge 1$ $\forall e \in E$ $x_e \ge 0$

S is the set of subsets that separate s from t.

The Dual:

 $\sum_{S} y_{S}$ max s.t. $\forall e \in E \ \sum_{S:e \in \delta(S)} y_S \le c(e)$ $\forall S \in S$ $y_S \geq 0$

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

19 Cuts & Metrics

Minimum Cut

min $\sum_{e} c(e) x_{e}$ s.t. $\forall P \in \mathcal{P}$ $\sum_{e \in P} x_e \geq 1$ $\forall e \in E$ $x_e \geq 0$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

19 Cuts & Metrics **Shortest Path**

 $\sum_{e} c(e) x_{e}$ s.t. $\forall S \in S$ $\sum_{e \in \delta(S)} x_e \ge 1$ $\forall e \in E$ $x_e \ge 0$

S is the set of subsets that separate s from t.

The Dual:

Cut Problem.

max

 $\sum_{S} y_{S}$

 $\forall S \in S$ $y_S \geq 0$

The Separation Problem for the Shortest Path LP is the Minimum

s.t. $\forall e \in E \ \sum_{S:e \in \delta(S)} y_S \le c(e)$

483

- **EADS II** Harald Räcke

19 Cuts & Metrics

484/571

□ EADS II

19 Cuts & Metrics

Minimum Cut

min
$$\sum_{e} c(e)x_{e}$$

s.t. $\forall P \in \mathcal{P}$ $\sum_{e \in P} x_{e} \geq 1$
 $\forall e \in E$ $x_{e} \geq 0$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

max
$$\sum_{P} y_{P}$$
s.t. $\forall e \in E \quad \sum_{P:e \in P} y_{P} \leq c(e)$
 $\forall P \in P \quad y_{P} \geq 0$

The Separation Problem for the Minimum Cut LP is the Shortest

19 Cuts & Metrics

Shortest Path

min
$$\sum_{e} c(e) x_{e}$$
s.t. $\forall S \in S$ $\sum_{e \in \delta(S)} x_{e} \ge 1$ $\forall e \in E$ $x_{e} \ge 0$

S is the set of subsets that separate s from t.

The Dual:

 $\sum_{S} y_{S}$ max s.t. $\forall e \in E \quad \sum_{S:e \in \delta(S)} y_S \leq c(e)$ $\forall S \in S$ $y_S \geq 0$

Cut Problem.

The Separation Problem for the Shortest Path LP is the Minimum

- 19 Cuts & Metrics Harald Räcke
 - 484/571
- EADS II
- 19 Cuts & Metrics

483

Minimum Cut

min
$$\sum_{e} c(e) \ell_{e}$$
s.t. $\forall P \in \mathcal{P}$
$$\sum_{e \in P} \ell_{e} \geq 1$$

$$\forall e \in E$$

$$\ell_{e} \geq 0$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

The Separation Problem for the Minimum Cut LP is the Shortest

19 Cuts & Metrics

19 Cuts & Metrics **Shortest Path**

min $\sum_{e} c(e) x_{e}$ s.t. $\forall S \in S$ $\sum_{e \in \delta(S)} x_{e} \ge 1$ $\forall e \in E$ $x_{e} \ge 0$

The Dual:

Cut Problem.

EADS II

484/571

max

s.t. $\forall e \in E \quad \sum_{S:e \in \delta(S)} y_S \leq c(e)$

The Separation Problem for the Shortest Path LP is the Minimum

19 Cuts & Metrics

 $\forall S \in S$ $y_S \geq 0$

S is the set of subsets that separate s from t.

483

Path Problem.

EADS II

Harald Räcke

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.

19 Cuts & Metrics

Minimum Cut

min
$$\sum_{e} c(e) \ell_{e}$$
s.t. $\forall P \in \mathcal{P}$
$$\sum_{e \in P} \ell_{e} \geq 1$$
 $\forall e \in E$
$$\ell_{e} \geq 0$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

19 Cuts & Metrics

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_{ρ} as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .

19 Cuts & Metrics

Minimum Cut

$$\begin{array}{lll} \min & \sum_{e} c(e) \ell_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} \ell_{e} & \geq & 1 \\ & \forall e \in E & \ell_{e} & \geq & 0 \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

19 Cuts & Metrics

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ▶ We have $d(u,v) = \ell_e$ for every edge e = (u,v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for hean-counters

d is not a metric on V but a semimetric as two nodes u and ι could have distance zero.

19 Cuts & Metrics

Minimum Cut

$$\begin{array}{lll} \min & \sum_{e} c(e) \ell_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} \ell_{e} & \geq & 1 \\ & \forall e \in E & \ell_{e} & \geq & 0 \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_{ℓ} as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ▶ We have $d(u, v) = \ell_e$ for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

19 Cuts & Metrics

Minimum Cut

min
$$\sum_{e} c(e) \ell_{e}$$
s.t. $\forall P \in \mathcal{P}$
$$\sum_{e \in P} \ell_{e} \geq 1$$
 $\forall e \in E$
$$\ell_{e} \geq 0$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally: choose r u.a.r. (uniformly at random) from interval [0,1)

19 Cuts & Metrics

19 Cuts & Metrics

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ▶ We have $d(u,v) = \ell_e$ for every edge e = (u,v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

 \emph{d} is not a metric on V but a semimetric as two nodes u and υ could have distance zero.

Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

19 Cuts & Metrics

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_{ℓ} as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ▶ We have $d(u, v) = \ell_e$ for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose x u.a.r. (uniformly at random) from interval [0, 1)

19 Cuts & Metrics

19 Cuts & Metrics

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ▶ We have $d(u, v) = \ell_e$ for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

19 Cuts & Metrics

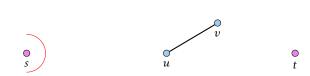
Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_{θ} as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ▶ We have $d(u,v) = \ell_e$ for every edge e = (u,v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

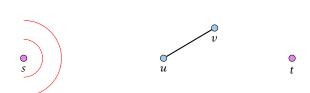
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

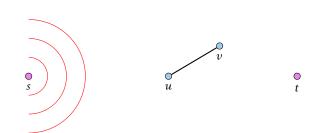
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

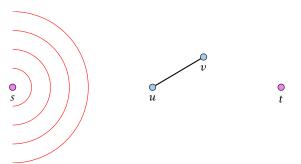
$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of *r* should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

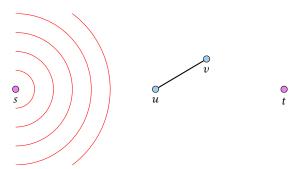
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

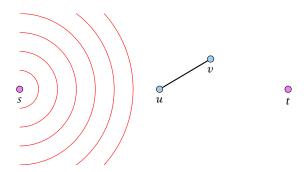
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

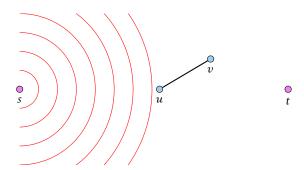
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

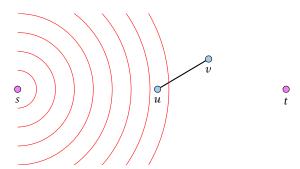
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

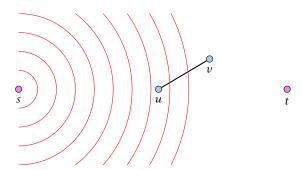
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose \dot{r} u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

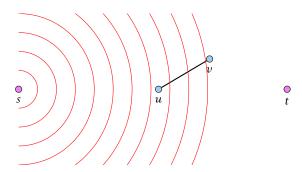
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

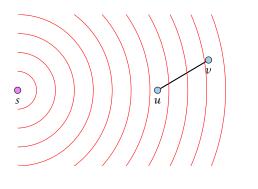
$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

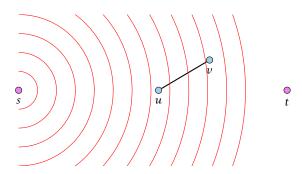
$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

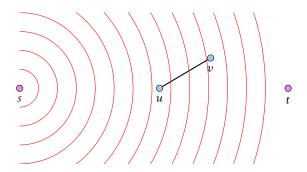
$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

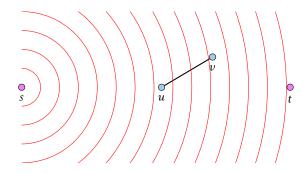
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

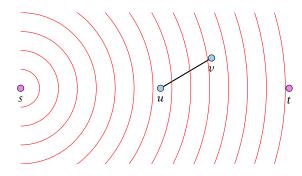
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



▶ asssume wlog. $d(s, u) \le d(s, v)$

Pr[e is cut]

How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

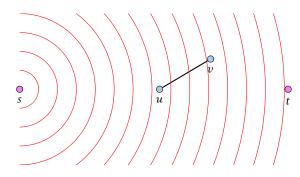
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



▶ asssume wlog. $d(s, u) \le d(s, v)$

$$Pr[e \text{ is cut}] = Pr[r \in [d(s, u), d(s, v))]$$

How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

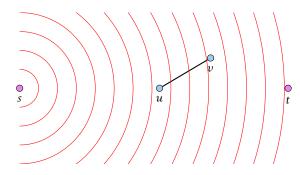
$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



▶ asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s,u),d(s,v))] \le \frac{d(s,v) - d(s,u)}{1 - 0}$$

How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

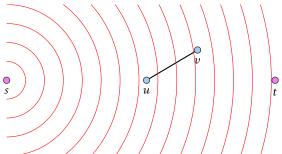
$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)



▶ asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s, u), d(s, v))] \le \frac{d(s, v) - d(s, u)}{1 - 0}$$

$$\le \ell_e$$

How do we round the LP?

► Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

$$B = \{ v \in V \mid d(s, v) \le r \}$$

► For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

486

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

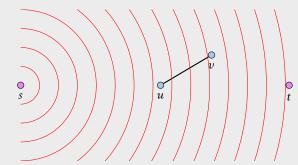
On the other hand

$$\sum_{e} c(e) \ell_e \le \text{size of mincu}$$

as the ℓ_e are the solution to the Mincut LP *relaxation*

Hence, our rounding gives an optimal solution

What is the probability that an edge (u, v) is in the cut?



► asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s, u), d(s, v))] \le \frac{d(s, v) - d(s, u)}{1 - 0}$$
$$\le \ell_e$$

19 Cuts & Metrics

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

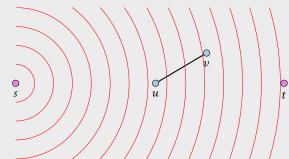
On the other hand:

$$\sum_{e} c(e) \ell_e \le \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence our rounding gives an optimal solution

What is the probability that an edge (u, v) is in the cut?



► asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s, u), d(s, v))] \le \frac{d(s, v) - d(s, u)}{1 - 0}$$
$$\le \ell_e$$

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

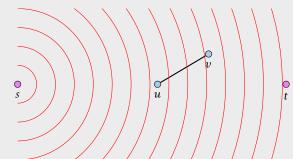
On the other hand:

$$\sum_{e} c(e) \ell_e \le \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence, our rounding gives an optimal solution.

What is the probability that an edge (u, v) is in the cut?



► asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s, u), d(s, v)] \le \frac{d(s, v) - d(s, u)}{1 - 0}$$
$$\le \ell_e$$

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

 $\begin{array}{lll} \min & & \sum_{e} c\left(e\right) \ell_{e} \\ \text{s.t.} & \forall P \in \mathcal{P}_{i} \text{ for some } i & \sum_{e \in P} \ell_{e} & \geq & 1 \\ & \forall e \in E & \ell_{e} & \in & \{0,1\} \end{array}$

Here \mathcal{P}_i contains all path P between s_i and t_i .

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

On the other hand:

$$\sum_{e} c(e) \ell_e \le \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence, our rounding gives an optimal solution.

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

$$\begin{array}{lll} \min & \sum_{e} c(e) \ell_{e} \\ \text{s.t.} & \forall P \in \mathcal{P}_{i} \text{ for some } i & \sum_{e \in P} \ell_{e} & \geq & 1 \\ & \forall e \in E & \ell_{e} & \in & \{0,1\} \end{array}$$

Here \mathcal{P}_i contains all path P between s_i and t_i .

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

On the other hand:

$$\sum_{e} c(e) \ell_e \le \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence, our rounding gives an optimal solution.

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

$$\begin{array}{lll} \min & \sum_{e} c(e) \ell_e \\ \text{s.t.} & \forall P \in \mathcal{P}_i \text{ for some } i & \sum_{e \in P} \ell_e & \geq & 1 \\ & \forall e \in E & \ell_e & \in & \{0,1\} \end{array}$$

Here P_i contains all path P between s_i and t_i .

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

On the other hand:

$$\sum_{e} c(e) \ell_e \le \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP $\it relaxation$.

Hence, our rounding gives an optimal solution.

Pr[e is cut] < ?

- ▶ If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- ▶ However, this cannot be guaranteed.

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

$$\begin{array}{lll} \min & \sum_{e} c(e) \ell_e \\ \text{s.t.} & \forall P \in \mathcal{P}_i \text{ for some } i & \sum_{e \in P} \ell_e & \geq & 1 \\ & \forall e \in E & \ell_e & \in & \{0,1\} \end{array}$$

Here P_i contains all path P between s_i and t_i .

$$Pr[e \text{ is cut}] \leq ?$$

- ▶ If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- ▶ However, this cannot be guaranteed.

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

Here \mathcal{P}_i contains all path P between s_i and t_i .

$$Pr[e \text{ is cut}] \leq ?$$

- ▶ If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- However, this cannot be guaranteed.

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

$$\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_{e} c(e) \ell_e \\ \text{s.t.} & \forall P \in \mathcal{P}_i \text{ for some } i & \sum_{e \in P} \ell_e & \geq & 1 \\ & \forall e \in E & \ell_e & \in & \{0,1\} \end{array}$$

Here P_i contains all path P between s_i and t_i .

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ▶ Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing(s; n)

1: *z* ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

5: until heads

6: **return** $B(s_i, z)$

Re-using the analysis for the single-commodity case is difficult.

$$Pr[e \text{ is cut}] \leq ?$$

- ► If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- ► However, this cannot be guaranteed.

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ▶ Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing(s: n)

1: *z* ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: $z \leftarrow z + 1$

5: until fleads

Re-using the analysis for the single-commodity case is difficult.

$$Pr[e \text{ is cut}] \leq ?$$

- ▶ If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- ► However, this cannot be guaranteed.

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

```
Algorithm 1 RegionGrowing (s_i, p)

1: z \leftarrow 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z - z + 1

5: until heads
6: return B(s_i, z)
```

$$Pr[e \text{ is cut}] \leq ?$$

- ▶ If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- ► However, this cannot be guaranteed.

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing (s_i, p)

1: *z* ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: $z \leftarrow z + 1$

5: **until** heads

6: **return** $B(s_i, z)$

Re-using the analysis for the single-commodity case is difficult.

$$Pr[e \text{ is cut}] \leq ?$$

- ► If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- ► However, this cannot be guaranteed.

- 1: **while** $\exists s_i$ - t_i pair in G' **do**
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$
- 3: $G' = G' \setminus C // \text{ cuts edges leaving } C$
- 4: **return** $B(s_i, z)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- ▶ if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

- ▶ Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ► Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing(s_i, p)

- 1: $z \leftarrow 0$
- 2: repeat
- 3: flip a coin (Pr[heads] = p)
- 4: $z \leftarrow z + 1$
- 5: until heads
- 6: **return** $B(s_i, z)$

- 1: while $\exists s_i$ - t_i pair in G' do
- $C \leftarrow \text{RegionGrowing}(s_i, p)$
- $G' = G' \setminus C$ // cuts edges leaving C
- 4: return $B(s_i, z)$
- probability of cutting an edge is only p

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- \blacktriangleright Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ▶ Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \leq z\delta$.

Algorithm 1 RegionGrowing(s_i, p)

- 1: $z \leftarrow 0$
- 2: repeat
- flip a coin (Pr[heads] = p)
- 4: $z \leftarrow z + 1$
- 5: until heads
- 6: return $B(s_i, z)$

- 1: **while** $\exists s_i$ - t_i pair in G' **do**
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$
- 3: $G' = G' \setminus C // \text{ cuts edges leaving } C$
- 4: return $B(s_i, z)$
- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its IP-value: our expected cost are at most OPT.

- ▶ Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ► Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing(s_i, p)

- 1: $z \leftarrow 0$
- 2: repeat
- 3: flip a coin (Pr[heads] = p)
- 4: $z \leftarrow z + 1$
- 5: until heads
- 6: **return** $B(s_i, z)$

- 1: **while** $\exists s_i$ - t_i pair in G' **do**
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$
- 3: $G' = G' \setminus C // \text{ cuts edges leaving } C$
- 4: return $B(s_i, z)$
- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ► Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing (s_i, p)

- 1: $z \leftarrow 0$
- 2: repeat
- 3: flip a coin (Pr[heads] = p)
- 4: $z \leftarrow z + 1$
- 5: until heads
- 6: **return** $B(s_i, z)$

- 1: **while** $\exists s_i$ - t_i pair in G' **do**
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$
- 3: $G' = G' \setminus C // \text{ cuts edges leaving } C$
- 4: return $B(s_i, z)$
- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- ► if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

- ▶ Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ► Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing(s_i, p)

- 1: $z \leftarrow 0$
- 2: repeat
- 3: flip a coin (Pr[heads] = p)
- 4: $z \leftarrow z + 1$
- 5: until heads
- 6: **return** $B(s_i, z)$

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair

If we ensure that we cut before reaching radius 1/2 we are in good shape.

Algorithm 1 Multicut(G')

- 1: **while** $\exists s_i t_i$ pair in G' **do**
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$
- $G' = G' \setminus C // \text{ cuts edges leaving } C$
- 4: return $B(s_i, z)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- ► if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

Algorithm 1 Multicut(G')

- 1: **while** $\exists s_i$ - t_i pair in G' **do**
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$
- $G' = G' \setminus C // \text{ cuts edges leaving } C$
- 4: return $B(s_i, z)$

- probability of cutting an edge is only p
- ▶ a source either does not reach an edge during Region Growing; then it is not cut
- ► if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

Algorithm 1 Multicut(G')

- 1: **while** $\exists s_i t_i$ pair in G' **do**
- $C \leftarrow \text{RegionGrowing}(s_i, p)$
- $G' = G' \setminus C // \text{ cuts edges leaving } C$
- 4: return $B(s_i, z)$

- probability of cutting an edge is only p
- ▶ a source either does not reach an edge during Region Growing; then it is not cut
- ► if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not} \; \mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p} \right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

▶ Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq$$

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not} \; \mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p} \right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

► Hence,

$$Pr[\exists i \text{ that is not successful}] \leq \cdot$$

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

▶ Hence.

$$Pr[\exists i \text{ that is not successful}] \leq \frac{1}{2}$$

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{\nu^2}$$

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

$$\begin{split} E[\text{cutsize}] &= Pr[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + Pr[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

Note: success means all source-target pairs separated We assume $k \ge 2$.

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- ▶ we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

▶ Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

$$\begin{split} E[\text{cutsize}] &= \text{Pr}[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \text{Pr}[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{aligned} \textbf{E[cutsize | succ.]} &= \frac{\textbf{E[cutsize]} - \textbf{Pr[no succ.]} \cdot \textbf{E[cutsize | no succ.}}{\textbf{Pr[success]}} \\ &\leq \frac{\textbf{E[cutsize]}}{\textbf{Pr[success]}} \leq \frac{1}{1 - \frac{1}{k^2}} \textbf{G} \ln k \cdot \textbf{OPT} \leq 8 \ln k \cdot \textbf{OPT} \end{aligned}$$

Note: success means all source-target pairs separated

We assume $k \ge 2$.

• choose
$$p = 6 \ln k \cdot \delta$$

- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

▶ Hence,

$$Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

$$\begin{split} E[\text{cutsize}] &= \text{Pr}[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \text{Pr}[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} E[\text{cutsize} \mid \text{succ.}] &= \frac{E[\text{cutsize}] - \text{Pr}[\text{no succ.}] \cdot E[\text{cutsize} \mid \text{no succ.}]}{\text{Pr}[\text{success}]} \\ &\leq \frac{E[\text{cutsize}]}{\text{Pr}[\text{success}]} \leq \frac{1}{1 - \frac{1}{2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- ► we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

▶ Hence,

$$Pr[\exists i \text{ that is not successful}] \leq \frac{1}{\nu^2}$$

19 Cuts & Metrics

$$\begin{split} E[\text{cutsize}] &= \Pr[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \Pr[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} E[\text{cutsize} \mid \text{succ.}] &= \frac{E[\text{cutsize}] - \text{Pr}[\text{no succ.}] \cdot E[\text{cutsize} \mid \text{no succ.}]}{\text{Pr}[\text{success}]} \\ &\leq \frac{E[\text{cutsize}]}{\text{Pr}[\text{success}]} = \frac{1}{1 - \frac{1}{2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated

• choose
$$p = 6 \ln k \cdot \delta$$

- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- ► we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

▶ Hence,

$$Pr[\exists i \text{ that is not successful}] \leq \frac{1}{\nu^2}$$

19 Cuts & Metrics

$$\begin{split} E[\text{cutsize}] &= \Pr[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \Pr[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} E[\text{cutsize} \mid \text{succ.}] &= \frac{E[\text{cutsize}] - \text{Pr}[\text{no succ.}] \cdot E[\text{cutsize} \mid \text{no succ.}]}{\text{Pr}[\text{success}]} \\ &\leq \frac{E[\text{cutsize}]}{\text{Pr}[\text{success}]} \leq \frac{1}{1 - \frac{1}{L^2}} 6 \ln k \cdot \text{OPT} = 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated

- ► choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- ► we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

► Hence,

$$Pr[\exists i \text{ that is not successful}] \leq \frac{1}{\nu^2}$$

$$\begin{split} E[\text{cutsize}] &= \text{Pr}[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \text{Pr}[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$E[\text{cutsize} \mid \text{succ.}] = \frac{E[\text{cutsize}] - \Pr[\text{no succ.}] \cdot E[\text{cutsize} \mid \text{no succ.}]}{\Pr[\text{success}]}$$

$$\leq \frac{E[\text{cutsize}]}{\Pr[\text{success}]} \leq \frac{1}{1 - \frac{1}{12}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT}$$

Note: success means all source-target pairs separated

We assume $k \ge 2$.

► choose
$$p = 6 \ln k \cdot \delta$$

- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- ► we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

▶ Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

$$\begin{split} E[\text{cutsize}] &= \text{Pr}[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \text{Pr}[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} E[\text{cutsize} \mid \text{succ.}] &= \frac{E[\text{cutsize}] - \Pr[\text{no succ.}] \cdot E[\text{cutsize} \mid \text{no succ.}]}{\Pr[\text{success}]} \\ &\leq \frac{E[\text{cutsize}]}{\Pr[\text{success}]} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated We assume k > 2.

• choose
$$p = 6 \ln k \cdot \delta$$

- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

► Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

If we are not successful we simply perform a trivial

This only increases the expected cost by at most $\frac{1}{k^2} \cdot kOPT \leq OPT/k$.

Hence, our final cost is $O(\ln k) \cdot OPT$ in expectation.

What is expected cost?

$$\begin{split} \text{E[cutsize \mid succ.]} &= \frac{\text{E[cutsize]} - \text{Pr[no succ.]} \cdot \text{E[cutsize \mid no succ.]}}{\text{Pr[success]}} \\ &\leq \frac{\text{E[cutsize]}}{\text{Pr[success]}} \leq \frac{1}{1 - \frac{1}{\nu^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated We assume k > 2.

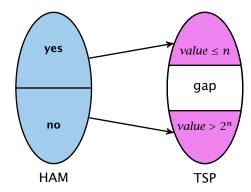
EADS II

k-approximation.

19 Cuts & Metrics

19 Cuts & Metrics

Gap Introducing Reduction



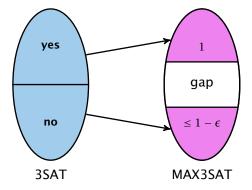
Reduction from Hamiltonian cycle to TSP

- instance that has Hamiltonian cycle is mapped to TSP instance with small cost
- otherwise it is mapped to instance with large cost
- ightharpoonup there is no $2^n/n$ -approximation for TSP

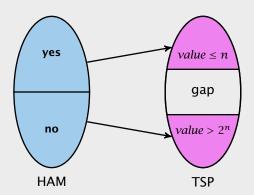
PCP theorem: Approximation View

Theorem 104 (PCP Theorem A)

There exists $\epsilon > 0$ for which there is gap introducing reduction between 3SAT and MAX3SAT.



Gap Introducing Reduction



Reduction from Hamiltonian cycle to TSP

- instance that has Hamiltonian cycle is mapped to TSP instance with small cost
- otherwise it is mapped to instance with large cost
- ightharpoonup there is no $2^n/n$ -approximation for TSP

PCP theorem: Proof System View

Definition 105 (NP)

A language $L \in \mathbb{NP}$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

 $[x \in L]$ completeness

There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".

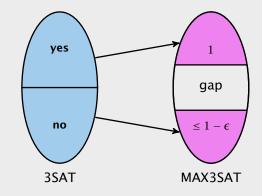
[$x \notin L$] soundness For any proof string γ , $V(x, \gamma) =$ "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?)

PCP theorem: Approximation View

Theorem 104 (PCP Theorem A)

There exists $\epsilon > 0$ for which there is gap introducing reduction between 3SAT and MAX3SAT.



PCP theorem: Proof System View

Definition 105 (NP)

A language $L \in \mathbb{NP}$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

$[x \in L]$ completeness

There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".

$[x \notin L]$ soundness

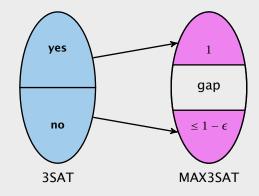
For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?).

PCP theorem: Approximation View

Theorem 104 (PCP Theorem A)

There exists $\epsilon > 0$ for which there is gap introducing reduction between 3SAT and MAX3SAT.



Definition 106 (NP)

A language $L \in \mathbb{NP}$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

[
$$x \in L$$
] There exists a proof string y , $|y| = poly(|x|)$, s.t. $V(x, y) =$ "accept".

[
$$x \notin L$$
] For any proof string y , $V(x, y) =$ "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?).

PCP theorem: Proof System View

Definition 105 (NP)

A language $L \in NP$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

$$[x \in L]$$
 completeness

There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".

$$[x \notin L]$$
 soundness

For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?).

Definition 106 (NP)

A language $L \in \mathbb{NP}$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

[
$$x \in L$$
] There exists a proof string y , $|y| = poly(|x|)$, s.t. $V(x, y) =$ "accept".

[$x \notin L$] For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?).

PCP theorem: Proof System View

Definition 105 (NP)

A language $L \in \mathbb{NP}$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

$$[x \in L]$$
 completeness

There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".

$$[x \notin L]$$
 soundness

For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?).

An Oracle Turing Machine M is a Turing machine that has access to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle π_{TSP} would allow M to write a TSP-instance x on a special oracle tape and obtain the answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query complexity, i.e., how often the machine queries the oracle.

For a proof string y, π_y is an oracle that upon given an index i returns the i-th character y_i of y.

Definition 106 (NP)

A language $L \in \mathbb{NP}$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

[
$$x \in L$$
] There exists a proof string y , $|y| = poly(|x|)$, s.t. $V(x, y) =$ "accept".

[
$$x \notin L$$
] For any proof string y , $V(x, y) =$ "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?).

Definition 107 (PCP)

A language $L \in PCP_{c(n),s(n)}(r(n),q(n))$ if there exists a polynomial time, non-adaptive, randomized verifier V, s.t.

- [$x \in L$] There exists a proof string y, s.t. $V^{\pi_y}(x) =$ "accept" with proability $\geq c(n)$.
- [$x \notin L$] For any proof string y, $V^{\pi_y}(x) =$ "accept" with probability $\leq s(n)$.

The verifier uses at most $\mathcal{O}(r(n))$ random bits and makes at most $\mathcal{O}(q(n))$ oracle queries.

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle π_{TSP} would allow M to write a TSP-instance x on a special oracle tape and obtain the answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query complexity, i.e., how often the machine queries the oracle.

For a proof string y, π_y is an oracle that upon given an index i returns the i-th character y_i of y.

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

Probabilistic Checkable Proofs

Definition 107 (PCP)

A language $L \in PCP_{c(n),s(n)}(r(n),q(n))$ if there exists a polynomial time, non-adaptive, randomized verifier V, s.t.

[$x \in L$] There exists a proof string y, s.t. $V^{\pi_y}(x) =$ "accept" with proability $\geq c(n)$.

[$x \notin L$] For any proof string y, $V^{\pi_y}(x) =$ "accept" with probability $\leq s(n)$.

The verifier uses at most $\mathcal{O}(r(n))$ random bits and makes at most $\mathcal{O}(q(n))$ oracle queries.

- P = PCP(0, 0)

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- $ightharpoonup PCP(\log n, 0) \subseteq P$

- $ightharpoonup PCP(0, \log n) \subseteq
 ightharpoonup PCP(0, \log n)$
- ▶ $PCP(poly(n), 0) = coRP \stackrel{?!}{=}$

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ▶ $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic
- ▶ $PCP(0, \log n) \subseteq I$
- ► $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

c(n) is called the **completeness**. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ▶ $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- \triangleright PCP(0, log n) \subseteq P
- \triangleright PCP(poly(n), 0) = coRP $\stackrel{?!}{=}$ PCP

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ▶ $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- ► $PCP(0, \log n) \subseteq P$ we can simulate short proofs in polynomial time
- $ightharpoonup PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ▶ $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- ► $PCP(0, \log n) \subseteq P$ we can simulate short proofs in polynomial time
- $PCP(poly(n), 0) = coRP \stackrel{\cap}{=} P$

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ► $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- ► $PCP(0, log n) \subseteq P$ we can simulate short proofs in polynomial time
- ► PCP(poly(n), 0) = coRP ?! P
 by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ▶ $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- ► $PCP(0, \log n) \subseteq P$ we can simulate short proofs in polynomial time
- ▶ PCP(poly(n), 0) = coRP = P
 by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ▶ $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- ► $PCP(0, \log n) \subseteq P$ we can simulate short proofs in polynomial time
- ▶ PCP(poly(n), 0) = coRP = P
 by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

- ► PCP(0, poly(n)) = NP by definition; NP-verifier does not use randomness and asks polynomially many queries
- ► $PCP(\log n, poly(n)) \subseteq NP$ NP-verifier can simulate $O(\log n)$ random bits
- $ightharpoonup PCP(poly(n), 0) = coRP \stackrel{?!}{\subseteq} NP$
- NP ⊆ PCP($\log n$, 1)

Probabilistic Checkable Proofs

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ► $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- ► $PCP(0, \log n) \subseteq P$ we can simulate short proofs in polynomial time
- ▶ PCP(poly(n), 0) = coRP ^{?!} P by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

- ► PCP(0, poly(n)) = NP by definition; NP-verifier does not use randomness and asks polynomially many queries
- ► $PCP(\log n, poly(n)) \subseteq NP$ NP-verifier can simulate $O(\log n)$ random bits
- \triangleright PCP(poly(n) 0) = coRP \subseteq NP
- ▶ $NP \subseteq PCP(\log n, 1)$

Probabilistic Checkable Proofs

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ► $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- ► $PCP(0, \log n) \subseteq P$ we can simulate short proofs in polynomial time
- ▶ PCP(poly(n), 0) = coRP ?! P
 by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

- ► PCP(0, poly(n)) = NP by definition; NP-verifier does not use randomness and asks polynomially many queries
- ► $PCP(\log n, poly(n)) \subseteq NP$ NP-verifier can simulate $O(\log n)$ random bits
- ► $PCP(poly(n), 0) = coRP \stackrel{?!}{\subseteq} NP$
- ▶ $NP \subseteq PCP(\log n, 1)$

Probabilistic Checkable Proofs

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ► $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- PCP(0, log n) ⊆ P
 we can simulate short proofs in polynomial time
- ▶ PCP(poly(n), 0) = coRP ^{?!} P by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

- ► PCP(0, poly(n)) = NP by definition; NP-verifier does not use randomness and asks polynomially many queries
- ► $PCP(\log n, poly(n)) \subseteq NP$ NP-verifier can simulate $O(\log n)$ random bits
- ► $PCP(poly(n), 0) = coRP \stackrel{?!}{\subseteq} NP$
- NP ⊆ PCP(log n, 1)hard part of the PCP-theorem

Probabilistic Checkable Proofs

- ► P = PCP(0,0) verifier without randomness and proof access is deterministic algorithm
- ► $PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic, polynomial time
- PCP(0, log n) ⊆ P
 we can simulate short proofs in polynomial time
- ▶ PCP(poly(n), 0) = coRP ^{?!} P by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

Theorem 108 (PCP Theorem B)

 $NP = PCP(\log n, 1)$

▶ PCP(0, poly(n)) = NP by definition; NP-verifier does not use randomness and asks polynomially many queries

- ► $PCP(\log n, poly(n)) \subseteq NP$ NP-verifier can simulate $O(\log n)$ random bits
- ► $PCP(poly(n), 0) = coRP \stackrel{?!}{\subseteq} NP$
- ► NP \subseteq PCP(log n, 1) hard part of the PCP-theorem

GNI is the language of pairs of non-isomorphic graphs

 $NP = PCP(\log n, 1)$

Theorem 108 (PCP Theorem B)

PCP theorem: Proof System View

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with n-nodes)

PCP theorem: Proof System View

Theorem 108 (PCP Theorem B) $NP = PCP(\log n, 1)$

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with *n*-nodes)

It expects a proof of the following form:

For any labeled n-node graph H the H's bit P[H] of the proof fulfills

$$G_0 \equiv H \implies P[H] = 0$$

 $G_1 \equiv H \implies P[H] = 1$

$$P[H] = 1$$

$$G_0 \equiv H \implies P[H] = 0$$

 $G_0, G_1 \not\equiv H \implies P[H] = \text{arbitrary}$

PCP theorem: Proof System View

Theorem 108 (PCP Theorem B)

 $NP = PCP(\log n, 1)$

Verifier:

- choose $b \in \{0,1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

Probabilistic Proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with n-nodes)

It expects a proof of the following form:

► For any labeled *n*-node graph *H* the *H*'s bit *P*[*H*] of the proof fulfills

$$G_0 \equiv H \implies P[H] = 0$$

 $G_1 \equiv H \implies P[H] = 1$
 $G_0, G_1 \not\equiv H \implies P[H] = \text{arbitrary}$

Verifier:

- choose $b \in \{0,1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If $G_0 \not\equiv G_1$ then by using the obvious proof the verifier will always accept.

Probabilistic Proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with n-nodes)

It expects a proof of the following form:

► For any labeled *n*-node graph *H* the *H*'s bit *P*[*H*] of the proof fulfills

$$G_0 \equiv H \implies P[H] = 0$$

 $G_1 \equiv H \implies P[H] = 1$
 $G_0, G_1 \not\equiv H \implies P[H] = \text{arbitrary}$

Verifier:

- ▶ choose $b \in \{0,1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If $G_0 \not\equiv G_1$ then by using the obvious proof the verifier will always accept.

If $G_0 \equiv G_1$ a proof only accepts with probability 1/2.

- ▶ suppose $\pi(G_0) = G_1$
- if we accept for b=1 and permutation $\pi_{\rm rand}$ we reject for b=0 and permutation $\pi_{\rm rand}\circ\pi$

Probabilistic Proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with n-nodes)

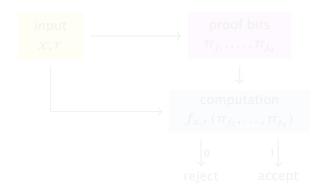
It expects a proof of the following form:

► For any labeled *n*-node graph *H* the *H*'s bit *P*[*H*] of the proof fulfills

$$G_0 \equiv H \implies P[H] = 0$$
 $G_1 \equiv H \implies P[H] = 1$
 $G_0, G_1 \not\equiv H \implies P[H] = \text{arbitrary}$

Version B \Rightarrow Version A

- ▶ For 3SAT there exists a verifier that uses $c \log n$ random bits, reads $q = \mathcal{O}(1)$ bits from the proof, has completeness 1 and soundness 1/2.
- ▶ fix v and v:



Probabilistic Proof for Graph NonIsomorphism

Verifier:

- ▶ choose $b \in \{0, 1\}$ at random
- ightharpoonup take graph G_b and apply a random permutation to obtain a labeled graph H
- ▶ check whether P[H] = b

If $G_0 \not\equiv G_1$ then by using the obvious proof the verifier will always accept.

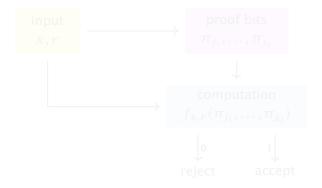
If $G_0 \equiv G_1$ a proof only accepts with probability 1/2.

- ▶ suppose $\pi(G_0) = G_1$
- if we accept for b=1 and permutation $\pi_{\rm rand}$ we reject for b=0 and permutation $\pi_{\rm rand}\circ\pi$

508

Version $B \Rightarrow Version A$

- ▶ For 3SAT there exists a verifier that uses $c \log n$ random bits, reads $q = \mathcal{O}(1)$ bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:



Probabilistic Proof for Graph NonIsomorphism

Verifier:

- ▶ choose $b \in \{0, 1\}$ at random
- ightharpoonup take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

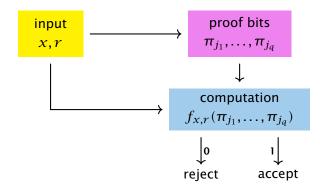
If $G_0 \not\equiv G_1$ then by using the obvious proof the verifier will always accept.

If $G_0 \equiv G_1$ a proof only accepts with probability 1/2.

- ▶ suppose $\pi(G_0) = G_1$
- if we accept for b=1 and permutation $\pi_{\rm rand}$ we reject for b=0 and permutation $\pi_{\rm rand}\circ\pi$

Version $B \Rightarrow Version A$

- ▶ For 3SAT there exists a verifier that uses $c \log n$ random bits, reads $q = \mathcal{O}(1)$ bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:



Probabilistic Proof for Graph NonIsomorphism

Verifier:

- ▶ choose $b \in \{0,1\}$ at random
- ightharpoonup take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If $G_0 \not\equiv G_1$ then by using the obvious proof the verifier will always accept.

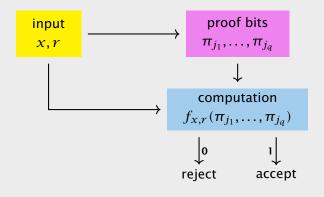
If $G_0 \equiv G_1$ a proof only accepts with probability 1/2.

- ▶ suppose $\pi(G_0) = G_1$
- ▶ if we accept for b=1 and permutation $\pi_{\rm rand}$ we reject for b=0 and permutation $\pi_{\rm rand}\circ\pi$

- ▶ transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- ► consider 3SAT formula $C_X := \bigwedge_{\mathcal{F}} C_{X,\mathcal{F}}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- For any proof string y, at most 50% of formulas $C_{x,r}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied
- ▶ this means we have gap introducing reduction

Version B \Rightarrow Version A

- ► For 3SAT there exists a verifier that uses $c \log n$ random bits, reads $q = \mathcal{O}(1)$ bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:

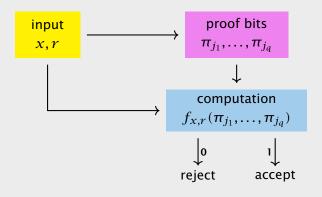


20 Hardness of Approximation

- ▶ transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- consider 3SAT formula $C_X = \bigwedge_r C_{X,r}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- $x \notin L$] For any proof string y, at most 50% of formulas $C_{x,r}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
- ▶ this means we have gap introducing reduction

Version B \Rightarrow Version A

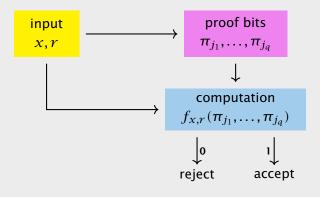
- ► For 3SAT there exists a verifier that uses $c \log n$ random bits, reads $q = \mathcal{O}(1)$ bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:



- ▶ transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- consider 3SAT formula $C_x = \bigwedge_{r} C_{x,r}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- [$x \notin L$] For any proof string y, at most 50% of formulas $C_{X,r}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in $C_{x,r}$ are not satisfied
 - ▶ this means we have gap introducing reduction

Version B \Rightarrow Version A

- ► For 3SAT there exists a verifier that uses $c \log n$ random bits, reads $q = \mathcal{O}(1)$ bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:



20 Hardness of Approximation

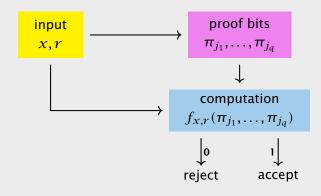
510/571

EADS II

- ▶ transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- consider 3SAT formula $C_x = \bigwedge_{r} C_{x,r}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- [$x \notin L$] For any proof string y, at most 50% of formulas $C_{x,y}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
 - ▶ this means we have gap introducing reduction

Version B \Rightarrow Version A

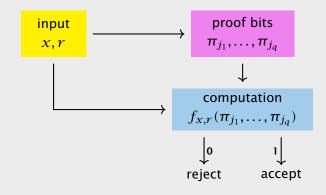
- ► For 3SAT there exists a verifier that uses $c \log n$ random bits, reads $q = \mathcal{O}(1)$ bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:



- ▶ transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- consider 3SAT formula $C_x = \bigwedge_{r} C_{x,r}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- [$x \notin L$] For any proof string y, at most 50% of formulas $C_{x,r}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
 - this means we have gap introducing reduction

Version B \Rightarrow Version A

- ► For 3SAT there exists a verifier that uses $c \log n$ random bits, reads $q = \mathcal{O}(1)$ bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:



Version $A \Rightarrow Version B$

We show: Version $A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(\log n, 1)$.

- ▶ transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- consider 3SAT formula $C_X = \bigwedge_r C_{X,r}$
- $[x \in L]$ There exists proof string γ , s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- For any proof string γ , at most 50% of formulas $[x \notin L]$ $C_{x,r}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
 - this means we have gap introducing reduction

Version $A \Rightarrow Version B$

We show: Version $A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(\log n, 1)$.

given $L \in NP$ we build a PCP-verifier for L

- ▶ transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- consider 3SAT formula $C_X = \bigwedge_r C_{X,r}$
- $[x \in L]$ There exists proof string γ , s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- For any proof string y, at most 50% of formulas $[x \notin L]$ $C_{x,r}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
 - this means we have gap introducing reduction

We show: Version A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(log n, 1).

given $L \in NP$ we build a PCP-verifier for L

Verifier:

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance I_x , s.t. I_x satisfiable iff $x \in L$
- ▶ map I_X to MAX3SAT instance C_X (PCP Thm. Version A)
- ▶ interpret proof as assignment to variables in C
- ▶ choose random clause *X* from *C* ~
- ightharpoonup query variable assignment σ for X
- ightharpoonup accept if $X(\sigma)$ = true otw. reject

- ► transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- ► consider 3SAT formula $C_X = \bigwedge_r C_{X,r}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- [$x \notin L$] For any proof string y, at most 50% of formulas $C_{x,y}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
 - ► this means we have gap introducing reduction

We show: Version A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(log n, 1).

given $L \in NP$ we build a PCP-verifier for L

Verifier:

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance I_x , s.t. I_x satisfiable iff $x \in L$
- ▶ map I_X to MAX3SAT instance C_X (PCP Thm. Version A)
- \blacktriangleright interpret proof as assignment to variables in C_Y
- ightharpoonup choose random clause X from C_Y
- ightharpoonup query variable assignment σ for X
- \blacktriangleright accept if $X(\sigma)$ = true ofw. reject

- ► transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- ► consider 3SAT formula $C_X = \bigwedge_r C_{X,r}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- [$x \notin L$] For any proof string y, at most 50% of formulas $C_{x,y}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
 - ► this means we have gap introducing reduction

We show: Version A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(log n, 1).

given $L \in NP$ we build a PCP-verifier for L

Verifier:

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance I_x , s.t. I_x satisfiable iff $x \in L$
- ▶ map I_X to MAX3SAT instance C_X (PCP Thm. Version A)
- interpret proof as assignment to variables in C_x
- ightharpoonup choose random clause X from C_{r}
- ightharpoonup query variable assignment σ for X
- ightharpoonup accept if $X(\sigma) = \text{true otw. reject}$

- ► transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- ► consider 3SAT formula $C_X = \bigwedge_r C_{X,r}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- [$x \notin L$] For any proof string y, at most 50% of formulas $C_{x,y}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
 - ► this means we have gap introducing reduction

Version $A \Rightarrow Version B$

We show: Version $A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(\log n, 1)$.

given $L \in NP$ we build a PCP-verifier for L

Verifier:

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance I_x , s.t. I_x satisfiable iff $x \in L$
- ightharpoonup map $I_{\mathcal{X}}$ to MAX3SAT instance $C_{\mathcal{X}}$ (PCP Thm. Version A)
- interpret proof as assignment to variables in C_x
- choose random clause X from C_X

- ▶ transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- consider 3SAT formula $C_X := \bigwedge_r C_{X,r}$
- There exists proof string γ , s.t. all formulas $C_{\chi,r}$ $[x \in L]$ evaluate to 1. Hence, all clauses in C_x satisfied.
- For any proof string γ , at most 50% of formulas $[x \notin L]$ $C_{x,r}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_{x} are not satisfied.
 - this means we have gap introducing reduction

We show: Version A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(log n, 1).

given $L \in NP$ we build a PCP-verifier for L

Verifier:

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance I_x , s.t. I_x satisfiable iff $x \in L$
- ▶ map I_X to MAX3SAT instance C_X (PCP Thm. Version A)
- interpret proof as assignment to variables in C_{x}
- choose random clause X from C_X
- query variable assignment σ for X;
- accept if $X(\sigma)$ = true otw. reject

- ► transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- ► consider 3SAT formula $C_X = \bigwedge_r C_{X,r}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- [$x \notin L$] For any proof string y, at most 50% of formulas $C_{x,r}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
 - ► this means we have gap introducing reduction

Version $A \Rightarrow Version B$

We show: Version $A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(\log n, 1)$.

given $L \in NP$ we build a PCP-verifier for L

Verifier:

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance I_x , s.t. I_x satisfiable iff $x \in L$
- ightharpoonup map $I_{\mathcal{X}}$ to MAX3SAT instance $C_{\mathcal{X}}$ (PCP Thm. Version A)
- interpret proof as assignment to variables in C_x
- choose random clause X from C_X
- query variable assignment σ for X;
- accept if $X(\sigma)$ = true otw. reject

- ▶ transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- consider 3SAT formula $C_X := \bigwedge_r C_{X,r}$
- There exists proof string γ , s.t. all formulas $C_{\chi,r}$ $[x \in L]$ evaluate to 1. Hence, all clauses in C_x satisfied.
- For any proof string γ , at most 50% of formulas $[x \notin L]$ $C_{x,r}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_{x} are not satisfied.
 - this means we have gap introducing reduction

- [$x \in L$] There exists proof string y, s.t. all clauses in C_x evaluate to 1. In this case the verifier returns 1.
- [$x \notin L$] For any proof string y, at most a (1ϵ) -fraction of clauses in C_x evaluate to 1. The verifier will reject with probability at least ϵ .

To show Theorem B we only need to run this verifier a constant number of times to push rejection probability above 1/2.

Version $A \Rightarrow Version B$

We show: Version $A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(\log n, 1)$.

given $L \in \mathbb{NP}$ we build a PCP-verifier for L

Verifier:

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance I_x , s.t. I_x satisfiable iff $x \in L$
- ▶ map I_X to MAX3SAT instance C_X (PCP Thm. Version A)
- \blacktriangleright interpret proof as assignment to variables in C_x
- choose random clause X from C_X
- ightharpoonup query variable assignment σ for X;
- accept if $X(\sigma)$ = true otw. reject

PCP(poly(n), 1) means we have a potentially exponentially long proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment (say n hits)) by a code whose code-words have 2^n hits

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions

Version $A \Rightarrow Version B$

 $[x \in L]$ There exists proof string y, s.t. all clauses in C_x evaluate to 1. In this case the verifier returns 1.

[$x \notin L$] For any proof string y, at most a $(1 - \epsilon)$ -fraction of clauses in C_x evaluate to 1. The verifier will reject with probability at least ϵ .

To show Theorem B we only need to run this verifier a constant number of times to push rejection probability above 1/2.

PCP(poly(n), 1) means we have a potentially exponentially long proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions

Version $A \Rightarrow Version B$

- $[x \in L]$ There exists proof string y, s.t. all clauses in C_x evaluate to 1. In this case the verifier returns 1.
- [$x \notin L$] For any proof string y, at most a (1ϵ) -fraction of clauses in C_x evaluate to 1. The verifier will reject with probability at least ϵ .

To show Theorem B we only need to run this verifier a constant number of times to push rejection probability above 1/2.

512

PCP(poly(n), 1) means we have a potentially exponentially long proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by guerying a few positions.

Version A ⇒ Version B

- $[x \in L]$ There exists proof string y, s.t. all clauses in C_x evaluate to 1. In this case the verifier returns 1.
- [$x \notin L$] For any proof string y, at most a (1ϵ) -fraction of clauses in C_x evaluate to 1. The verifier will reject with probability at least ϵ .

To show Theorem B we only need to run this verifier a constant number of times to push rejection probability above 1/2.

 $u \in \{0,1\}^n$ (satisfying assignment)

Walsh-Hadamard Code:

WH_u:
$$\{0,1\}^n \to \{0,1\}, x \mapsto x^T u \text{ (over GF(2))}$$

The code-word for u is WH_u . We identify this function by a bit-vector of length 2^n .

$NP \subseteq PCP(poly(n), 1)$

PCP(poly(n), 1) means we have a potentially exponentially long proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

Lemma 109

If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

Proof

Suppose that $u - u' \neq 0$ Then

$$WH_{n}(x) \neq WH_{n'}(x) \iff (n - n')^{T}x \neq 0$$

This holds for On-1 different vicetors of

The Code

 $u \in \{0,1\}^n$ (satisfying assignment)

Walsh-Hadamard Code:

WH_u : $\{0,1\}^n \to \{0,1\}, x \mapsto x^T u \text{ (over GF(2))}$

The code-word for u is WH_u . We identify this function by a bit-vector of length 2^n .

Lommo 10

Lemma 109If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

Proof:

Suppose that $u - u' \neq 0$. Then

$$WH_{u}(x) \neq WH_{u'}(x) \iff (u - u')^{T}x \neq 0$$

 $WH_{u}(x) \neq WH_{u'}(x) \iff (u - u')^{T} x \neq 0$

This holds for 2^{n-1} different vectors x.

The Code

 $u \in \{0,1\}^n$ (satisfying assignment)

Walsh-Hadamard Code:

Walsh-Hadamard Code: $WH_u: \{0,1\}^n \rightarrow \{0,1\}, x \mapsto x^T u \text{ (over GF(2))}$

The code-word for u is WH_u . We identify this function by a bit-vector of length 2^n .

Suppose we are given access to a function $f: \{0,1\}^n \to \{0,1\}$ and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions $\{0,1\}^n$ to $\{0,1\}$ we can check

$$f(x + y) = f(x) + f(y)$$

for all 2^{2n} nairs x, y. But that's not very efficient

The Code

Lemma 109

If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

Proof:

Suppose that $u - u' \neq 0$. Then

This holds for 2^{n-1} different vectors x.

$$WH_{u}(x) \neq WH_{u'}(x) \iff (u - u')^{T}x \neq 0$$

 $WH_{\mathcal{U}}(X) \neq WH_{\mathcal{U}'}(X) \iff (\mathcal{U} - \mathcal{U})^{-1} X \neq 0$

Suppose we are given access to a function $f:\{0,1\}^n \to \{0,1\}$ and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions

 $\{0,1\}^n$ to $\{0,1\}$ we can check

$$f(x + y) = f(x) + f(y)$$

for all 2^{2n} pairs x, y. But that's not very efficient.

Lemma 109

If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

Proof:

Suppose that $u - u' \neq 0$. Then

$$WH_{u}(x) \neq WH_{u'}(x) \iff (u - u')^{T}x \neq 0$$

 $WH_{\mathcal{U}}(X) \neq WH_{\mathcal{U}'}(X) \iff (\mathcal{U} - \mathcal{U})^{-1} X \neq 0$

This holds for 2^{n-1} different vectors x.

The Code

Suppo

Suppose we are given access to a function $f:\{0,1\}^n \to \{0,1\}$ and want to check whether it is a codeword

 $\{0,1\}^n$ to $\{0,1\}$ we can check

and want to check whether it is a codeword.

Can we just check a constant number of positions?

$$C(\ldots, C(\ldots))$$

Since the set of codewords is the set of all linear functions

f(x+y) = f(x) + f(y)

for all 2^{2n} pairs x, y. But that's not very efficient.

EADS II

I 20 Hardness of Approximation

n 517/571

□ □ EADS II 20 Hardness of Approximation

516

Definition 110

 $NP \subseteq PCP(poly(n), 1)$

Let $\rho \in [0,1]$. We say that $f,g:\{0,1\}^n \to \{0,1\}$ are ρ -close if

$$\Pr_{x \in \{0,1\}^n} [f(x) = g(x)] \ge \rho .$$

Let
$$f: \{0,1\}^n \to \{0,1\}$$
 w

Let
$$f: \{0,1\}^n \to \{0,1\}$$

Let
$$f: \{0,1\}^n \to \{0,1\}$$
 w

Harald Räcke

$$P_{\Gamma} = \int f(x) dx$$

$$\Pr_{x \in \mathbb{R}^n} \left[f(x) + \right]$$

$$\Pr_{x,y\in\{0,1\}^n} \left[f(x) + \right]$$

Let
$$f: \{0,1\}^n \to \{0,1\}$$
 with

$$\frac{1}{2}$$

$$\frac{1}{2}$$
.

518/571

 $NP \subseteq PCP(poly(n), 1)$

EADS II 20 Hardness of Approximation

Definition 110

Let
$$\rho \in [0,1]$$
. We say that $f,g: \{0,1\}^n \to \{0,1\}$ are ρ -close if

$$\Pr_{x \in \{0,1\}^n} [f(x) = g(x)] \ge \rho .$$

Theorem 111 (proof deferred)

Let
$$f: \{0, 1\}^n \to \{0, 1\}$$

Let
$$f: \{0,1\}^n \to \{0,1\}$$
 with

Let
$$f: \{0,1\}^n \to \{0,1\}$$

$$\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2}.$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

 $NP \subseteq PCP(poly(n), 1)$

Can we just check a constant number of positions?

We need $O(1/\delta)$ trials to be sure that f is $(1-\delta)$ -close to a

linear function with (arbitrary) constant probability.

 $\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2} .$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

Let $\rho \in [0,1]$. We say that $f,g:\{0,1\}^n \to \{0,1\}$ are ρ -close if

 $NP \subseteq PCP(poly(n), 1)$

Definition 110

Theorem 111 (proof deferred) Let $f: \{0,1\}^n \to \{0,1\}$ with

 $\Pr_{x \in \{0,1\}^n} [f(x) = g(x)] \ge \rho .$

20 Hardness of Approximation

Suppose for $\delta < 1/4$ f is $(1 - \delta)$ -close to some linear function \tilde{f} .

EADS II 20 Hardness of Approximation

 $NP \subseteq PCP(poly(n), 1)$

We need $\mathcal{O}(1/\delta)$ trials to be sure that f is $(1-\delta)$ -close to a

linear function with (arbitrary) constant probability.

Suppose for $\delta < 1/4$ f is $(1 - \delta)$ -close to some linear function \tilde{f} .

 \hat{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

We need $\mathcal{O}(1/\delta)$ trials to be sure that f is $(1-\delta)$ -close to a linear function with (arbitrary) constant probability.

520/571

 $NP \subseteq PCP(poly(n), 1)$

 $NP \subseteq PCP(poly(n), 1)$

Suppose for $\delta < 1/4$ f is $(1 - \delta)$ -close to some linear function \tilde{f} .

 \hat{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

We need $O(1/\delta)$ trials to be sure that f is $(1-\delta)$ -close to a linear function with (arbitrary) constant probability.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

- **1.** Choose $x' \in \{0,1\}^n$ u.a.r.
- 2. Set x'' := x + x'.
- 3. Let $\gamma' = f(x')$ and $\gamma'' = f(x'')$.
- 4. Output y' + y''.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1-2\delta$ we have $f(x')=\tilde{f}(x')$ and $f(x'')=\tilde{f}(x'')$.

Then the above routine returns $\tilde{f}(x)$

This technique is known as local decoding of the Walsh-Hadamard code.

$NP \subseteq PCP(poly(n), 1)$

Suppose for $\delta < 1/4$ f is $(1 - \delta)$ -close to some linear function \tilde{f} .

 \tilde{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

- 1. Choose $x' \in \{0, 1\}^n$ u.a.r.
- 2. Set x'' := x + x'.
- **3.** Let y' = f(x') and y'' = f(x'').
- 4. Output $\gamma' + \gamma''$.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1-2\delta$ we have $f(x') = \tilde{f}(x')$ and f(x'') = f(x'').

$NP \subseteq PCP(poly(n), 1)$

Suppose for $\delta < 1/4$ f is $(1 - \delta)$ -close to some linear function \tilde{f} .

 \hat{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

- 1. Choose $x' \in \{0, 1\}^n$ u.a.r.
- 2. Set x'' := x + x'.
- **3.** Let y' = f(x') and y'' = f(x'').

4. Output $\gamma' + \gamma''$.

x' and x'' are uniformly distributed (albeit dependent). With

probability at least $1-2\delta$ we have $f(x') = \tilde{f}(x')$ and

f(x'') = f(x'').

Then the above routine returns $\tilde{f}(x)$.

This technique is known as local decoding of the Walsh-Hadamard code.

 $NP \subseteq PCP(poly(n), 1)$

Suppose for $\delta < 1/4$ f is $(1 - \delta)$ -close to some linear function \tilde{f} .

f is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

We show that QUADEQ \in PCP(poly(n), 1). The theorem follows since any PCP-class is closed under polynomial time reductions.

QUADEQ

Given a system of quadratic equations over GF(2). Is there a solution?

$NP \subseteq PCP(poly(n), 1)$

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

- 1. Choose $x' \in \{0,1\}^n$ u.a.r.
- 2. Set x'' := x + x'.
- **3.** Let y' = f(x') and y'' = f(x'').
- **4.** Output $\gamma' + \gamma''$.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1-2\delta$ we have $f(x') = \tilde{f}(x')$ and $f(x^{\prime\prime}) = f(x^{\prime\prime}).$

Then the above routine returns $\tilde{f}(x)$.

This technique is known as local decoding of the Walsh-Hadamard code.

- given 3SAT instance C represent it as Boolean circuit e.g. $C = (x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \bar{x}_5) \land (x_6 \lor x_7 \lor x_8)$

 $NP \subseteq PCP(poly(n), 1)$

We show that QUADEQ \in PCP(poly(n), 1). The theorem follows since any PCP-class is closed under polynomial time reductions.

QUADEQ

Given a system of quadratic equations over GF(2). Is there a solution?

- given 3SAT instance C represent it as Boolean circuit e.g. $C = (x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \bar{x}_5) \land (x_6 \lor x_7 \lor x_8)$
- add variable for every wire

 $NP \subseteq PCP(poly(n), 1)$

We show that $QUADEQ \in PCP(poly(n), 1)$. The theorem follows since any PCP-class is closed under polynomial time reductions.

QUADEQ

523/571

Given a system of quadratic equations over GF(2). Is there a solution?

- given 3SAT instance C represent it as Boolean circuit e.g. $C = (x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \bar{x}_5) \land (x_6 \lor x_7 \lor x_8)$
- add variable for every wire
- add constraint for every gate

OR: $i_1 + i_2 + i_1 \cdot i_2 = 0$

AND: $i_1 \cdot i_2 = 0$

NEG: i = 1 - 0

 $d \cdot e = g$

523/571

$NP \subseteq PCP(poly(n), 1)$

We show that QUADEQ \in PCP(poly(n), 1). The theorem follows since any PCP-class is closed under polynomial time reductions.

QUADEQ

Given a system of quadratic equations over GF(2). Is there a solution?

- given 3SAT instance C represent it as Boolean circuit e.g. $C = (x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \bar{x}_5) \land (x_6 \lor x_7 \lor x_8)$
- add variable for every wire
- add constraint for every gate

OR: $i_1 + i_2 + i_1 \cdot i_2 = 0$

AND: $i_1 \cdot i_2 = 0$

NEG: i = 1 - 0

add constraint out = 1

$NP \subseteq PCP(poly(n), 1)$

We show that QUADEQ \in PCP(poly(n), 1). The theorem follows since any PCP-class is closed under polynomial time reductions.

QUADEQ

Given a system of quadratic equations over GF(2). Is there a solution?

 $d \cdot e = g$

- given 3SAT instance C represent it as Boolean circuit e.g. $C = (x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \bar{x}_5) \land (x_6 \lor x_7 \lor x_8)$
- add variable for every wire
- add constraint for every gate

OR: $i_1 + i_2 + i_1 \cdot i_2 = 0$

AND: $i_1 \cdot i_2 = 0$

NEG: i = 1 - 0

add constraint out = 1

system is feasible iff C is satisfiable

 $NP \subseteq PCP(poly(n), 1)$

We show that QUADEQ \in PCP(poly(n), 1). The theorem follows since any PCP-class is closed under polynomial time reductions.

QUADEQ

523/571

Given a system of quadratic equations over GF(2). Is there a solution?

 $d \cdot e = a$

We encode an instance of QUADEQ by a matrix A that has n^2 columns; one for every pair i, j; and a right hand side vector b.

For an *n*-dimensional vector x we use $x \otimes x$ to denote the n^2 -dimensional vector whose i, j-th entry is $x_i x_j$.

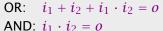
Then we are asked whether

$$A(x \otimes x) = b$$

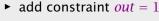
has a solution.

QUADEQ is NP-complete

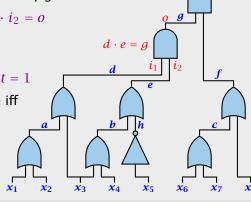
- ▶ given 3SAT instance C represent it as Boolean circuit e.g. $C = (x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \bar{x}_5) \land (x_6 \lor x_7 \lor x_8)$
- add variable for every wire
- add constraint for every gate



NEG: i = 1 - 0



system is feasible iff C is satisfiable



Let A, b be an instance of QUADEQ. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u \otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

$NP \subseteq PCP(poly(n), 1)$

We encode an instance of QUADEQ by a matrix A that has n^2 columns; one for every pair i, j; and a right hand side vector b.

For an n-dimensional vector x we use $x \otimes x$ to denote the n^2 -dimensional vector whose i, j-th entry is $x_i x_j$.

Then we are asked whether

$$A(x \otimes x) = b$$

has a solution.

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.999-linearity test for both functions (requires a constant number of queries).

We also assume that for the remaining constant number of accesses WH-decoding succeeds and we recover $\tilde{f}(x)$.

Hence, our proof will only ever see \tilde{f} . To simplify notation we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

$NP \subseteq PCP(poly(n), 1)$

Let A, b be an instance of QUADEQ. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u \otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.999-linearity test for both functions (requires a constant number of queries).

$NP \subseteq PCP(poly(n), 1)$

Let A, b be an instance of OUADEO. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u \otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.999-linearity test for both functions (requires a constant number of queries).

We also assume that for the remaining constant number of accesses WH-decoding succeeds and we recover $\tilde{f}(x)$.

Hence, our proof will only ever see \tilde{f} . To simplify notation we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

$NP \subseteq PCP(poly(n), 1)$

Let A, b be an instance of QUADEQ. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u \otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.999-linearity test for both functions (requires a constant number of queries).

We also assume that for the remaining constant number of accesses WH-decoding succeeds and we recover $\tilde{f}(x)$.

Hence, our proof will only ever see \tilde{f} . To simplify notation we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

$NP \subseteq PCP(poly(n), 1)$

Let A, b be an instance of QUADEQ. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u\otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

$NP \subseteq PCP(poly(n), 1)$

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.999-linearity test for both functions (requires a constant number of queries).

We also assume that for the remaining constant number of accesses WH-decoding succeeds and we recover $\tilde{f}(x)$.

Hence, our proof will only ever see \tilde{f} . To simplify notation we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

$$NP \subseteq PCP(poly(n), 1)$$

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

$$f(r) = u^T r$$
 and $g(z) = w^T z$ since f, g are linear.

- choose r, r' independently, u.a.r. from $\{0, 1\}^n$
- if $f(r) f(r') \neq g(r \otimes r')$ reject
- repeat 3 times

528/571

 $NP \subseteq PCP(poly(n), 1)$

A correct proof survives the test

$$f(r) \cdot f(r')$$

 $NP \subseteq PCP(poly(n), 1)$

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

$$f(r) = u^T r$$
 and $g(z) = w^T z$ since f, g are linear.

- choose r, r' independently, u.a.r. from $\{0, 1\}^n$
- ▶ if $f(r)f(r') \neq g(r \otimes r')$ reject
 - ► repeat 3 times

A correct proof survives the test

$$f(r) \cdot f(r') = u^T r \cdot u^T r'$$

 $NP \subseteq PCP(poly(n), 1)$

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

$$f(r) = u^T r$$
 and $g(z) = w^T z$ since f, g are linear.

- choose r, r' independently, u.a.r. from $\{0,1\}^n$
- if $f(r) f(r') \neq g(r \otimes r')$ reject
- ► repeat 3 times

$$NP \subseteq PCP(poly(n), 1)$$

$$f(r) \cdot f(r') = u^T r \cdot u^T r'$$
$$= \left(\sum_i u_i r_i\right) \cdot \left(\sum_j u_j r'_j\right)$$

 $NP \subseteq PCP(poly(n), 1)$

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

$$f(r) = u^T r$$
 and $g(z) = w^T z$ since f, g are linear.

- choose r, r' independently, u.a.r. from $\{0,1\}^n$ ▶ if $f(r)f(r') \neq g(r \otimes r')$ reject
- ► repeat 3 times

$$NP \subseteq PCP(poly(n), 1)$$

$$f(r) \cdot f(r') = u^T r \cdot u^T r'$$

$$= \left(\sum_i u_i r_i\right) \cdot \left(\sum_j u_j r'_j\right)$$

$$= \sum_{i,j} u_i u_j r_i r'_j$$

$NP \subseteq PCP(poly(n), 1)$

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

$$f(r) = u^T r$$
 and $g(z) = w^T z$ since f, g are linear.

- ► choose r, r' independently, u.a.r. from $\{0, 1\}^n$
- if $f(r) f(r') \neq g(r \otimes r')$ reject
- ► repeat 3 times

$$NP \subseteq PCP(poly(n), 1)$$

$$f(r) \cdot f(r') = u^{T} r \cdot u^{T} r'$$

$$= \left(\sum_{i} u_{i} r_{i}\right) \cdot \left(\sum_{j} u_{j} r'_{j}\right)$$

$$= \sum_{ij} u_{i} u_{j} r_{i} r'_{j}$$

$$= (u \otimes u)^{T} (r \otimes r')$$

$NP \subseteq PCP(poly(n), 1)$

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

$$f(r) = u^T r$$
 and $g(z) = w^T z$ since f, g are linear.

- choose r, r' independently, u.a.r. from $\{0, 1\}^n$
- if $f(r)f(r') \neq g(r \otimes r')$ reject
- ► repeat 3 times

$$NP \subseteq PCP(poly(n), 1)$$

$$f(r) \cdot f(r') = u^T r \cdot u^T r'$$

$$= \left(\sum_i u_i r_i\right) \cdot \left(\sum_j u_j r'_j\right)$$

$$= \sum_{i,j} u_i u_j r_i r'_j$$

$$= (u \otimes u)^T (r \otimes r')$$

$$= g(r \otimes r')$$

$NP \subseteq PCP(poly(n), 1)$

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

$$f(r) = u^T r$$
 and $g(z) = w^T z$ since f, g are linear.

- ► choose r, r' independently, u.a.r. from $\{0,1\}^n$
- if $f(r)f(r') \neq g(r \otimes r')$ reject
- ► repeat 3 times

Suppose that the proof is not correct and $w \neq u \otimes u$.

 $NP \subseteq PCP(poly(n), 1)$

 $f(r) \cdot f(r') = u^T r \cdot u^T r'$

 $= \left(\sum_{i} u_{i} r_{i}\right) \cdot \left(\sum_{i} u_{j} r_{j}'\right)$

 $= \sum_{ij} u_i u_j r_i r_j'$

 $=g(r\otimes r')$

 $= (u \otimes u)^T (r \otimes r')$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$NP \subseteq PCP(poly(n), 1)$

$$f(r) \cdot f(r') = u^{T} r \cdot u^{T} r'$$

$$= \left(\sum_{i} u_{i} r_{i} \right) \cdot \left(\sum_{j} u_{j} r'_{j} \right)$$

$$= \sum_{i,j} u_{i} u_{j} r_{i} r'_{j}$$

$$= (u \otimes u)^{T} (r \otimes r')$$

$$= g(r \otimes r')$$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r')$$

$NP \subseteq PCP(poly(n), 1)$

$$f(r) \cdot f(r') = u^{T} r \cdot u^{T} r'$$

$$= \left(\sum_{i} u_{i} r_{i}\right) \cdot \left(\sum_{j} u_{j} r'_{j}\right)$$

$$= \sum_{i,j} u_{i} u_{j} r_{i} r'_{j}$$

$$= (u \otimes u)^{T} (r \otimes r')$$

$$= g(r \otimes r')$$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r')$$

$NP \subseteq PCP(poly(n), 1)$

$$f(r) \cdot f(r') = u^{T} r \cdot u^{T} r'$$

$$= \left(\sum_{i} u_{i} r_{i} \right) \cdot \left(\sum_{j} u_{j} r'_{j} \right)$$

$$= \sum_{i,j} u_{i} u_{j} r_{i} r'_{j}$$

$$= (u \otimes u)^{T} (r \otimes r')$$

$$= g(r \otimes r')$$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r\otimes r')=w^T(r\otimes r')=\sum_{ij}w_{ij}r_ir_j'$$

$NP \subseteq PCP(poly(n), 1)$

$$f(r) \cdot f(r') = u^{T} r \cdot u^{T} r'$$

$$= \left(\sum_{i} u_{i} r_{i} \right) \cdot \left(\sum_{j} u_{j} r'_{j} \right)$$

$$= \sum_{i,j} u_{i} u_{j} r_{i} r'_{j}$$

$$= (u \otimes u)^{T} (r \otimes r')$$

$$= g(r \otimes r')$$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

$NP \subseteq PCP(poly(n), 1)$

$$f(r) \cdot f(r') = u^{T} r \cdot u^{T} r'$$

$$= \left(\sum_{i} u_{i} r_{i} \right) \cdot \left(\sum_{j} u_{j} r'_{j} \right)$$

$$= \sum_{i,j} u_{i} u_{j} r_{i} r'_{j}$$

$$= (u \otimes u)^{T} (r \otimes r')$$

$$= g(r \otimes r')$$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^{T}(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^{T} W r'$$

$$f(r) f(r')$$

$NP \subseteq PCP(poly(n), 1)$

$$f(r) \cdot f(r') = u^{T} r \cdot u^{T} r'$$

$$= \left(\sum_{i} u_{i} r_{i}\right) \cdot \left(\sum_{j} u_{j} r'_{j}\right)$$

$$= \sum_{i,j} u_{i} u_{j} r_{i} r'_{j}$$

$$= (u \otimes u)^{T} (r \otimes r')$$

$$= g(r \otimes r')$$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

$$f(r)f(r') = u^T r \cdot u^T r'$$

$NP \subseteq PCP(poly(n), 1)$

$$f(r) \cdot f(r') = u^{T} r \cdot u^{T} r'$$

$$= \left(\sum_{i} u_{i} r_{i} \right) \cdot \left(\sum_{j} u_{j} r'_{j} \right)$$

$$= \sum_{i,j} u_{i} u_{j} r_{i} r'_{j}$$

$$= (u \otimes u)^{T} (r \otimes r')$$

$$= g(r \otimes r')$$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

$NP \subseteq PCP(poly(n), 1)$

$$f(r) \cdot f(r') = u^{T} r \cdot u^{T} r'$$

$$= \left(\sum_{i} u_{i} r_{i} \right) \cdot \left(\sum_{j} u_{j} r'_{j} \right)$$

$$= \sum_{ij} u_{i} u_{j} r_{i} r'_{j}$$

$$= (u \otimes u)^{T} (r \otimes r')$$

$$= g(r \otimes r')$$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r\otimes r')=w^T(r\otimes r')=\sum_{ij}w_{ij}r_ir_j'=r^TWr'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

If $U \neq W$ then $Wr' \neq Ur'$ with probability at least 1/2. Then $r^TWr' \neq r^TUr'$ with probability at least 1/4.

$NP \subseteq PCP(poly(n), 1)$

A correct proof survives the test

$$f(r) \cdot f(r') = u^{T}r \cdot u^{T}r'$$

$$= \left(\sum_{i} u_{i}r_{i}\right) \cdot \left(\sum_{j} u_{j}r'_{j}\right)$$

$$= \sum_{i,j} u_{i}u_{j}r_{i}r'_{j}$$

$$= (u \otimes u)^{T}(r \otimes r')$$

$$= g(r \otimes r')$$

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$A_k(u \otimes u) = b_k$$

where A_k is the k-th row of the constraint matrix. But the left hand side is just $\mathcal{G}(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute r^TA , where $r \in_R \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraints.

In this case $r^TA(u\otimes u)\neq r^Tb_k$. The left hand side is equal to $g(A^Tr)$.

$NP \subseteq PCP(poly(n), 1)$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r\otimes r')=w^T(r\otimes r')=\sum_{ij}w_{ij}r_ir_j'=r^TWr'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$A_k(u \otimes u) = b_k$$

where A_k is the k-th row of the constraint matrix. But the left hand side is just $\mathcal{G}(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute r^TA , where $r \in_R \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraints.

In this case $r^TA(u\otimes u)\neq r^Tb_k$. The left hand side is equal to $g(A^Tr)$.

$NP \subseteq PCP(poly(n), 1)$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$A_k(u \otimes u) = b_k$$

where A_k is the k-th row of the constraint matrix. But the left hand side is just $\mathcal{G}(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute r^TA , where $r \in_R \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraints.

In this case $r^T A(u \otimes u) \neq r^T b_k$. The left hand side is equal to $g(A^T r)$.

$NP \subseteq PCP(poly(n), 1)$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$A_k(u \otimes u) = b_k$$

where A_k is the k-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute r^TA , where $r \in_R \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraints.

In this case $r^T A(u \otimes u) \neq r^T b_k$. The left hand side is equal to $g(A^T r)$.

$NP \subseteq PCP(poly(n), 1)$

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

$NP \subseteq PCP(poly(n), 1)$

We used the following theorem for the linearity test:

Step 3. Verify that f encodes satisfying assignment.

We need to check

Let $f: \{0,1\}^n \to \{0,1\}$ with

hand side is just $g(A_{\nu}^{T})$.

 $\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2}.$

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

We compute $r^T A$, where $r \in_{\mathbb{R}} \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector \mathbf{r} will hit an odd

number of violated constraints. In this case $r^T A(u \otimes u) \neq r^T b_k$. The left hand side is equal to $g(A^T r)$.

 $A_k(u \otimes u) = b_k$

where A_k is the k-th row of the constraint matrix. But the left

Fourier Transform over GF(2)

In the following we use $\{-1,1\}$ instead of $\{0,1\}$. We map

This turns summation into multiplication.

 $b \in \{0,1\}$ to $(-1)^b$.

The set of function $f: \{-1,1\}^n \to \mathbb{R}$ form a 2^n -dimensional

 $NP \subseteq PCP(poly(n), 1)$

We used the following theorem for the linearity test:

Theorem 111

Let
$$f: \{0,1\}^n \to \{0,1\}$$
 with

 $\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2}.$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

Hilbert space.

Hilbert space

- ▶ addition (f+g)(x) = f(x) + g(x)
- scalar multiplication $(\alpha f)(x) = \alpha f(x)$
- inner product $\langle f, g \rangle = E_{x \in \{-1,1\}^n} [f(x)g(x)]$ (bilinear, $\langle f, f \rangle \ge 0$, and $\langle f, f \rangle = 0 \Rightarrow f = 0$)
- **completeness**: any sequence x_k of vectors for which

$$\sum_{k=1}^{\infty} \|x_k\| < \infty \text{ fulfills } \left\| L - \sum_{k=1}^{N} x_k \right\| \to 0$$

for some vector L.

$NP \subseteq PCP(poly(n), 1)$

Fourier Transform over GF(2)

In the following we use $\{-1,1\}$ instead of $\{0,1\}$. We map $b \in \{0,1\}$ to $(-1)^b$.

This turns summation into multiplication.

The set of function $f: \{-1,1\}^n \to \mathbb{R}$ form a 2^n -dimensional Hilbert space.

$$NP \subseteq PCP(poly(n), 1)$$

standard basis

$$e_X(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$$

Then, $f(x) = \sum_i \alpha_i e_i(x)$ where $\alpha_x = f(x)$, this means the functions e_i form a basis. This basis is orthonormal.

$NP \subseteq PCP(poly(n), 1)$

Hilbert space

- ▶ addition (f + g)(x) = f(x) + g(x)
- ► scalar multiplication $(\alpha f)(x) = \alpha f(x)$
- ▶ inner product $\langle f, g \rangle = E_{x \in \{-1,1\}^n}[f(x)g(x)]$ (bilinear, $\langle f, f \rangle \ge 0$, and $\langle f, f \rangle = 0 \Rightarrow f = 0$)
- completeness: any sequence x_k of vectors for which

$$\sum_{k=1}^{\infty} \|x_k\| < \infty \text{ fulfills } \left\| L - \sum_{k=1}^{N} x_k \right\| \to 0$$

for some vector L.

$$NP \subseteq PCP(poly(n), 1)$$

For
$$\alpha \subseteq [n]$$
 define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

standard basis

 $NP \subseteq PCP(poly(n), 1)$

 $e_X(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$ Then, $f(x) = \sum_i \alpha_i e_i(x)$ where $\alpha_x = f(x)$, this means the functions e_i form a basis. This basis is orthonormal.

For $\alpha \subseteq [n]$ define

 $NP \subseteq PCP(poly(n), 1)$

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle$$

standard basis

 $NP \subseteq PCP(poly(n), 1)$

 $e_X(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$ Then, $f(x) = \sum_i \alpha_i e_i(x)$ where $\alpha_x = f(x)$, this means the functions e_i form a basis. This basis is orthonormal.

 $NP \subseteq PCP(poly(n), 1)$

For
$$\alpha \subseteq [n]$$
 define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

ote that
$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{x} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big]$$

standard basis

 $NP \subseteq PCP(poly(n), 1)$

$$e_X(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$$

Then,
$$f(x) = \sum_i \alpha_i e_i(x)$$
 where $\alpha_x = f(x)$, this means the functions e_i form a basis. This basis is orthonormal.

EADS II

Harald Räcke

 $NP \subseteq PCP(poly(n), 1)$

For
$$\alpha \subseteq [n]$$
 define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

$$|X_{i}\rangle = E\left[Y_{i}(x)Y_{i}(x)\right] =$$

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{X} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_{X} \Big[\chi_{\alpha \triangle \beta}(x) \Big]$$

standard basis

 $NP \subseteq PCP(poly(n), 1)$

 $e_X(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$

Then, $f(x) = \sum_i \alpha_i e_i(x)$ where $\alpha_x = f(x)$, this means the functions e_i form a basis. This basis is orthonormal.

 $NP \subseteq PCP(poly(n), 1)$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

$$F\left[y_{1}\left(x\right)y_{2}\left(x\right)\right]=\frac{1}{2}\left[y_{1}\left(x\right)y_{2}\left(x\right)\right]$$

$$\langle \chi_{\beta} \rangle = E_{x} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big]$$

 $\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{x} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_{x} \Big[\chi_{\alpha \triangle \beta}(x) \Big] = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{otw.} \end{cases}$

 $NP \subseteq PCP(poly(n), 1)$

standard basis

 $e_X(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$

Then, $f(x) = \sum_i \alpha_i e_i(x)$ where $\alpha_x = f(x)$, this means the functions e_i form a basis. This basis is orthonormal.

20 Hardness of Approximation

536/571

 $NP \subseteq PCP(poly(n), 1)$

For
$$\alpha \subseteq [n]$$
 define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

$$\langle v, v_{\theta} \rangle = F_{x} [v_{\alpha}($$

$$,\chi_{\beta}\rangle=E_{x}\Big[\chi_{\alpha}(x)\chi_{\beta}(x)$$

$$\langle \chi_{\beta} \rangle = E_{\chi} \Big[\chi_{\alpha}(\chi) \chi_{\beta}(\chi) \Big] = E_{\chi} \Big[\chi_{\alpha}(\chi) \chi_{\beta}(\chi) \Big]$$

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{X} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_{X} \Big[\chi_{\alpha \triangle \beta}(x) \Big] = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{otw.} \end{cases}$$

$$\chi_{\beta}(x)$$
 = $E_x [\chi_{\alpha \triangle \beta}(x)]$ = {

This means the
$$\chi_{\alpha}$$
's also define an orthonormal basis. (since we

536/571

$$e_X(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$$

 $NP \subseteq PCP(poly(n), 1)$

standard basis

$$e_X(y) = \begin{cases} 0 & \text{otw.} \\ 0 & \text{otw.} \end{cases}$$
 $\sum_i \alpha_i e_i(x)$ where $\alpha_X = f(x)$, this means the

Then,
$$f(x) = \sum_i \alpha_i e_i(x)$$
 where $\alpha_x = f(x)$, this means the functions e_i form a basis. This basis is orthonormal.

A function χ_{α} multiplies a set of χ_i 's. Back in the GF(2)-world

this means summing a set of z_i 's where $x_i = (-1)^{z_i}$. This means the function χ_{α} correspond to linear functions in the GF(2) world.

For $\alpha \subseteq [n]$ define

 $NP \subseteq PCP(poly(n), 1)$

Note that

fourier basis

have 2^n orthonormal vectors...)

 $\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{x} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_{x} \Big[\chi_{\alpha \triangle \beta}(x) \Big] = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{otw.} \end{cases}$

 $\chi_{\alpha}(x) = \left[x_i \right]$

This means the χ_{α} 's also define an orthonormal basis. (since we

537/571

We can write any function $f: \{-1,1\}^n \to \mathbb{R}$ as

$$f = \sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}$$

We call \hat{f}_{α} the α^{th} Fourier coefficient.

Lemma 112

- 1. $\langle f, g \rangle = \sum_{\alpha} f_{\alpha} g_{\alpha}$
- 2. $\langle f, f \rangle = \sum_{\alpha} f_{\alpha}^2$

Note that for Boolean functions $f: \{-1,1\}^n \to \{-1,1\}$,

 $\langle f, f \rangle = 1.$

GF(2) world.

A function χ_{α} multiplies a set of χ_i 's. Back in the GF(2)-world

This means the function χ_{α} correspond to linear functions in the

this means summing a set of z_i 's where $x_i = (-1)^{z_i}$.

 $NP \subseteq PCP(poly(n), 1)$

in **GF(2)**: We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

We can write any function $f: \{-1, 1\}^n \to \mathbb{R}$ as

$$f = \sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}$$

 $NP \subseteq PCP(poly(n), 1)$

Lemma 112

1. $\langle f, g \rangle = \sum_{\alpha} f_{\alpha} g_{\alpha}$

We call \hat{f}_{α} the α^{th} Fourier coefficient.

2. $\langle f, f \rangle = \sum_{\alpha} f_{\alpha}^2$

Note that for Boolean functions $f: \{-1,1\}^n \to \{-1,1\}$,

 $\langle f, f \rangle = 1.$

EADS II Harald Räcke

20 Hardness of Approximation

539/571

in **GF(2)**:

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose $f: \{\pm 1\}^n \to \{-1,1\}$ fulfills

$$\Pr_{x,y}[f(x)f(y) = f(x \circ y)] \ge \frac{1}{2} + \epsilon .$$

Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

$NP \subseteq PCP(poly(n), 1)$

We can write any function $f: \{-1,1\}^n \to \mathbb{R}$ as

$$f = \sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}$$

We call \hat{f}_{α} the α^{th} Fourier coefficient.

Lemma 112

 $\langle f, f \rangle = 1.$

- 1. $\langle f, g \rangle = \sum_{\alpha} f_{\alpha} g_{\alpha}$

2. $\langle f, f \rangle = \sum_{\alpha} f_{\alpha}^2$ Note that for Boolean functions $f: \{-1,1\}^n \to \{-1,1\}$,

EADS II

For Boolean functions $\langle f,g\rangle$ is the fraction of inputs on which f,g agree **minus** the fraction of inputs on which they disagree.

in GF(2):

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose $f: \{\pm 1\}^n \rightarrow \{-1, 1\}$ fulfills

$$\Pr_{\mathbf{x}, \mathbf{y}}[f(\mathbf{x})f(\mathbf{y}) = f(\mathbf{x} \circ \mathbf{y})] \ge \frac{1}{2} + \epsilon .$$

Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

For Boolean functions $\langle f, g \rangle$ is the fraction of inputs on which f, g agree **minus** the fraction of inputs on which they disagree.

$$2\epsilon \leq \hat{f}_{\alpha}$$

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose $f: \{\pm 1\}^n \rightarrow \{-1,1\}$ fulfills

$$\Pr_{x,y}[f(x)f(y) = f(x \circ y)] \ge \frac{1}{2} + \epsilon.$$

Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

For Boolean functions $\langle f, g \rangle$ is the fraction of inputs on which f, g agree **minus** the fraction of inputs on which they disagree.

$$2\epsilon \le \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle$$

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose $f: \{\pm 1\}^n \rightarrow \{-1,1\}$ fulfills

$$\Pr_{x,y}[f(x)f(y) = f(x \circ y)] \ge \frac{1}{2} + \epsilon .$$

Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

For Boolean functions $\langle f, g \rangle$ is the fraction of inputs on which f, g agree **minus** the fraction of inputs on which they disagree.

$$2\epsilon \le \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree}$$

540/571

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose $f: \{\pm 1\}^n \to \{-1, 1\}$ fulfills

$$\Pr_{x,y}[f(x)f(y) = f(x \circ y)] \ge \frac{1}{2} + \epsilon.$$

Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

For Boolean functions $\langle f, g \rangle$ is the fraction of inputs on which f, g agree **minus** the fraction of inputs on which they disagree.

$$2\epsilon \le \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree} = 2\text{agree} - 1$$

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose $f: \{\pm 1\}^n \rightarrow \{-1,1\}$ fulfills

$$\Pr_{x,y}[f(x)f(y) = f(x \circ y)] \ge \frac{1}{2} + \epsilon .$$

Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

For Boolean functions $\langle f, g \rangle$ is the fraction of inputs on which f, g agree **minus** the fraction of inputs on which they disagree.

$$2\epsilon \le \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree} = 2\text{agree} - 1$$

This gives that the agreement between f and χ_{α} is at least $\frac{1}{2} + \epsilon$.

in GF(2):

540/571

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose $f: \{\pm 1\}^n \rightarrow \{-1,1\}$ fulfills

$$\Pr_{x,y}[f(x)f(y) = f(x \circ y)] \ge \frac{1}{2} + \epsilon.$$

Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

$$\Pr_{x,y}[f(x \circ y) = f(x)f(y)] \ge \frac{1}{2} + \epsilon$$

means that the fraction of inputs x, y on which $f(x \circ y)$ and f(x) f(y) agree is at least $1/2 + \epsilon$.

This gives

$$E_{x,y}[f(x \circ y)f(x)f(y)]$$
 = agreement – disagreement = 2agreement – 1

> 2*\epsilon*

For Boolean functions $\langle f, g \rangle$ is the fraction of inputs on which f, g agree **minus** the fraction of inputs on which they disagree.

$$2\epsilon \le \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree} = 2\text{agree} - 1$$

This gives that the agreement between f and χ_{lpha} is at least $rac{1}{2}+\epsilon$.

$$\Pr_{x,y}[f(x\circ y)=f(x)f(y)]\geq \frac{1}{2}+\epsilon$$
 means that the fraction of inputs x,y on which $f(x\circ y)$ and

f(x)f(y) agree is at least $1/2 + \epsilon$.

This gives

$$E_{x,y}[f(x \circ y)f(x)f(y)] = \text{agreement} - \text{disagreement}$$

= 2agreement - 1
 $\geq 2\epsilon$

 $2\epsilon \leq E_{x,y} \left[f(x \circ y) f(x) f(y) \right]$

$2\epsilon \le E_{x,y} \left| f(x \circ y) f(x) f(y) \right|$

 $= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(x \circ y) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$

$$\Pr_{x,y}[f(x\circ y)=f(x)f(y)]\geq \frac{1}{2}+\epsilon$$
 means that the fraction of inputs x,y on which $f(x\circ y)$ and $f(x)f(y)$ agree is at least $1/2+\epsilon$.

This gives

Linearity Test

$$E_{x,y}[f(x \circ y)f(x)f(y)] = \text{agreement} - \text{disagreement}$$

= 2agreement - 1
 $\geq 2\epsilon$

EADS II Harald Räcke 20 Hardness of Approximation

542/571

$2\epsilon \leq E_{x,y} \left| f(x \circ y) f(x) f(y) \right|$ $= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(x \circ y) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$

Linearity Test

$$\Pr_{x,y}[f(x\circ y)=f(x)f(y)]\geq \frac{1}{2}+\epsilon$$
 means that the fraction of inputs x,y on which $f(x\circ y)$ and $f(x)f(y)$ agree is at least $1/2+\epsilon$.

This gives

$$E_{x,y}[f(x\circ y)f(x)f(y)] = \text{agreement} - \text{disagreement}$$

= $2\text{agreement} - 1$
 $\geq 2\epsilon$

 $= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right]$

$2\epsilon \leq E_{x,y} \left[f(x \circ y) f(x) f(y) \right]$ $= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(x \circ y) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$ $= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right]$ $= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right]$

Linearity Test

$$\Pr_{x,y}[f(x\circ y)=f(x)f(y)]\geq \frac{1}{2}+\epsilon$$
 means that the fraction of inputs x,y on which $f(x\circ y)$ and $f(x)f(y)$ agree is at least $1/2+\epsilon$.

This gives

$$E_{x,y}[f(x \circ y)f(x)f(y)] = \text{agreement} - \text{disagreement}$$

$$= 2\text{agreement} - 1$$

$$\geq 2\epsilon$$

$$2\epsilon \leq E_{x,y} \left[f(x \circ y) f(x) f(y) \right]$$

$$= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(x \circ y) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$$

$$= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha} \hat{f}_{\alpha}^{3}$$

$$\Pr_{x,y}[f(x\circ y)=f(x)f(y)]\geq \frac{1}{2}+\epsilon$$
 means that the fraction of inputs x,y on which $f(x\circ y)$ and

$$E_{x,y}[f(x \circ y)f(x)f(y)] = \text{agreement} - \text{disagreement}$$

= 2agreement - 1
 $\geq 2\epsilon$

f(x)f(y) agree is at least $1/2 + \epsilon$.

$2\epsilon \leq E_{x,y} \left| f(x \circ y) f(x) f(y) \right|$

$$2\epsilon \leq E_{x,y} \left[f(x \circ y) f(x) f(y) \right]$$

$$= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(x \circ y) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$$

$$= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha} \hat{f}_{\alpha}^{3}$$

$$\leq \max_{\alpha} \hat{f}_{\alpha} \cdot \sum_{\alpha} \hat{f}_{\alpha}^{2} = \max_{\alpha} \hat{f}_{\alpha}$$

Linearity Test

$$\Pr_{x,y}[f(x\circ y)=f(x)f(y)]\geq \frac{1}{2}+\epsilon$$
 means that the fraction of inputs x,y on which $f(x\circ y)$ and

This gives

$$E_{x,y}[f(x \circ y)f(x)f(y)] = \text{agreement} - \text{disagreement}$$

= 2agreement - 1
> 2 ϵ

542/571

f(x)f(y) agree is at least $1/2 + \epsilon$.

Approximation Preserving Reductions

AP-reduction

- $x \in I_1 \Rightarrow f(x, r) \in I_2$
- ► $SOL_1(x) \neq \emptyset \Rightarrow SOL_1(f(x,r)) \neq \emptyset$
- $\nu \in SOL_2(f(x,r)) \Rightarrow g(x,\nu,r) \in SOL_1(x)$
- ightharpoonup f, g are polynomial time computable
- $R_2(f(x,r), y) \le r \Rightarrow R_1(x, g(x, y, r)) \le 1 + \alpha(r-1)$

$$2\epsilon \leq E_{x,y} \left[f(x \circ y) f(x) f(y) \right]$$

$$= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(x \circ y) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$$

$$= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right]$$

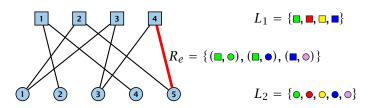
$$= \sum_{\alpha} \hat{f}_{\alpha}^{3}$$

$$\leq \max_{\alpha} \hat{f}_{\alpha} \cdot \sum_{\alpha} \hat{f}_{\alpha}^{2} = \max_{\alpha} \hat{f}_{\alpha}$$

Label Cover

Input:

- ▶ bipartite graph $G = (V_1, V_2, E)$
- ▶ label sets L_1, L_2
- ▶ for every edge $(u, v) \in E$ a relation $R_{u,v} \subseteq L_1 \times L_2$ that describe assignments that make the edge happy.
- maximize number of happy edges



Approximation Preserving Reductions

AP-reduction

- $x \in I_1 \Rightarrow f(x, r) \in I_2$
- ► $SOL_1(x) \neq \emptyset \Rightarrow SOL_1(f(x,r)) \neq \emptyset$
- $y \in SOL_2(f(x,r)) \Rightarrow g(x,y,r) \in SOL_1(x)$
- f, g are polynomial time computable
- $R_2(f(x,r),y) \le r \Rightarrow R_1(x,g(x,y,r)) \le 1 + \alpha(r-1)$

Label Cover

- ▶ an instance of label cover is (d_1, d_2) -regular if every vertex in L_1 has degree d_1 and every vertex in L_2 has degree d_2 .
- ▶ if every vertex has the same degree d the instance is called d-regular

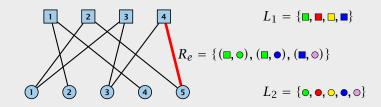
Minimization version:

- ▶ assign a set $L_x \subseteq L_1$ of labels to every node $x \in L_1$ and a set $L_y \subseteq L_2$ to every node $y \in L_2$
- ▶ make sure that for every edge (x, y) there is $\ell_X \in L_X$ and $\ell_Y \in L_Y$ s.t. $(\ell_X, \ell_Y) \in R_{X,Y}$
- minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

Label Cover

Input:

- ▶ bipartite graph $G = (V_1, V_2, E)$
- ▶ label sets L_1, L_2
- ▶ for every edge $(u, v) \in E$ a relation $R_{u,v} \subseteq L_1 \times L_2$ that describe assignments that make the edge happy.
- ► maximize number of happy edges



MAX E3SAT via Label Cover

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:

label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i,u_j,u_k),u_i)\}$, where the clause C is over variables x_i,x_j,x_k and assignment (u_i,u_j,u_k) satisfies C

 $R = \{((F, F, F), F), ((F, T, F), F), ((F, F, T), T), ((F, T, T), T), ((T, T, T), T), ((T, T, F), F), ((T, F, F), F)\}$

Label Cover

- ▶ an instance of label cover is (d_1, d_2) -regular if every vertex in L_1 has degree d_1 and every vertex in L_2 has degree d_2 .
- ► if every vertex has the same degree *d* the instance is called *d*-regular

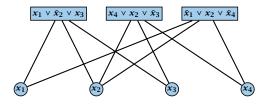
Minimization version:

- ▶ assign a set $L_x \subseteq L_1$ of labels to every node $x \in L_1$ and a set $L_y \subseteq L_2$ to every node $y \in L_2$
- ▶ make sure that for every edge (x, y) there is $\ell_x \in L_x$ and $\ell_y \in L_y$ s.t. $(\ell_x, \ell_y) \in R_{x,y}$
- minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

 $R = \{((F, F, F), F), ((F, T, F), F), ((F, F, T), T), ((F, T, T), T), ((F, T, T), F), ((T, T, F), F), ((T, F, F), F)\}$

Label Cover

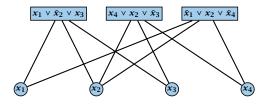
- ▶ an instance of label cover is (d_1, d_2) -regular if every vertex in L_1 has degree d_1 and every vertex in L_2 has degree d_2 .
- ▶ if every vertex has the same degree d the instance is called d-regular

- ▶ assign a set $L_x \subseteq L_1$ of labels to every node $x \in L_1$ and a set $L_y \subseteq L_2$ to every node $y \in L_2$
- ▶ make sure that for every edge (x, y) there is $\ell_x \in L_x$ and $\ell_y \in L_y$ s.t. $(\ell_x, \ell_y) \in R_{x,y}$
- ► minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,X_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

 $R = \{((F, F, F), F), ((F, T, F), F), ((F, F, T), T), ((F, T, T), T), ((T, T, T), T), ((T, T, F), F), ((T, F, F), F)\}$

Label Cover

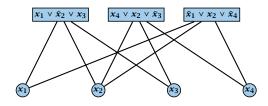
- ▶ an instance of label cover is (d_1, d_2) -regular if every vertex in L_1 has degree d_1 and every vertex in L_2 has degree d_2 .
- ▶ if every vertex has the same degree d the instance is called d-regular

- ▶ assign a set $L_x \subseteq L_1$ of labels to every node $x \in L_1$ and a set $L_y \subseteq L_2$ to every node $y \in L_2$
- ▶ make sure that for every edge (x, y) there is $\ell_x \in L_x$ and $\ell_y \in L_y$ s.t. $(\ell_x, \ell_y) \in R_{x,y}$
- minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

 $R = \{((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), ((T,T,T),T), ((T,T,F),F), ((T,F,F),F)\}$

Label Cover

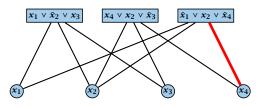
- ▶ an instance of label cover is (d_1, d_2) -regular if every vertex in L_1 has degree d_1 and every vertex in L_2 has degree d_2 .
- ► if every vertex has the same degree *d* the instance is called *d*-regular

- ▶ assign a set $L_x \subseteq L_1$ of labels to every node $x \in L_1$ and a set $L_y \subseteq L_2$ to every node $y \in L_2$
- ▶ make sure that for every edge (x, y) there is $\ell_x \in L_x$ and $\ell_y \in L_y$ s.t. $(\ell_x, \ell_y) \in R_{x,y}$
- ► minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

instance:

$$\Phi(\mathbf{x}) = (\mathbf{x}_1 \vee \bar{\mathbf{x}}_2 \vee \mathbf{x}_3) \wedge (\mathbf{x}_4 \vee \mathbf{x}_2 \vee \bar{\mathbf{x}}_3) \wedge (\bar{\mathbf{x}}_1 \vee \mathbf{x}_2 \vee \bar{\mathbf{x}}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i,u_j,u_k),u_i)\}$, where the clause C is over variables x_i,x_j,x_k and assignment (u_i,u_j,u_k) satisfies C

$$R = \{((F, F, F), F), ((F, T, F), F), ((F, F, T), T), ((F, T, T), T), ((T, T, T), T), ((T, T, F), F), ((T, F, F), F)\}$$

Label Cover

- ▶ an instance of label cover is (d_1, d_2) -regular if every vertex in L_1 has degree d_1 and every vertex in L_2 has degree d_2 .
- ► if every vertex has the same degree *d* the instance is called *d*-regular

- ▶ assign a set $L_x \subseteq L_1$ of labels to every node $x \in L_1$ and a set $L_y \subseteq L_2$ to every node $y \in L_2$
 - ▶ make sure that for every edge (x, y) there is $\ell_x \in L_x$ and $\ell_y \in L_y$ s.t. $(\ell_x, \ell_y) \in R_{x,y}$
 - ▶ minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

Lemma 113

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

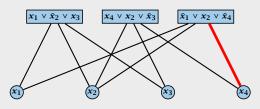
Proo

MAX E3SAT via Label Cover

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

$$R = \{((F,F,F),F),((F,T,F),F),((F,F,T),T),((F,T,T),T),\\ ((T,T,T),T),((T,T,F),F),((T,F,F),F)\}$$

Lemma 113

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

Proof:

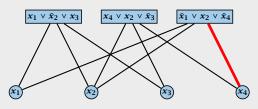
- for V_2 use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V_1 use the corresponding assignment to the clause-variables (gives 3k happy edges
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (give 2(m-k) happy edges)

MAX E3SAT via Label Cover

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

$$R = \{((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), \\ ((T,T,T),T), ((T,T,F),F), ((T,F,F),F)\}$$

Lemma 113

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

Proof:

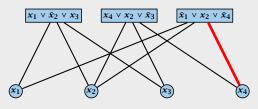
- for V_2 use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V_1 use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (give 2(m-k) happy edges)

MAX E3SAT via Label Cover

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

$$R = \{((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), \\ ((T,T,T),T), ((T,T,F),F), ((T,F,F),F)\}$$

Lemma 113

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

Proof:

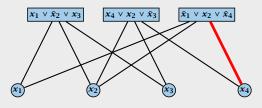
- for V_2 use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V_1 use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m-k) happy edges)

MAX E3SAT via Label Cover

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

$$R = \{((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), \\ ((T,T,T),T), ((T,T,F),F), ((T,F,F),F)\}$$

Lemma 114

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

Proof:

MAX E3SAT via Label Cover

Lemma 113

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- for V_2 use the setting of the assignment that satisfies k clauses
- ► for satisfied clauses in V_1 use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m-k) happy edges)

Lemma 114

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

Proof:

- the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- ▶ hence at most 3m (m k) = 2m + k edges are happy

MAX E3SAT via Label Cover

Lemma 113

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- for V_2 use the setting of the assignment that satisfies k clauses
 - ► for satisfied clauses in V_1 use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m-k) happy edges)

Lemma 114

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

Proof:

- the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges

▶ hence at most 3m - (m - k) = 2m + k edges are hanny

20 Hardness of Approximation

MAX E3SAT via Label Cover

Lemma 113

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- ► for V₂ use the setting of the assignment that satisfies k clauses
- ► for satisfied clauses in V_1 use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m-k) happy edges)

Lemma 114

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

Proof:

- the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- ▶ hence at most 3m (m k) = 2m + k edges are happy

MAX E3SAT via Label Cover

Lemma 113

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

Proof:

- for V_2 use the setting of the assignment that satisfies k clauses
- ► for satisfied clauses in V_1 use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m-k) happy edges)

Hardness for Label Cover

We cannot distinguish between the following two cases

- \blacktriangleright all 3m edges can be made happy
- ▶ at most $2m + (1 \epsilon)m = (3 \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{3-\epsilon}{2}$.

MAX E3SAT via Label Cover

Lemma 114

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

- \blacktriangleright the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- ► hence at most 3m (m k) = 2m + k edges are happy

Hardness for Label Cover

We cannot distinguish between the following two cases

- \triangleright all 3m edges can be made happy
- ▶ at most $2m + (1 \epsilon)m = (3 \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{3-\epsilon}{3}$.

MAX E3SAT via Label Cover

Lemma 114

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- ► hence at most 3m (m k) = 2m + k edges are happy

(3, 5)-regular instances

Theorem 115

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties

- ▶ the resulting Label Cover instance is (3,5)-regular
- \blacktriangleright it is hard to approximate for a constant $\alpha < 1$
- given a label ℓ_1 for x there is at most one label ℓ_2 for y that makes edge (x,y) happy (uniqueness property)

Hardness for Label Cover

We cannot distinguish between the following two cases

- \blacktriangleright all 3m edges can be made happy
- ▶ at most $2m + (1 \epsilon)m = (3 \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{3-\epsilon}{3}$.

(3, 5)-regular instances

Theorem 115

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- ▶ the resulting Label Cover instance is (3, 5)-regular
- it is hard to approximate for a constant $\alpha < 1$
- given a label ℓ_1 for x there is at most one label ℓ_2 for y that makes edge (x, y) happy (uniqueness property)

Hardness for Label Cover

We cannot distinguish between the following two cases

- \blacktriangleright all 3m edges can be made happy
- ▶ at most $2m + (1 \epsilon)m = (3 \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{3-\epsilon}{3}$.

(3, 5)-regular instances

The previous theorem can be obtained with a series of gap-preserving reductions:

- ► MAX3SAT \leq MAX3SAT(\leq 29)
- ► $MAX3SAT(\leq 29) \leq MAX3SAT(\leq 5)$
- ► $MAX3SAT(\leq 5) \leq MAX3SAT(=5)$
- \blacktriangleright MAX3SAT(= 5) \leq MAXE3SAT(= 5)

Here MAX3SAT(≤ 29) is the variant of MAX3SAT in which a variable appears in at most 29 clauses. Similar for the other problems.

(3, 5)-regular instances

Theorem 115

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- ► the resulting Label Cover instance is (3,5)-regular
- \blacktriangleright it is hard to approximate for a constant $\alpha < 1$
- given a label ℓ_1 for x there is at most one label ℓ_2 for y that makes edge (x, y) happy (uniqueness property)

Regular instances

Theorem 116

There is a constant $\alpha < 1$ such if there is an α -approximation algorithm for Label Cover on 15-regular instances than P=NP.

Given a label ℓ_1 for $x \in V_1$ there is at most one label ℓ_2 for y that makes (x, y) happy. (uniqueness property)

(3, 5)-regular instances

The previous theorem can be obtained with a series of gap-preserving reductions:

- ► MAX3SAT \leq MAX3SAT(\leq 29)
- ► MAX3SAT(≤ 29) ≤ MAX3SAT(≤ 5)
- ► MAX3SAT(≤ 5) ≤ MAX3SAT(= 5)
- ► $MAX3SAT(=5) \le MAXE3SAT(=5)$

Here MAX3SAT(≤ 29) is the variant of MAX3SAT in which a variable appears in at most 29 clauses. Similar for the other problems.

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance probability of a wrong proof (or as here: a pair of wrong proofs) one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several rounds in parallel and hope that the acceptance probability of wrong proofs goes down.

Regular instances

Theorem 116

There is a constant $\alpha < 1$ such if there is an α -approximation algorithm for Label Cover on 15-regular instances than P=NP.

Given a label ℓ_1 for $x \in V_1$ there is at most one label ℓ_2 for y that makes (x, y) happy. (uniqueness property)

Given Label Cover instance I with $G = (V_1, V_2, E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$F' = F^k = F \times \cdots \times F$$

An edge $((x_1,\ldots,x_k),(y_1,\ldots,y_k))$ whose end-points are labelled by $(\ell_1^x,\ldots,\ell_k^x)$ and $(\ell_1^y,\ldots,\ell_k^y)$ is happy if $(\ell_i^x,\ell_i^y)\in R_{x_i,y_i}$ for all i.

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance probability of a wrong proof (or as here: a pair of wrong proofs) one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several rounds in parallel and hope that the acceptance probability of wrong proofs goes down.

- - - $L_2' = L_2^{k} = L_2 \times \cdots \times L_2$ $F' = F^k = F \times \cdots \times F$

Parallel Repetition

- - An edge $((x_1, \dots, x_k), (y_1, \dots, y_k))$ whose end-points are labelled by $(\ell_1^x, \dots, \ell_k^x)$ and $(\ell_1^y, \dots, \ell_k^y)$ is happy if
 - $(\ell_i^x, \ell_i^y) \in R_{x_i, y_i}$ for all i.

and L_2 we construct a new instance I':

 $V_1' = V_1^k = V_1 \times \cdots \times V_1$ $V_2' = V_2^k = V_2 \times \cdots \times V_2$ $\blacktriangleright L_1' = L_1^k = L_1 \times \cdots \times L_1$

555/571

Given Label Cover instance I with $G = (V_1, V_2, E)$, label sets L_1

If I is regular than also I'.

If I has the uniqueness property than also I'

Did the gap increase?

Parallel Repetition

Given Label Cover instance I with $G=(V_1,V_2,E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$ightharpoonup E' = E^k = E \times \cdots \times E$$

555/571

An edge $((x_1,...,x_k),(y_1,...,y_k))$ whose end-points are labelled by $(\ell_1^x,...,\ell_k^x)$ and $(\ell_1^y,...,\ell_k^y)$ is happy if $(\ell_i^x,\ell_i^y) \in R_{x_i,y_i}$ for all i.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ_1, ℓ_2 that satisfies just an α -fraction of edges in I.
- ▶ We transfer this labelling to instance I': vertex $(x_1,...,x_k)$ gets label $(\ell_1(x_1),...,\ell_1(x_k))$, vertex $(y_1,...,y_k)$ gets label $(\ell_2(y_1),...,\ell_2(y_k))$.
- ► How many edges are happy?
- only (and the out of ATAMM (just an or fraction)

Does this always work?

Parallel Repetition

Given Label Cover instance I with $G=(V_1,V_2,E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$ightharpoonup E' = E^k = E \times \cdots \times E$$

555/571

An edge $((x_1,\ldots,x_k),(y_1,\ldots,y_k))$ whose end-points are labelled by $(\ell_1^x,\ldots,\ell_k^x)$ and $(\ell_1^y,\ldots,\ell_k^y)$ is happy if $(\ell_i^x,\ell_i^y)\in R_{x_i,y_i}$ for all i.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ_1, ℓ_2 that satisfies just an α -fraction of edges in I.
- We transfer this labelling to instance I': vertex $(x_1,...,x_k)$ gets label $(\ell_1(x_1),...,\ell_1(x_k))$, vertex $(y_1,...,y_k)$ gets label $(\ell_2(y_1),...,\ell_2(y_k))$.
- ► How many edges are happy?

Does this always work?

Parallel Repetition

Given Label Cover instance I with $G=(V_1,V_2,E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$ightharpoonup E' = E^k = E \times \cdots \times E$$

An edge $((x_1,\ldots,x_k),(y_1,\ldots,y_k))$ whose end-points are labelled by $(\ell_1^x,\ldots,\ell_k^x)$ and $(\ell_1^y,\ldots,\ell_k^y)$ is happy if $(\ell_i^x,\ell_i^y)\in R_{x_i,y_i}$ for all i.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ_1, ℓ_2 that satisfies just an α -fraction of edges in I.
- ▶ We transfer this labelling to instance I': vertex $(x_1,...,x_k)$ gets label $(\ell_1(x_1),...,\ell_1(x_k))$, vertex $(y_1,...,y_k)$ gets label $(\ell_2(y_1),...,\ell_2(y_k))$.
- ► How many edges are happy?

 only (α(E)) out of (E) (just an α fraction)

Does this always work?

Parallel Repetition

Given Label Cover instance I with $G=(V_1,V_2,E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$ightharpoonup E' = E^k = E \times \cdots \times E$$

An edge $((x_1,\ldots,x_k),(y_1,\ldots,y_k))$ whose end-points are labelled by $(\ell_1^x,\ldots,\ell_k^x)$ and $(\ell_1^y,\ldots,\ell_k^y)$ is happy if $(\ell_i^x,\ell_i^y)\in R_{x_i,y_i}$ for all i.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ_1, ℓ_2 that satisfies just an α -fraction of edges in I.
- We transfer this labelling to instance I': vertex $(x_1,...,x_k)$ gets label $(\ell_1(x_1),...,\ell_1(x_k))$, vertex $(y_1,...,y_k)$ gets label $(\ell_2(y_1),...,\ell_2(y_k))$.
- ► How many edges are happy? only $(\alpha | E|)^k$ out of $|E|^k!!!$ (just an α^k fraction)

Does this always work?

Parallel Repetition

Given Label Cover instance I with $G=(V_1,V_2,E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$ightharpoonup E' = E^k = E \times \cdots \times E$$

An edge $((x_1,\ldots,x_k),(y_1,\ldots,y_k))$ whose end-points are labelled by $(\ell_1^x,\ldots,\ell_k^x)$ and $(\ell_1^y,\ldots,\ell_k^y)$ is happy if $(\ell_i^x,\ell_i^y)\in R_{x_i,y_i}$ for all i.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ_1, ℓ_2 that satisfies just an α -fraction of edges in I.
- We transfer this labelling to instance I': vertex $(x_1,...,x_k)$ gets label $(\ell_1(x_1),...,\ell_1(x_k))$, vertex $(y_1,...,y_k)$ gets label $(\ell_2(y_1),...,\ell_2(y_k))$.
- ► How many edges are happy? only $(\alpha|E|)^k$ out of $|E|^k!!!$ (just an α^k fraction)

Does this always work?

Parallel Repetition

Given Label Cover instance I with $G=(V_1,V_2,E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$ightharpoonup E' = E^k = E \times \cdots \times E$$

An edge $((x_1,\ldots,x_k),(y_1,\ldots,y_k))$ whose end-points are labelled by $(\ell_1^x,\ldots,\ell_k^x)$ and $(\ell_1^y,\ldots,\ell_k^y)$ is happy if $(\ell_i^x,\ell_i^y)\in R_{x_i,y_i}$ for all i.

Non interactive agreement:

- ► Two provers A and B
- ▶ The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0, A_1, B_0, B_1 with the meaning $A_0 := \text{prover } A$ has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

Parallel Repetition

If I is regular than also I'.

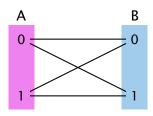
If I has the uniqueness property than also I'.

Did the gap increase?

- ► Suppose we have labelling ℓ_1, ℓ_2 that satisfies just an α -fraction of edges in I.
- ▶ We transfer this labelling to instance I': vertex $(x_1,...,x_k)$ gets label $(\ell_1(x_1),...,\ell_1(x_k))$, vertex $(y_1,...,y_k)$ gets label $(\ell_2(y_1),...,\ell_2(y_k))$.
- ► How many edges are happy? only $(\alpha |E|)^k$ out of $|E|^k!!!$ (just an α^k fraction)

Does this always work?

The provers can win with probability at most 1/2.



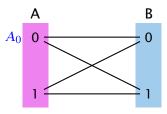
Regardless what we do 50% of edges are unhappy!

Counter Example

Non interactive agreement:

- ► Two provers *A* and *B*
- ► The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0 , A_1 , B_0 , B_1 with the meaning A_0 := prover A has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

The provers can win with probability at most 1/2.

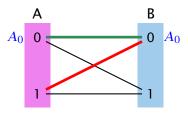


Regardless what we do 50% of edges are unhappy!

Counter Example

- ► Two provers *A* and *B*
- ► The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0 , A_1 , B_0 , B_1 with the meaning A_0 := prover A has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

The provers can win with probability at most 1/2.

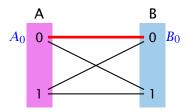


Regardless what we do 50% of edges are unhappy!

Counter Example

- ► Two provers *A* and *B*
- ► The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0 , A_1 , B_0 , B_1 with the meaning A_0 := prover A has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

The provers can win with probability at most 1/2.

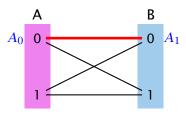


Regardless what we do 50% of edges are unhappy

Counter Example

- ► Two provers *A* and *B*
- ► The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0 , A_1 , B_0 , B_1 with the meaning A_0 := prover A has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

The provers can win with probability at most 1/2.

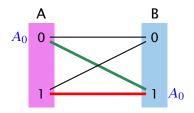


Regardless what we do 50% of edges are unhappy!

Counter Example

- ► Two provers *A* and *B*
- ► The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0 , A_1 , B_0 , B_1 with the meaning A_0 := prover A has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

The provers can win with probability at most 1/2.



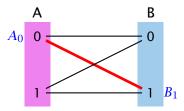
Regardless what we do 50% of edges are unhappy!

Counter Example

Non interactive agreement:

- ► Two provers *A* and *B*
- ► The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0 , A_1 , B_0 , B_1 with the meaning A_0 := prover A has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

The provers can win with probability at most 1/2.

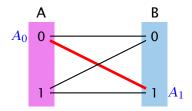


Regardless what we do 50% of edges are unhappy

Counter Example

- ► Two provers *A* and *B*
- ► The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0 , A_1 , B_0 , B_1 with the meaning A_0 := prover A has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

The provers can win with probability at most 1/2.



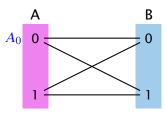
Regardless what we do 50% of edges are unhappy

Counter Example

- ► Two provers *A* and *B*
- ► The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0 , A_1 , B_0 , B_1 with the meaning A_0 := prover A has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

Counter Example

The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!

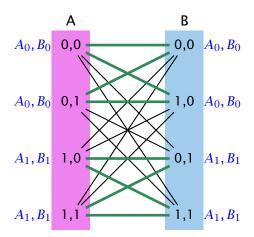
Counter Example

Non interactive agreement:

- ► Two provers *A* and *B*
- ► The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- ► Each prover has to answer one of A_0, A_1, B_0, B_1 with the meaning $A_0 := \text{prover } A$ has been given a bit with value 0.
- ► The provers win if they give the same answer and if the answer is correct.

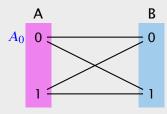
Counter Example

In the repeated game the provers can also win with probability 1/2:



Counter Example

The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!

Boosting

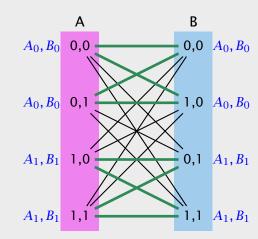
Theorem 117

There is a constant c>0 such if $\mathrm{OPT}(I)=|E|(1-\delta)$ then $\mathrm{OPT}(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

proof is highly non-trivial

Counter Example

In the repeated game the provers can also win with probability 1/2:



Boosting

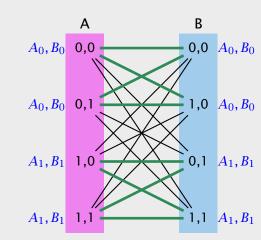
Theorem 117

There is a constant c>0 such if $\mathrm{OPT}(I)=|E|(1-\delta)$ then $\mathrm{OPT}(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

proof is highly non-trivial

Counter Example

In the repeated game the provers can also win with probability 1/2:



Hardness of Label Cover

Theorem 118

There are constants c > 0, $\delta < 1$ s.t. for any k we cannot distinguish regular instances for Label Cover in which either

- ightharpoonup OPT(I) = |E|. or

unless each problem in NP has an algorithm running in time $\mathcal{O}(n^{\mathcal{O}(k)})$.

Corollary 119

There is no α -approximation for Label Cover for any constant α .

Boosting

560/571

Theorem 117

There is a constant c>0 such if $\mathrm{OPT}(I)=|E|(1-\delta)$ then $\mathrm{OPT}(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

proof is highly non-trivial

Theorem 120

There exist regular Label Cover instances s.t. we cannot distinguish whether

- all edges are satisfiable, or
- at most a $1/\log^2(|L_1||E|)$ -fraction is satisfiable

unless NP-problems have algorithms with running time $\mathcal{O}(n^{\mathcal{O}(\log\log n)})$.

choose $k \ge \frac{2}{c} \log_{1/(1-\delta)} (\log(|L_1||E|)) = \mathcal{O}(\log\log n)$.

Hardness of Label Cover

Theorem 118

There are constants c>0, $\delta<1$ s.t. for any k we cannot distinguish regular instances for Label Cover in which either

$$ightharpoonup OPT(I) = |E|$$
, or

$$ightharpoonup OPT(I) = |E|(1-\delta)^{ck}$$

unless each problem in NP has an algorithm running in time $\mathcal{O}(n^{\mathcal{O}(k)})$.

Corollary 119

There is no α -approximation for Label Cover for any constant α .

Partition System (s, t, h)

- ▶ universe *U* of size *s*
- ▶ t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t)$; $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i , \bar{A}_i we do not cover the whole set U

we will show later:

for any h, t with $h \le t$ there exist systems with $s = |U| \le 4t^2 2^h$

Hardness of Set Cover

Theorem 120

There exist regular Label Cover instances s.t. we cannot distinguish whether

- ► all edges are satisfiable, or
- ▶ at most a $1/\log^2(|L_1||E|)$ -fraction is satisfiable unless NP-problems have algorithms with running time $\mathcal{O}(n^{\mathcal{O}(\log\log n)})$.

choose $k \geq \frac{2}{c} \log_{1/(1-\delta)}(\log(|L_1||E|)) = \mathcal{O}(\log\log n)$.

$$u_{i}$$

For all
$$v \in v_2, v_2 \in L$$

Hardness of Set Cover

Partition System (s, t, h)

- ▶ universe *U* of size *s*
- t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t)$; $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i , \bar{A}_i we do not cover the whole set U

we will show later:

for any h, t with $h \le t$ there exist systems with $s = |U| \le 4t^2 2^h$

EADS II

563/571

20 Hardness of Approximation

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_1|, h = \log(|E||L_1|))$

for all $a_i \in V_i$, $\theta_i \in I$

 $\| \|_{\mathcal{A}_{p}} = V_{p} \|_{\mathcal{A}_{p}} = I.$

for all
$$v \in V_2, \ell_2 \in L$$

 $S_{v,\ell_2} = \{((u,v),u) \mid (u,v) \in \mathtt{E}, u \in A_{\ell_1}, \, \mathrm{where} \, (v_1,v_2) \in \mathtt{K}_{(u,v)} \}$

Hardness of Set Cover

Partition System (s, t, h)

- ▶ universe U of size s
- ► t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t)$; $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i , \bar{A}_i we do not cover the whole set U

we will show later:

563/571

for any h, t with $h \le t$ there exist systems with $s = |U| \le 4t^2 2^h$

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_1|, h = \log(|E||L_1|))$

for all $\alpha \in V$ $\theta \in I$

for all $v \in V_2, \ell_2 \in L$

 $S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } \}$

note that S_{n,ℓ_n} is well defined because of uniqueness property

Hardness of Set Cover

Partition System (s, t, h)

- ▶ universe U of size s
- ▶ t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t)$; $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i , \bar{A}_i we do not cover the whole set U

we will show later:

563/571

for any h, t with $h \le t$ there exist systems with $s = |U| \le 4t^2 2^h$

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_1|, h = \log(|E||L_1|))$

for all
$$u \in V_1, \ell_1 \in L_1$$

$$S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$$

for all $v \in V_2$ $\ell_2 \in I$

$$S = \{((u, u), a) \mid (u, u) \in E, a \in \overline{A} \}$$
 where $(\ell, \ell_0) \in P_{\ell_0}$

 $S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$

note that S_{n, θ_n} is well defined because of uniqueness property

Hardness of Set Cover

Partition System (s, t, h)

- \blacktriangleright universe U of size s
- ► t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t)$; $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i , \bar{A}_i we do not cover the whole set U

we will show later:

for any h, t with $h \le t$ there exist systems with $s = |U| \le 4t^2 2^h$

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_1|, h = \log(|E||L_1|))$

for all
$$u \in V_1, \ell_1 \in L_1$$

$$S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$$

C II - T 7 0 - T

for all
$$v \in V_2, \ell_2 \in L_2$$

 $S_{u,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$

Hardness of Set Cover

Partition System (s, t, h)

- ▶ universe U of size s
- ► t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t)$; $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i , \bar{A}_i we do not cover the whole set U

....

we will show later: for any h, t with $h \le t$ there exist systems with $s = |U| \le 4t^2 2^h$

Given a Label Cover instance we construct a Set Cover instance:

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_1|, h = \log(|E||L_1|))$

for all
$$u \in V_1, \ell_1 \in L_1$$

$$S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$$

for all
$$v \in V_2, \ell_2 \in L_2$$

For all
$$v \in v_2, v_2 \in$$

$$S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$$

note that S_{v,ℓ_2} is well defined because of uniqueness property

Hardness of Set Cover

Partition System (s, t, h)

▶ universe *U* of size *s*

cover the whole set U

- t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t)$; $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i , \bar{A}_i we do not

we will show later:

for any h, t with $h \le t$ there exist systems with $s = |U| \le 4t^2 2^h$

563/571

20 Hardness of Approximation

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance:

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_1|, h = \log(|E||L_1|))$

 $S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$

note that S_{v,ℓ_2} is well defined because of uniqueness property

for all $u \in V_1, \ell_1 \in L_1$

$$\in V_1, \ell_1 \in L_1$$

for all
$$v \in V_2, \ell_2 \in L_2$$

 $S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$

Suppose that we can make all edges happy.

Hardness of Set Cover

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_1|, h = \log(|E||L_1|))$

 $S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$

Given a Label Cover instance we construct a Set Cover instance;

for all $u \in V_1, \ell_1 \in L_1$

$$1, \ell_1 \in L_1$$

for all $v \in V_2, \ell_2 \in L_2$

$$\ell_2 \in L_2$$

$$,v_2 \in L_2$$

$$2,v_2 \in L$$

$$v, v_2 \in L_1$$

$$v_2, v_2 \in I$$

$$\ell_2, \ell_2 \in L_2$$

 $S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$

note that S_{v,ℓ_2} is well defined because of uniqueness property

20 Hardness of Approximation

EADS II

Suppose that we can make all edges happy.

Choose sets S_{u,ℓ_1} 's and S_{v,ℓ_2} 's, where ℓ_1 is the label we assigned to u, and ℓ_2 the label for v. ($|V_1|+|V_2|$ sets)

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system: $(t = |L_1|, h = \log(|E||L_1|))$

 $S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$

for all $u \in V_1, \ell_1 \in L_1$

$$,\ell_1\in L_1$$

for all $v \in V_2, \ell_2 \in L_2$

$$,\ell_2\in L_2$$

$$2, v_2 \in L_2$$

$$S_{v,\ell_2} = \{(u, v) \mid v \in \mathcal{S}_{v,\ell_2} = \{($$

$$S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$$

$$v).a) + ($$

- note that S_{v,ℓ_2} is well defined because of uniqueness property

Suppose that we can make all edges happy.

Choose sets S_{u,ℓ_1} 's and S_{v,ℓ_2} 's, where ℓ_1 is the label we assigned to u_1 , and ℓ_2 the label for v_2 . ($|V_1|+|V_2|$ sets)

For an edge (u, v), S_{v,ℓ_2} contains $\{(u, v)\} \times A_{\ell_2}$. For a happy edge S_{u,ℓ_1} contains $\{(u,v)\} \times \bar{A}_{\ell_2}$.

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance:

The universe is $E \times U$, where U is the universe of some partition system: $(t = |L_1|, h = \log(|E||L_1|))$

for all $u \in V_1, \ell_1 \in L_1$

$$v_1 \in L_1$$

 $S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$

note that S_{v,ℓ_2} is well defined because of uniqueness property

for all $v \in V_2, \ell_2 \in L_2$

 $S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$

564/571

563

FADS II

Suppose that we can make all edges happy.

Choose sets S_{u,ℓ_1} 's and S_{v,ℓ_2} 's, where ℓ_1 is the label we assigned to u, and ℓ_2 the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u, v), S_{v,ℓ_2} contains $\{(u, v)\} \times A_{\ell_2}$. For a happy edge S_{u,ℓ_1} contains $\{(u,v)\} \times \bar{A}_{\ell_2}$.

Since all edges are happy we have covered the whole universe.

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance:

The universe is $E \times U$, where U is the universe of some partition system: $(t = |L_1|, h = \log(|E||L_1|))$

for all $u \in V_1, \ell_1 \in L_1$

$$1 \in L_1$$

for all $v \in V_2, \ell_2 \in L_2$

 $S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$

564/571

20 Hardness of Approximation

20 Hardness of Approximation

 $S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$

note that S_{v,ℓ_2} is well defined because of uniqueness property

Suppose that we can make all edges happy.

Choose sets S_{u,ℓ_1} 's and S_{v,ℓ_2} 's, where ℓ_1 is the label we assigned to u, and ℓ_2 the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u, v), S_{v,ℓ_2} contains $\{(u, v)\} \times A_{\ell_2}$. For a happy edge S_{u,ℓ_1} contains $\{(u,v)\} \times \bar{A}_{\ell_2}$.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance:

The universe is $E \times U$, where U is the universe of some partition system: $(t = |L_1|, h = \log(|E||L_1|))$

for all $u \in V_1, \ell_1 \in L_1$

for all $v \in V_2, \ell_2 \in L_2$

 $S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$

- 564/571
- 20 Hardness of Approximation FADS II

with $|V_1| + |V_2|$ sets.

20 Hardness of Approximation

 $S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$

note that S_{v,ℓ_2} is well defined because of uniqueness property

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{\sigma}(|V_1|+|V_2|)$ sets.

Since differentiating between both cases for the Label Cover

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets S_{u,ℓ_1} 's and S_{v,ℓ_2} 's, where ℓ_1 is the label we assigned to u, and ℓ_2 the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u,v), S_{v,ℓ_2} contains $\{(u,v)\} \times A_{\ell_2}$. For a happy edge S_{u,ℓ_1} contains $\{(u,v)\} \times \bar{A}_{\ell_2}$.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover with $\lvert V_1 \rvert + \lvert V_2 \rvert$ sets.

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{g}(|V_1|+|V_2|)$ sets.

Since differentiating between both cases for the Label Cover instance is hard, we have an O(h)-hardness for Set Cover

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets S_{u,ℓ_1} 's and S_{v,ℓ_2} 's, where ℓ_1 is the label we assigned to u, and ℓ_2 the label for v, $(|V_1|+|V_2|$ sets)

For an edge (u,v), S_{v,ℓ_2} contains $\{(u,v)\} \times A_{\ell_2}$. For a happy edge S_{u,ℓ_1} contains $\{(u,v)\} \times \bar{A}_{\ell_2}$.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover with $\left|V_1\right|+\left|V_2\right|$ sets.

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1|+|V_2|)$ sets.

Since differentiating between both cases for the Label Cover instance is hard, we have an $\mathcal{O}(h)$ -hardness for Set Cover.

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets S_{u,ℓ_1} 's and S_{v,ℓ_2} 's, where ℓ_1 is the label we assigned to u, and ℓ_2 the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u,v), S_{v,ℓ_2} contains $\{(u,v)\} \times A_{\ell_2}$. For a happy edge S_{u,ℓ_1} contains $\{(u,v)\} \times \bar{A}_{\ell_2}$.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover with $|V_1| + |V_2|$ sets.

- $ightharpoonup n_u$: number of $S_{u,i}$'s in cover
- \triangleright n_v : number of $S_{v,i}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mar these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v)) happy
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{u,i}$ -sets
- \blacktriangleright (u,v) gets happy with probability at least $4/h^2$
- ▶ hence we make a $2/h^2$ -fraction of edges happy

Hardness of Set Cover

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1|+|V_2|)$ sets.

Since differentiating between both cases for the Label Cover instance is hard, we have an $\mathcal{O}(h)$ -hardness for Set Cover.

- ▶ n_u : number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; marthese vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happ
- we choose a random label for u from the (at most h/2) chosen S_{u,i}-sets and a random label for v from the (at most h/2) S_{u,i}-sets
- \blacktriangleright (u,v) gets happy with probability at least $4/h^2$
- ▶ hence we make a $2/h^2$ -fraction of edges happy

Hardness of Set Cover

Lemma 121

566/571

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1|+|V_2|)$ sets.

- $ightharpoonup n_u$: number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i,j) \in R_{u,v}$ (making (u,v) happy
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{u,i}$ -sets
- \blacktriangleright (u,v) gets happy with probability at least $4/h^2$
- ▶ hence we make a $2/h^2$ -fraction of edges happy

Hardness of Set Cover

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1|+|V_2|)$ sets.

- $ightharpoonup n_u$: number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,i}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v)) happy
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- \blacktriangleright (u,v) gets happy with probability at least $4/h^2$
- ▶ hence we make a $2/h^2$ -fraction of edges happy

Hardness of Set Cover

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1|+|V_2|)$ sets.

- \triangleright n_u : number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- \blacktriangleright (u,v) gets happy with probability at least $4/h^2$
- ▶ hence we make a $2/h^2$ -fraction of edges happy

Hardness of Set Cover

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1|+|V_2|)$ sets.

- $ightharpoonup n_u$: number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,i}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- \blacktriangleright (u,v) gets happy with probability at least $4/h^2$
- ▶ hence we make a $2/h^2$ -fraction of edges happy

Hardness of Set Cover

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1|+|V_2|)$ sets.

- $ightharpoonup n_u$: number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,j}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- ▶ hence we make a $2/h^2$ -fraction of edges happy

Hardness of Set Cover

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1|+|V_2|)$ sets.

- \triangleright n_u : number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ► for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i,j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- ▶ hence we make a $2/h^2$ -fraction of edges happy

Hardness of Set Cover

Lemma 121

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1|+|V_2|)$ sets.

Set Cover

Theorem 122

There is no $\frac{1}{32} \log n$ -approximation for the unweighted Set Cover problem unless problems in NP can be solved in time $\mathcal{O}(n^{\mathcal{O}(\log\log n)})$.

Hardness of Set Cover

- ▶ n_u : number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ► for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,j}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- ▶ hence we make a $2/h^2$ -fraction of edges happy

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ;

$$s = |U| = 4t^2 2^h = 4|L_1|^2 (|E||L_1|)^2 = 4|E|^2 |L_1|^4$$

$$x = |E||II| = 4|E|^3|I_0|^4 < (|E||I_0|)$$

Set Cover

Theorem 122

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ; Set Cover

Set
$$h = \log(|E||L_1|)$$
 and $t = |L_1|$; Size of partition system is

 $s = |U| = 4t^2 2^h = 4|L_1|^2 (|E||L_1|)^2 = 4|E|^2 |L_1|^4$

$$p = |E||II| = 4|E|^3|I|^4 < (|E||I|^4)^4$$

for sufficiently large
$$|E|$$
. Then $h \ge \frac{1}{4} \log$

Theorem 122

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ; Set Cover Set $h = \log(|E||L_1|)$ and $t = |L_1|$; Size of partition system is

$$s = |U| = 4t^2 2^h = 4|L_1|^2 (|E||L_1|)^2 = 4|E|^2 |L_1|^4$$

$$n = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log n$.

Theorem 122

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ; Set Cover

Set
$$h = \log(|E||L_1|)$$
 and $t = |L_1|$; Size of partition system is

$$s = |U| = 4t^2 2^h = 4|L_1|^2 (|E||L_1|)^2 = 4|E|^2 |L_1|^4$$

The size of the ground set is then

$$n = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log n$.

If we get an instance where all edges are satisfiable there exists

a cover of size only $|V_1| + |V_2|$.

Theorem 122

Set
$$h = \log(|E||L_1|)$$
 and $t = |L_1|$; Size of partition system is
$$s = |U| = 4t^2 2^h = 4|L_1|^2 (|E||L_1|)^2 = 4|E|^2 |L_1|^4$$

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ;

$$n = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$$

for sufficiently large
$$|E|$$
. Then $h \ge \frac{1}{4} \log n$.

If we get an instance where all edges are satisfiable there exists a cover of size only
$$|V_1|+|V_2|$$
.

If we find a cover of size at most $\frac{h}{9}(|V_1|+|V_2|)$ we can use this

a cover of size only $|V_1| + |V_2|$. If we find a cover of size at most $\frac{h}{8}(|V_1| + |V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_1|)$ of the edges, this is not possible...

Theorem 122

 $\mathcal{O}(n^{\mathcal{O}(\log\log n)})$.

Set Cover

There is no $\frac{1}{32} \log n$ -approximation for the unweighted Set Cover problem unless problems in NP can be solved in time

20 Hardness of Approximation

Partition Systems

Lemma 123

Given h and t with $h \le t$, there is a partition system of size $s = \ln(4t)h2^h \le 4t^22^h$.

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ;

Set $h = \log(|E||L_1|)$ and $t = |L_1|$; Size of partition system is

 $s = |U| = 4t^2 2^h = 4|L_1|^2 (|E||L_1|)^2 = 4|E|^2 |L_1|^4$

edges, this is not possible...

The size of the ground set is then

 $n = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log n$.

If we get an instance where all edges are satisfiable there exists

a cover of size only $|V_1| + |V_2|$. If we find a cover of size at most $\frac{h}{8}(|V_1| + |V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_1|)$ of the

Partition Systems

Lemma 123

Given h and t with $h \le t$, there is a partition system of size $s = \ln(4t)h2^h \le 4t^22^h$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Set $h = \log(|E||L_1|)$ and $t = |L_1|$; Size of partition system is

 $s = |U| = 4t^2 2^h = 4|L_1|^2 (|E||L_1|)^2 = 4|E|^2 |L_1|^4$

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ;

The size of the ground set is then

 $n = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log n$.

If we get an instance where all edges are satisfiable there exists

a cover of size only $|V_1| + |V_2|$.

If we find a cover of size at most $\frac{h}{8}(|V_1| + |V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_1|)$ of the edges, this is not possible...

Partition Systems

Lemma 123

Given h and t with $h \le t$, there is a partition system of size $s = \ln(4t)h2^h \le 4t^22^h$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

The size of the ground set is then

a cover of size only $|V_1| + |V_2|$.

edges, this is not possible...

 $n = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log n$.

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ;

Set $h = \log(|E||L_1|)$ and $t = |L_1|$; Size of partition system is

 $s = |U| = 4t^2 2^h = 4|L_1|^2 (|E||L_1|)^2 = 4|E|^2 |L_1|^4$

If we get an instance where all edges are satisfiable there exists

If we find a cover of size at most $\frac{h}{8}(|V_1| + |V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_1|)$ of the

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i)

The probability that u is covered is $1 - \frac{1}{2}$

The probability that all u are covered is $(1-\frac{1}{20})^s$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} < \frac{1}{2} ...$$

The random process outputs a partition system with constant probability!

Partition Systems

Lemma 123

Given h and t with $h \le t$, there is a partition system of size $s = \ln(4t)h2^h < 4t^22^h$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i)

The probability that u is covered is $1 - \frac{1}{2}$

The probability that all u are covered is $(1-\frac{1}{2})^3$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} < \frac{1}{2}.$$

The random process outputs a partition system with constant probability!

Partition Systems

Lemma 123

Given h and t with $h \le t$, there is a partition system of size $s = \ln(4t)h2^h \le 4t^22^h$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h}\right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} < \frac{1}{2}$$

Partition Systems

Lemma 123

Given h and t with $h \le t$, there is a partition system of size $s = \ln(4t)h2^h \le 4t^22^h$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all u are covered is $(1-\frac{1}{2})$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{t} 2^h \left(1 - \frac{1}{2^h}\right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} < \frac{1}{2}$$
.

 $\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right) \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} < \frac{1}{2} .$

Partition Systems

Lemma 123

Given h and t with $h \le t$, there is a partition system of size $s = \ln(4t)h2^h \le 4t^22^h$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all u are covered is $(1 - \frac{1}{2h})^s$

The probability that there exists a choice such that all u are

$$\binom{t}{t} 2^h \left(1 - \frac{1}{2^h}\right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} < \frac{1}{2}$$

Partition Systems

Lemma 123

Given h and t with $h \le t$, there is a partition system of size $s = \ln(4t)h^{2h} < 4t^22^h$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all u are covered is $(1-\frac{1}{2h})^s$

What is the probability that a given choice covers U?

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that there exists a choice such that all u are

 $\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} < \frac{1}{2} .$

The random process outputs a partition system with constant probability!

Lemma 123

Partition Systems

Given h and t with $h \le t$, there is a partition system of size $s = \ln(4t)h2^h \le 4t^22^h$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

Advanced PCP Theorem

Theorem 124

For any positive constant $\epsilon > 0$, it is the case that $NP \subseteq PCP_{1-\epsilon,1/2+\epsilon}(\log n, 3)$. Moreover, the verifier just reads three bits from the proof, and bases its decision only on the parity of these bits.

It is NP-hard to approximate a MAXE3LIN problem by a factor better than $1/2 + \delta$, for any constant δ .

It is NP-hard to approximate MAX3SAT better than $7/8 + \delta$, for any constant δ .

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

What is the probability that a given choice covers U?

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all u are covered is $(1-\frac{1}{2h})^s$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h}\right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} < \frac{1}{2}$$
.

The random process outputs a partition system with constant probability!