

Brewery Problem

EADS II

||||||| --Harald Räcke

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

	only brew ale:	34 barrels of ale	⇒ 442€
--	----------------	-------------------	--------

- ▶ only brew beer: 32 barrels of beer \Rightarrow 736€
- ▶ 7.5 barrels ale, 29.5 barrels beer \Rightarrow 776 €
- ▶ 12 barrels ale, 28 barrels beer \Rightarrow 800 €

3 Introduction to Linear Programming

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

EADS II 3 Introduction to Linear Programming Harald Räcke

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max	13a	+	23 <i>b</i>	
s.t.	5a	+	15b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20b	≤ 1190
			a,b	≥ 0
-				

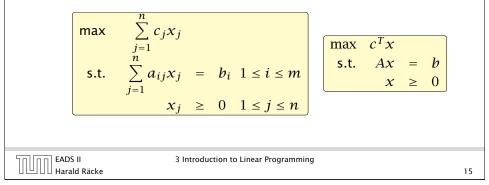
13

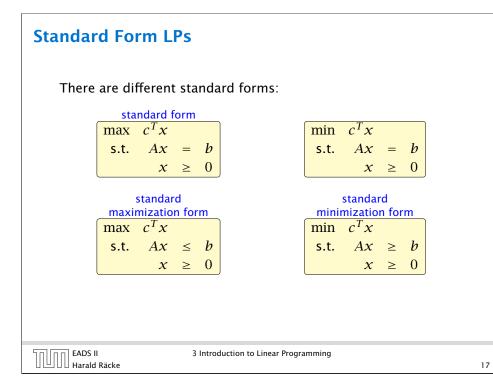
3 Introduction to Linear Programming

Standard Form LPs

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities





Standard Form LPs

Original LP

Standard Form

Add a slack variable to every constraint.

	max	13a	+	23 <i>b</i>							
	s.t.	5 <i>a</i>	+	15 <i>b</i>	+	S_C					= 480
		4 <i>a</i>	+	4b			+	s_h			= 160
		35a	+	20 <i>b</i>					+	s_m	= 1190
		а	,	b	,	S_C	,	s_h	,	s_m	≥ 0
EADS Haral	II d Räcke			3 Introdu	ction	to Linea	ır Prog	Irammir	ıg		

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

```
EADS II
Harald Räcke
```

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

 $a-3b+5c = 12 \implies a-3b+5c \le 12$ $-a+3b-5c \le -12$

equality to greater or equal:

 $a-3b+5c = 12 \implies a-3b+5c \ge 12$ $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted $\implies x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

EADS II Harald Räcke	3 Introduction to Linear Programming	19	1

Fundamental Questions

Definition 1 (Linear Programming Problem (LP)) Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

n number of variables, *m* constraints, *L* number of bits to encode the input

EADS II Harald Räcke

3 Introduction to Linear Programming

21

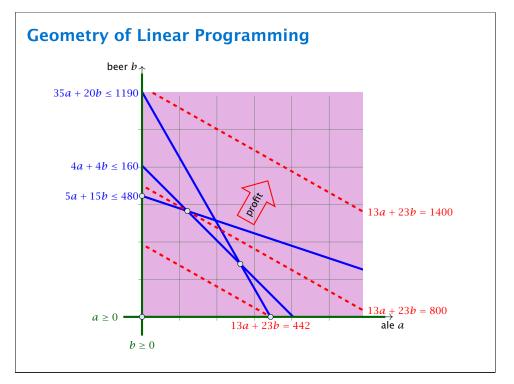
Standard Form LPs

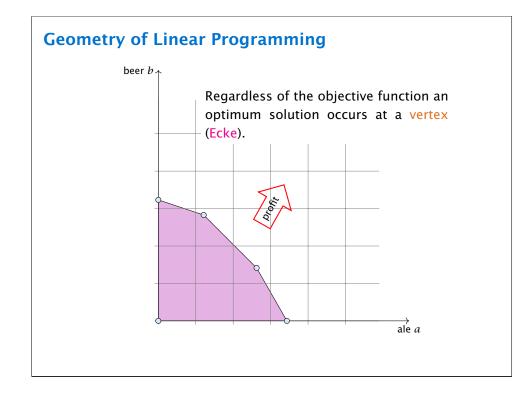
Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

EADS II Harald Räcke	3 Introd
Harald Räcke	

Introduction to Linear Programming





Definitions

Let for a Linear Program in standard form $P = \{ x \mid Ax = b, x \ge 0 \}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

٦n	ПП	EADS II Harald Räck
	-100	Harald Räck

3 Introduction to Linear Programming

24

Definition 2

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- linear combination if $\lambda_i \in \mathbb{R}$.
- affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \ge 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \ge 0$.

Note that a combination involves only finitely many vectors.

Definition 3

EADS II

Harald Räcke

A set $X \subseteq \mathbb{R}^n$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

Definition 4

Given a set $X \subseteq \mathbb{R}^n$.

- span(X) is the set of all linear combinations of X (linear hull, span)
- aff(X) is the set of all affine combinations of X (affine hull)
- conv(X) is the set of all convex combinations of X (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

EADS II	3 Introduction to Linear Programming	
🛛 🕒 🛛 🖓 Harald Räcke		27

Dimensions

Definition 7

The dimension dim(*A*) of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension dim(X) of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull aff(X).

Definition 5

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Lemma 6 If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

 $Q = \{ x \in P \mid f(x) \le t \}$

EADS II 3 Introduction to Linear Programming	
UUU Harald Räcke	3 Introduction to Linear Programming

Definition 9

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10 A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \le b\}$, for $a \ne 0$.

29

Definitions

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., $P = \operatorname{conv}(X)$ where |X| = c.

EADS II	3 Introduction to Linear Programming	
🛛 🕒 🛛 🖓 Harald Räcke		31

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

החתר	EADS II Harald Räcke
	Harald Räcke

3 Introduction to Linear Programming

33

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1, b_1), \ldots, H(a_m, b_m)\}$, where

$$H(a_i, b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$$

Definition 13

A polyhedron *P* is bounded if there exists *B* s.t. $||x||_2 \le B$ for all $x \in P$.

|--|

Definition 15 Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of *P* if $max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. *F* is a face of *P* if F = P or $F = P \cap H$ for some supporting hyperplane *H*.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face *e* is an edge of *P* if *e* is a face and dim(e) = 1.
- ► a face F is a facet of P if F is a face and dim(F) = dim(P) - 1.

Equivalent definition for vertex:

Definition 18

Given polyhedron *P*. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron *P*. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

הם הר	EADS II Harald Räcke	
	Harald Räcke	

3 Introduction to Linear Programming

35

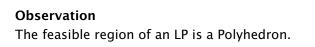
Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose *x* is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$



Convex Sets

EADS II Harald Räcke

EADS II Harald Räcke

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$

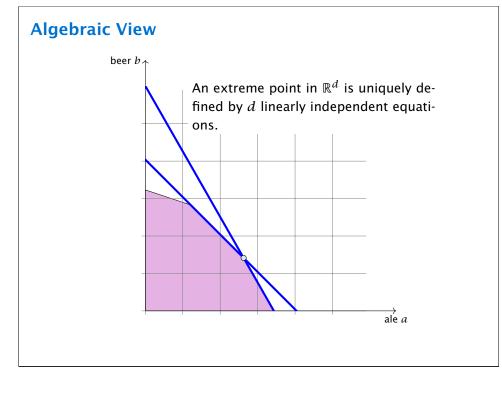
3 Introduction to Linear Programming

- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

37



Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

П		Г	IΓ	וו	EADS II Harald Räd	
	Ц			L	Harald Räd	:ke

3 Introduction to Linear Programming

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_i \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

EADS II Harald Räcke

- ▶ assume *A_B* has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend *d* to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

41

Theorem 23

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_i > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = A\gamma = A_B\gamma_B = Ax = A_Bx_B$ gives that $A_B(x_B \gamma_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get $\gamma = x$
- \blacktriangleright hence, x is a vertex of P

	3 Introduction to Linear Programming	
🛛 💾 🛛 🖓 Harald Räcke		43

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- \blacktriangleright assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1x = b_1$; hence the first constraint is superfluous
- **C2** if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1,\ldots,n\}$ with |B| = m and

- \blacktriangleright A_R is non-singular
- $\bullet \ x_B = A_B^{-1}b \ge 0$
- $\mathbf{x}_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

DD EADS II

Harald Räcke

Take $B = \{j \mid x_i > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

Basic Feasible Solutions

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu *B* assoziierte Basislösung)

	3 Introduction to Linear Programming	
Harald Räcke		47

Definition 25 For a general LP $(\max\{c^T x \mid Ax \le b\})$ with *n* variables a point *x* is a basic feasible solution if *x* is feasible and there exist *n* (linearly independent) constraints that are tight.

Basic Feasible Solutions

A BFS fulfills the *m* equality constraints.

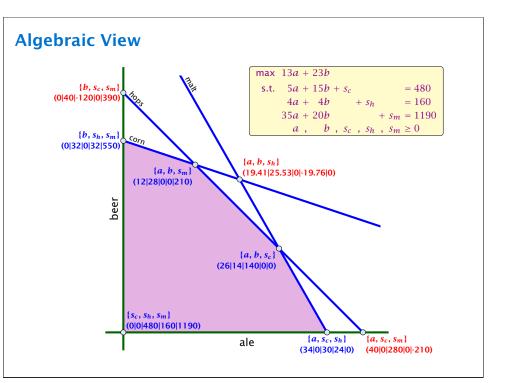
In addition, at least n - m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact: In a BFS at least n constraints are fulfilled with equality.

EADS II Harald Räcke

3 Introduction to Linear Programming

48



EADS II Harald Räcke 3 Introduction to Linear Programming

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

• Given a basis *B* we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

EADS II Harald Räcke	3 Introduction to Linear Programming	
🛛 🕒 🛛 🖓 Harald Räcke		51

4 Simplex Algorithm

numerating all basic feasible solutions (BFS), in order to find ne optimum is slow.				
Simplex Algorithm [Georg Move from BFS to adjacent Sunction.	je Dantzig 1947] BFS, without decreasing objective			
Two BFSs are called <mark>adjace</mark> variable.	nt if the bases just differ in one			
EADS II Harald Räcke	4 Simplex Algorithm			

53

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n,m)\right).$

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

EADS II Harald Räcke 3 Introduction to Linear Programming

4 Simplex Algorithm						
	$ \begin{array}{ c c c c c c } \hline \max & 13a+23b \\ \text{s.t.} & 5a+15b+s_c & = 480 \\ & 4a+4b & +s_h & = 160 \\ & 35a+20b & +s_m = 1190 \\ & a \ , \ b \ , \ s_c \ , \ s_h \ , \ s_m \ge 0 \end{array} $					
$\frac{4a}{35a+2}$		30 30				
EADS II Harald Räcke	4 Simplex Algorithm	54				

Pivoting Step

max Z	basis = { s_c , s_h , s_m }
$13a + 23b \qquad -Z = 0$	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4b + s_h = 160$	$s_c = 480$
$35a + 20b + s_m = 1190$	$s_h = 160$ $s_m = 1190$
a , b , s_c , s_h , $s_m \ge 0$	

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z	basis = { s_c, s_h ,
13a + 23b - Z = 0	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4\mathbf{b} + s_h = 160$	$s_c = 480$
$35a + 20b + s_m = 1190$	$s_h = 160$ $s_m = 1190$
a , b , s_c , s_h , $s_m \ge 0$	

 s_m

```
Substitute b = \frac{1}{15}(480 - 5a - s_c).
```

max Z			1
			basis = $\{b, s_h, s_h\}$
$\frac{16}{3}a - \frac{23}{15}s_c$	-	-Z = -736	$a = s_c = 0$
5 15			Z = 736
$\frac{1}{3}a + b + \frac{1}{15}s_c$		= 32	Z = 750
$\frac{8}{3}a - \frac{4}{15}s_c$		= 32	b = 32
$\overline{3}u - \overline{15}s_c$	$+s_h$	= 52	$s_h = 32$
$\frac{85}{3}a - \frac{4}{3}s_c$	$+ s_m$	= 550	
3 <i>u</i> 350	1 Sm	- 550	$s_m = 550$
a, b, s_c	, S_h , S_m	≥ 0	
. , , ,	, ,		1

max Z		basis = { s_c, s_h, s_m }
13a + 23 b	-Z = 0	a = b = 0
5a + 15 b + sc	= 480	Z = 0
$4a + 4\mathbf{b} + s_h$	= 160	$s_c = 480$
35 <i>a</i> + 20 b	$+ s_m = 1190$	$s_h = 160$ $s_m = 1190$
a, b, s_c, s_h	, $s_m \geq 0$	

- Choose variable with coefficient > 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- ► Choosing θ = min{480/15, 160/4, 1190/20} ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- ► The basic variable in the row that gives min{480/15,160/4,1190/20} becomes the leaving variable.

max Z			
$\frac{16}{3}a$	$-\frac{23}{15}s_c$	-Z = -736	$basis = \{b, s_h, s_m\}$
5	15	-2 = -730	$a = s_c = 0$
$\frac{1}{3}a + 1$	$b + \frac{1}{15}s_c$	= 32	Z = 736
$\frac{8}{3}a$	$-\frac{4}{15}s_{c}+s_{h}$	= 32	b = 32
5	10	- 52	$s_h = 32$
$\frac{85}{3}a$	$-\frac{4}{3}s_{c}$ +	$s_m = 550$	$s_m = 550$
a	b c c.	$s_m > 0$	
a , 1	b, s _c , s _h ,	$s_m \geq 0$	

Choose variable *a* to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

max Z		basis = $\{a, b, s_m\}$
	$- s_c - 2s_h - Z = -800$	$s_c = s_h = 0$
	$b + \frac{1}{10}s_c - \frac{1}{8}s_h = 28$	Z = 800
а	$-\frac{1}{10}s_c + \frac{3}{8}s_h = 12$	b = 28
	$\frac{3}{2}s_c - \frac{85}{8}s_h + s_m = 210$	$a = 12$ $s_m = 210$
а,	b , s_c , s_h , $s_m \ge 0$	

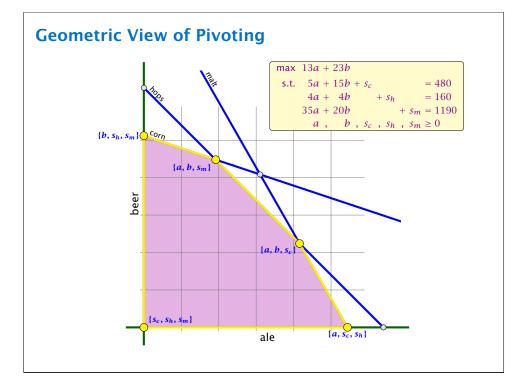
4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- > any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

	4 Simplex Algorithm	
🛛 🕒 🛛 🖓 Harald Räcke		59



Matrix View

Let our linear program be

 $\begin{array}{rclcrcrc} c_B^T x_B &+& c_N^T x_N &=& Z\\ A_B x_B &+& A_N x_N &=& b\\ x_B &,& x_N &\geq& 0 \end{array}$

The simplex tableaux for basis B is

 $\begin{array}{rcl} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &, & x_{N} &\geq& 0 \end{array}$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II	4 Simplex Algorithm	
UUU Harald Räcke		60

Algebraic Definition of Pivoting

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

- $d_j = 1$ (normalization)
- ► $d_{\ell} = 0$, $\ell \notin B$, $\ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*j}$.

Algebraic Definition of Pivoting

Definition 26 (*j***-th basis direction)**

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_j = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^T d = \theta (c_j - c_B^T A_B^{-1} A_{*j})$$

EADS II Harald Räcke 4 Simplex Algorithm

Algebraic Definition of Pivoting

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$\begin{array}{rcl} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &, & & x_{N} &\geq& 0 \end{array}$$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

הם הר	EADS II Harald Räcke
	Harald Räcke

65

63

Algebraic Definition of Pivoting

Definition 27 (Reduced Cost) For a basis *B* the value

 $\tilde{c}_j = c_j - c_B^T A_B^{-1} A_{*j}$

is called the reduced cost for variable x_j .

Note that this is defined for every j. If $j \in B$ then the above term is 0.

EADS II Harald Räcke 4 Simplex Algorithm

64

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

Min Ratio Test

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

Termination

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

EADS II Harald Räcke

4 Simplex Algorithm

Termination

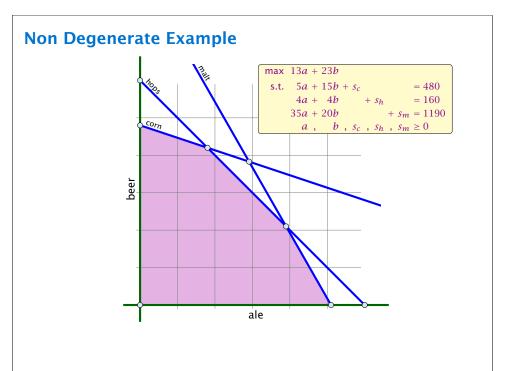
The objective function does not decrease during one iteration of the simplex-algorithm.

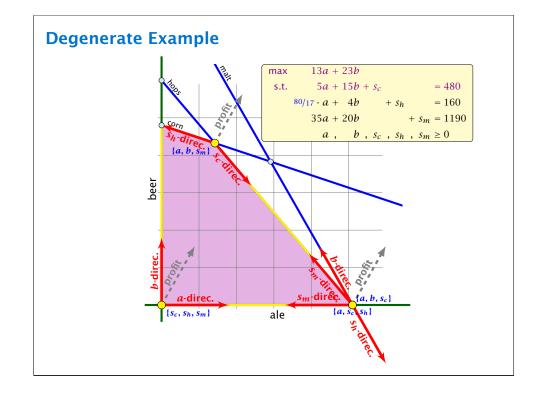
Does it always increase?

EADS II Harald Räcke

69

4 Simplex Algorithm





Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

Summary: How to choose pivot-elements

- We can choose a column *e* as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_{e} is reduced cost for x_{e}).
- The standard choice is the column that maximizes \tilde{c}_e .
- If $A_{ie} \leq 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables *i* with $A_{ie} > 0$.
- If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

EADS II Harald Räcke EADS II

EADS II

4 Simplex Algorithm

72

How do we come up with an initial solution?

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Two phase algorithm

Suppose we want to maximize $c^T x$ s.t. $Ax = b, x \ge 0$.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

EADS II Harald Räcke	4 Simplex Algorithm	75

Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

EADS II Harald Räcke

77

Optimality

Lemma 29

Let *B* be a basis and x^* a BFS corresponding to basis *B*. $\tilde{c} \le 0$ implies that x^* is an optimum solution to the LP.

EADS II Harald Räcke 4 Simplex Algorithm

Duality Definition 30 Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program). The linear program D defined by $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ is called the dual problem.

Duality

```
Lemma 31
The dual of the dual problem is the primal problem.
```

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

$$z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$$

• $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

	5.1 Weak Duality	
UUU Harald Räcke		79

Weak Duality

```
A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)
```

 $A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

EADS II

Harald Räcke

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

5.1 Weak Duality

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

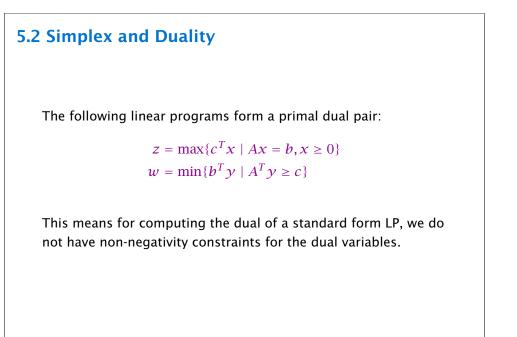
y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y} \; .$

הם הר	EADS II Harald Räcke
	Harald Räcke

5.1 Weak Duality



81

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$

=
$$\min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

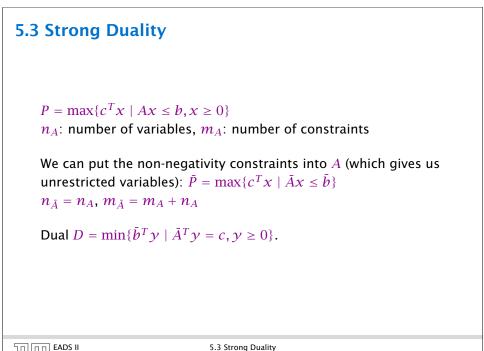
=
$$\min\left\{b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T y' \mid A^T y' \ge c\right\}$$

5.2 Simplex and Duality

'nп	11	ΠГ	EADS II Harald Räcke
	Ц		Harald Räcke

||||||| Harald Räcke



Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$$

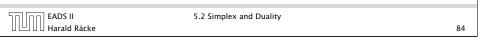
This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

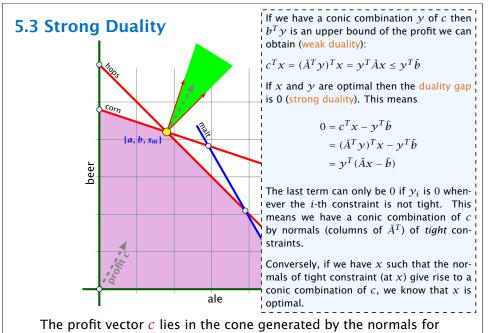
$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T} y^{*} = (Ax^{*})^{T} y^{*} = (A_{B}x_{B}^{*})^{T} y^{*}$$

= $(A_{B}x_{B}^{*})^{T} (A_{B}^{-1})^{T} c_{B} = (x_{B}^{*})^{T} A_{B}^{T} (A_{B}^{-1})^{T} c_{B}$
= $c^{T}x^{*}$

Hence, the solution is optimal.





the hops and the corn constraint (the tight constraints).

85

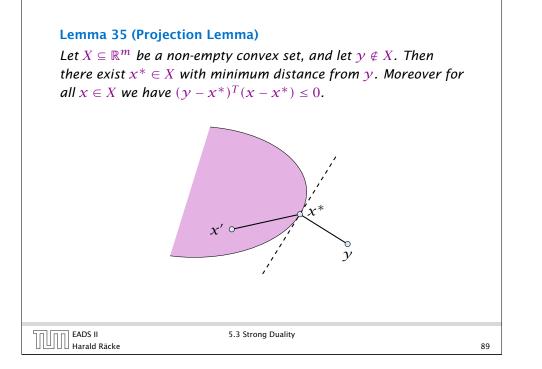
Strong Duality

Theorem 33 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

EADS II 5.3 Strong Duality	
UUU Harald Räcke	87



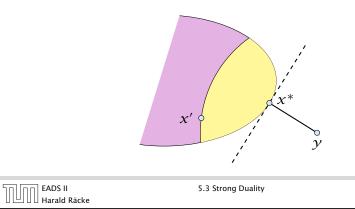
Lemma 34 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x) : x \in X\}$ exists.

(without proc	of)	
EADS II Harald Räcke	5.3 Strong Duality	88

Proof of the Projection Lemma

- Define f(x) = ||y x||.
- We want to apply Weierstrass but *X* may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



Proof of the Projection Lemma (continued)

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{split} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{split}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

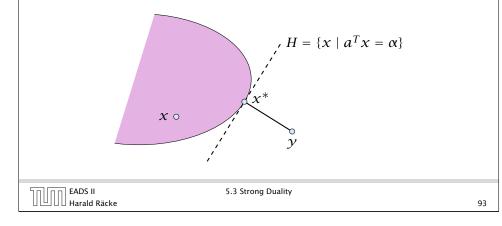
Letting $\epsilon \rightarrow 0$ gives the result.

חחוחר	EADS II	
	Harald Räcke	

5.3 Strong Duality

Proof of the Hyperplane Lemma

- Let $x^* \in X$ be closest point to y in X.
- By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Theorem 36 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha;$ $a^T x \ge \alpha$ for all $x \in X$)

EADS II Harald Räcke

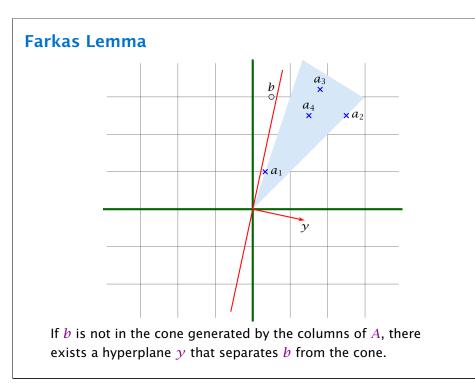
91

5.3 Strong Duality

Lemma 37 (Farkas Lemma) Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds. 1. $\exists x \in \mathbb{R}^n$ with $Ax = b, x \ge 0$ 2. $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0, b^T y < 0$ Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

EADS II Harald Räcke 5.3 Strong Duality



Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

5.3 Strong Duality

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

EADS II

Harald Räcke

1.
$$\exists x \in \mathbb{R}^n$$
 with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

Proof of Strong Duality

 $P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

 $D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

z = w.

Proof of Strong Duality

 $z \le w:$ We show $z < \alpha$ implies $w < \alpha$. $\exists x \in \mathbb{R}^{n}$ s.t. $Ax \le b$ $-c^{T}x \le -\alpha$ $x \ge 0$ $\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$ s.t. $A^{T}y - cv \ge 0$ $b^{T}y - \alpha v < 0$ $y, v \ge 0$ From the definition of α we know that the first system is infeasible; hence the second must be feasible.

	5.3 Strong Duality	
🛛 🕒 🛛 🖓 Harald Räcke		99

Proof of Strong Duality Hence, there exists a solution y, v with v > 0. We can rescale this solution (scaling both y and v) s.t. v = 1. Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

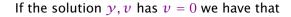
5.3 Strong Duality

EADS II

Harald Räcke

Proof of Strong Duality

 $\begin{array}{c|c} \exists y \in \mathbb{R}^m; v \in \mathbb{R} \\ \text{s.t.} \quad A^T y - cv \geq 0 \\ b^T y - \alpha v < 0 \\ y, v \geq 0 \end{array} \end{array}$



$A^T \mathcal{Y}$	\geq	0
$b^T y$	<	0
У	\geq	0
	-	2

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

5.3 Strong Duality

50000	EADS II Harald Räcke
	Harald Räcke

Fundamental Questions Definition 40 (Linear Programming Problem (LP)) Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.

101

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in D is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

הח הר	EADS II Harald Räcke
	Harald Räcke

5.4 Interpretation of Dual Variables

Interpretation of Dual Variables

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

 $c^T x^* \le y^{*T} A x^* \le b^T y^*$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (\mathcal{Y}^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^T A \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^T A - c^T)_j > 0$ (the *j*-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

EADS II Harald Räcke

103

5.4 Interpretation of Dual Variables

Interpretation of Dual Variables

Marginal Price:

EADS II

Harald Räcke

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

min	$\frac{(b^T + \epsilon^T)y}{A^T y}$			
s.t.	$A^T \gamma$	\geq	С	
	v	≥	0	
	2			

5.4 Interpretation of Dual Variables

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \varepsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

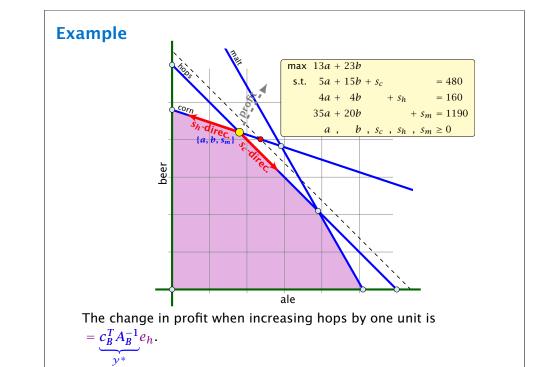
Note that with this interpretation, complementary slackness becomes obvious.

- ► If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

	5.4 Interpretation of Dual Variables	
🛛 🕒 🛛 🖓 Harald Räcke		107

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.



Flows

Definition 42

EADS II

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \leq f_{XY} \leq c_{XY} \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \; .$$

(flow conservation constraints)

Flows

Definition 43 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{X} f_{SX} - \sum_{X} f_{XS} \; .$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

EADS II Harald Räcke

5.5 Computing Duals

111

LP-Formulati	on of Maxflow		
mir	l	$\sum_{(xy)} c_{xy} \ell_{xy}$	
s.t	$f_{xy}(x, y \neq s, t):$	$1\ell_{xy} - 1p_x + 1p_y \ge 0$	
	$f_{sy} (y \neq s, t)$:	$1\ell_{sy} - 1 + 1p_y \ge 0$	
	f_{xs} $(x \neq s, t)$:	$1\ell_{xs}-1p_x+1 \geq 0$	
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty} - 0 + 1p_y \ge 0$	
	f_{xt} $(x \neq s, t)$:	$1\ell_{xt}-1p_x+ 0\geq 0$	
	f_{st} :	$1\ell_{st} - 1 + 0 \geq 0$	
	f_{ts} :	$1\ell_{ts} - 0 + 1 \geq 0$	
		$\ell_{xy} \geq 0$	
Salaa EADS II	E E Como	tine Duck	
Harald Räcke	5.5 Compl	uting Duals	113

LP-Formulation of Maxflow

	max	Σ	$_z f_{sz} - \sum_z f_{zs}$					
	s.t. ∀	$(z,w) \in V \times V$	f_{zw} \leq	C_Z	w l	zw		
		$\forall w \neq s, t \sum_{z}$	$f_{zw} - \sum_{z} f_{wz} =$	0	p	w		
			$f_{zw} \geq$	0				
	min		$\sum_{(xy)} c_{xy} \ell_{xy}$					
	s.t.	$f_{xy}(x, y \neq s, t)$:		≥	0			
		$f_{sy} (y \neq s, t)$:	$1\ell_{sy}$ $+1p_y$	≥	1			
		f_{xs} $(x \neq s, t)$:	$1\ell_{xs}-1p_x$	\geq	-1			
		$f_{ty} (y \neq s, t)$:	$1\ell_{ty}$ $+1p_y$	\geq	0			
		f_{xt} $(x \neq s, t)$:	$1\ell_{xt}-1p_x$	\geq	0			
		f_{st} :	$1\ell_{st}$	\geq	1			
		f_{ts} :	$1\ell_{ts}$	\geq	-1			
			ℓ_{xy}	\geq	0			
EAD: Hara	S II ald Räcke	5.5 Comp	uting Duals				1	12

LP-Formu	latio	n of Maxflow			
	min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
	s.t.	$f_{XY}(x, y \neq s, t)$:	$1\ell_{xy} - 1p_x + 1p_y \ge$	0	
			$1\ell_{sy} - p_s + 1p_y \ge$		
		f_{xs} $(x \neq s, t)$:	$1\ell_{xs}-1p_x+p_s \geq$	0	
		$f_{ty} (y \neq s, t)$:	$1\ell_{ty} - p_t + 1p_y \ge$	0	
		f_{xt} ($x \neq s, t$):	$1\ell_{xt}-1p_x+p_t \geq$	0	
		f_{st} :	$1\ell_{st}-p_s+p_t \geq$	0	
		f_{ts} :	$1\ell_{ts}$ - p_t + $p_s \ge$	0	
			$\ell_{XY} \geq$	0	
with $p_t =$	0 and	$p_{s} = 1.$			
EADS II		5.5 Compu	ting Duals		
Harald Räck	e				114

LP-Formulation of Maxflow

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	f_{xy} :	$1\ell_{xy}-1p_x+1p_y$	\geq	0
		ℓ_{xy}	\geq	0
		p_s	=	1
		p_t	=	0

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

	5.5 Computing Duals	
🛛 🕒 🛛 🖓 Harald Räcke		115

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

EADS II

Harald Räcke

Change LP := $\max\{c^T x, Ax = b; x \ge 0\}$ into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

6 Degeneracy Revisited

117

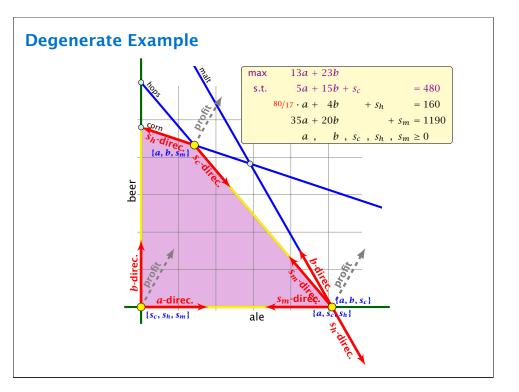
III. LP has no degenerate basic solutions

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{\chi} = 1$ or $p_{\chi} = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

EADS II Harald Räcke 5.5 Computing Duals



Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

EADS II Harald Räcke	6 Degeneracy Revisited

Property I

The new LP is feasible because the set B of basis variables provides a feasible basis:

$$A_B^{-1}\left(b + A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right) = x_B^* + \begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix} \ge 0$$

וחר	וחר	EADS II Harald Räcke
	ШЦ	Harald Räcke

6 Degeneracy Revisited

121

119

Perturbation

Let *B* be index set of some basis with basic solution

 $x_{B}^{*} = A_{B}^{-1}b \ge 0, x_{N}^{*} = 0$ (i.e. *B* is feasible)

Fix

$$b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$
 for $\varepsilon > 0$.

This is the perturbation that we are using.

EADS II Harald Räcke 6 Degeneracy Revisited

120

Property II

EADS II Harald Räcke

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row i.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\left(\varepsilon\atop \varepsilon\atop \varepsilon^{m}\right)\right)\right)_{i}=(A_{\tilde{B}}^{-1}b)_{i}+\left(A_{\tilde{B}}^{-1}A_{B}\left(\varepsilon\atop \varepsilon^{m}\right)\right)_{i}<0$$

Hence, \tilde{B} is not feasible.

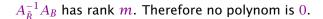
Property III

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.



A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

EADS II Harald Räcke	6 Degeneracy Revisited
🛛 🕒 🖯 Harald Räcke	

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Since, there are no degeneracies Simplex will terminate when run on $\mathrm{LP}^\prime.$

If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \le 0$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

▶ If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the *j*-th basis direction *d*, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on *b*. Hence, we also know that LP is unbounded.

EADS II Harald Räcke

6 Degeneracy Revisited

Lexicographic Pivoting We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course). If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable). Otherwise we have to be careful.

EADS II Harald Räcke

Lexicographic Pivoting

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where *B* is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

 $b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$

EADS II Harald Räcke	
Harald Räcke	

6 Degeneracy Revisited

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

$$\theta_{\ell} = \frac{b_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

EADS II Harald Räcke

6 Degeneracy Revisited

129

127

Matrix View

Let our linear program be

 $c_B^T x_B + c_N^T x_N = Z$ $A_B x_B + A_N x_N = b$ $x_B , x_N \ge 0$

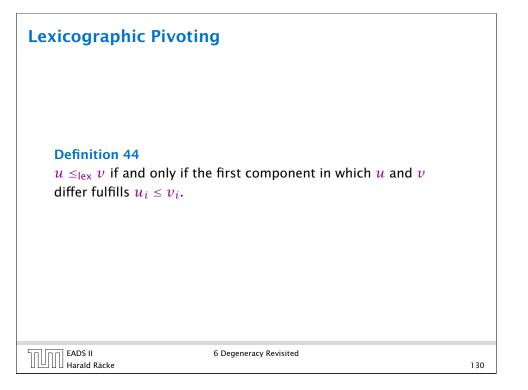
The simplex tableaux for basis B is

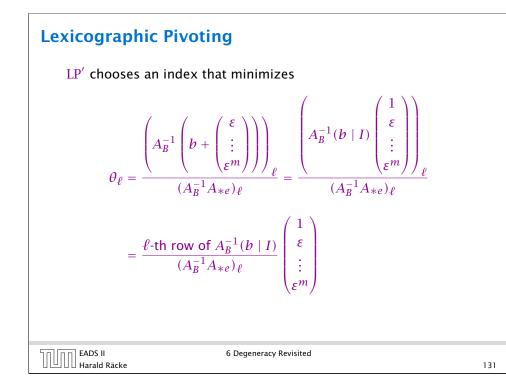
 $\begin{array}{rcl} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} & , & & x_{N} &\geq& 0 \end{array}$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

הח EADS II	6 Degeneracy Revisited	
Harald Räcke		128





Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where *n* is the number of variables, *m* is the number of constraints, and *L* is the length of the binary representation of the largest coefficient in the matrix *A*.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

7 Klee Minty Cube

133

Lexicographic Pivoting

This means you can choose the variable/row ℓ for which the vector

$$\frac{\text{th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_{\ell}}$$

is lexicographically minimal.

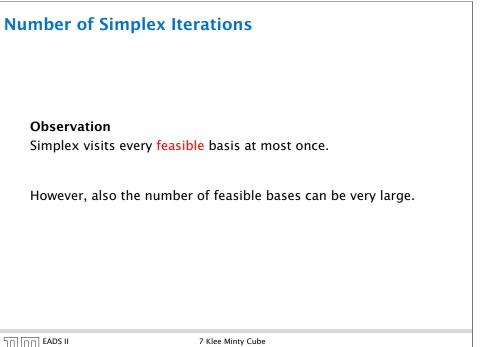
Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

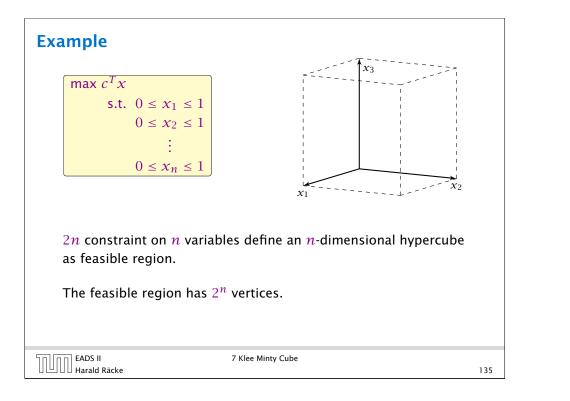
This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

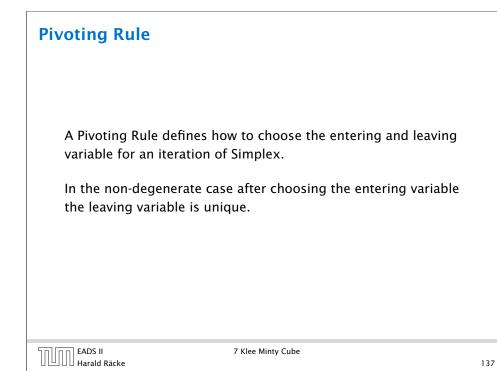
EADS II Harald Räcke

Harald Räcke

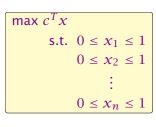
6 Degeneracy Revisited

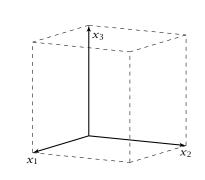






Example

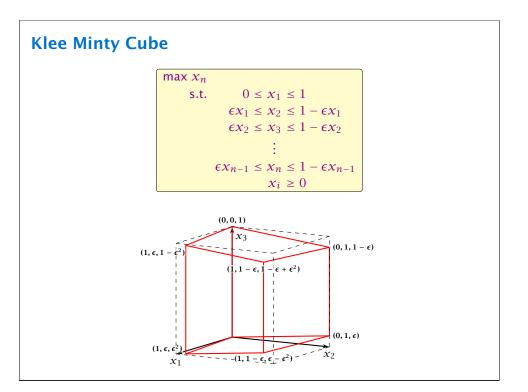




However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

הח (הח) EADS II	7 Klee Minty Cube	
Harald Räcke		136



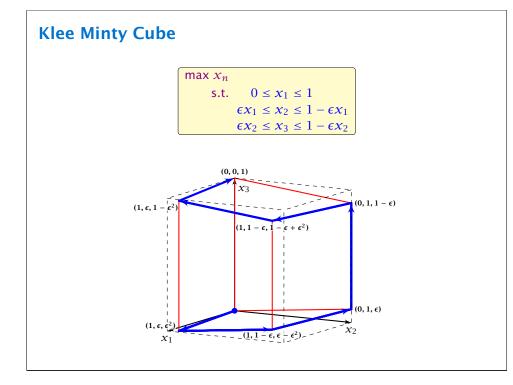
Observations

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0, 1)$ is the unique optimal basis.
- ► Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

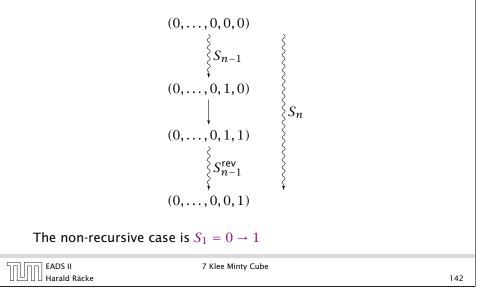
EADS II Harald Räcke 7 Klee Minty Cube

140



Analysis

The sequence S_n that visits every node of the hypercube is defined recursively



Analysis

Lemma 45 The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

$n-1 \rightarrow n$

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_n.
- Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ε.
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time ($\Omega(2^{\Omega(n)})$) (e.g. Klee Minty 1972).

Remarks about Simplex

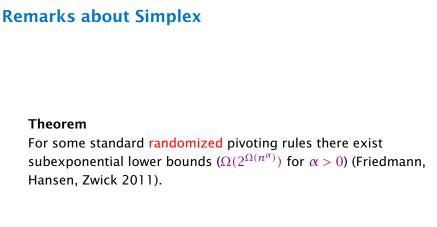
Observation

The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time $\mathcal{O}(mn)$.

In practise it usually takes a linear number of iterations.

EADS II Harald Räcke

EADS II Harald Räcke 7 Klee Minty Cube



145

Remarks about Simplex

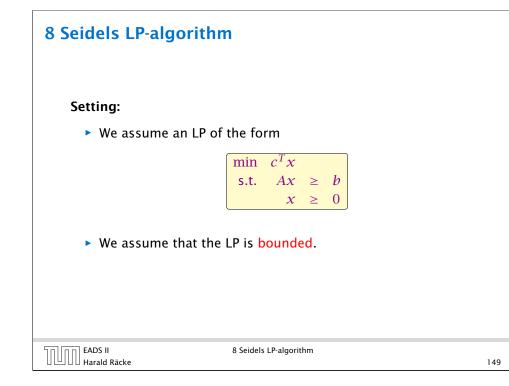
Conjecture (Hirsch 1957) The edge-vertex graph of an *m*-facet polytope in *d*-dimensional Euclidean space has diameter no more than m - d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form $\mathcal{O}(\text{poly}(m, d))$ is open.

EADS II Harald Räcke 7 Klee Minty Cube

147



8 Seidels LP-algorithm

- Suppose we want to solve $\min\{c^T x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have *m* constraints.
- ► In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- ► In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

	8 Seidels LP-algorithm	
Harald Räcke		148

Ensuring Condit	ions			
Given a <mark>standard</mark>	minimization	LP		
	min c			
	s.t.	$Ax \geq$	b	
		$\chi \geq$	0	
how can we obtai	n an LP of the	e requir	ed form?	
-	ower bound	on $c^T x$	for any basic fe	asible
solution.				
Sel con FADS II		c I D algorith		
	o seidel	s LP-algorith		150

Computing a Lower Bound

Let *s* denote the smallest common multiple of all denominators of entries in *A*, *b*.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \overline{A} .

If *B* is an optimal basis then x_B with $\bar{A}_B x_B = \bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0).

EADS II Harald Räcke	8 Seidels LP-algorithm 151	
		_

Proof:

Define

 $X_{i} = \begin{pmatrix} | & | & | & | & | \\ e_{1} \cdots e_{i-1} & \mathbf{x} & e_{i+1} \cdots & e_{n} \\ | & | & | & | & | \end{pmatrix}$

Note that expanding along the *i*-th column gives that $det(X_i) = x_i$.

Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | \\ Me_{1} \cdots Me_{i-1} & Mx & Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M$$

Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)}$$

החוחר	EADS II Harald Räcke
	Harald Räcke

8 Seidels LP-algorithm

153

Theorem 46 (Cramers Rule)

Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_i = \frac{\det(M_j)}{\det(M)}$$

where M_i is the matrix obtained from M by replacing the *i*-th column by the vector b.

EADS II Harald Räcke

8 Seidels LP-algorithm

152

Bounding the Determinant Let Z be the maximum absolute entry occuring in \bar{A} , \bar{b} or c. Let *C* denote the matrix obtained from \bar{A}_B by replacing the *j*-th column with vector \bar{b} (for some *j*). Observe that $|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$ $\leq \sum_{\pi \in S_m} \prod_{1 \leq i \leq m} |C_{i-3}| + |C_{i-3}| +$ $\leq m! \cdot Z^m$. Ition can be generated by an even number of transpositions (exchanging two elements), and -1 if the number of transpositions is odd. The first identity is known as Leibniz formula. EADS II Harald Räcke 8 Seidels LP-algorithm 154

Bounding the Determinant

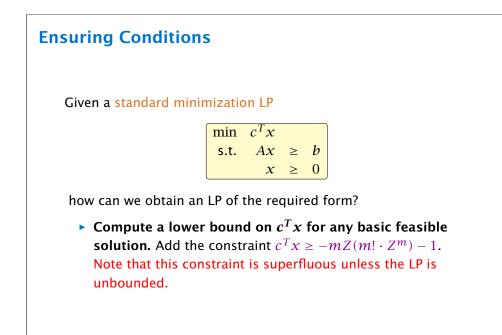
Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$
$$\le m^{m/2} Z^m .$$

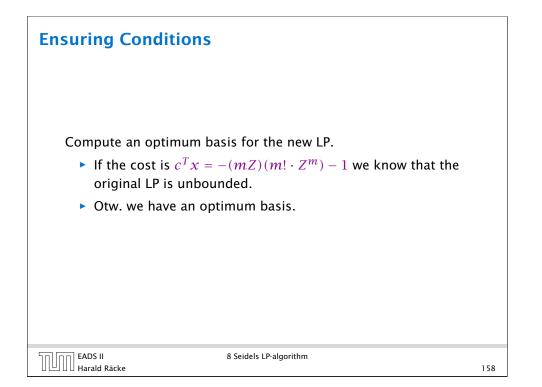
8 Seidels LP-algorithm

EADS II Harald Räcke

155



Hadamards InequalityImage: Colspan="2">Image: Colspan="2" Colspan="2">Image: Colspan="2" Colspa=



In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^T x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H} , d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

In addition it obeys the implicit constraint $c^T x \ge -(mZ)(m! \cdot Z^m) - 1.$

EADS II Harald Räcke 8 Seidels LP-algorithm

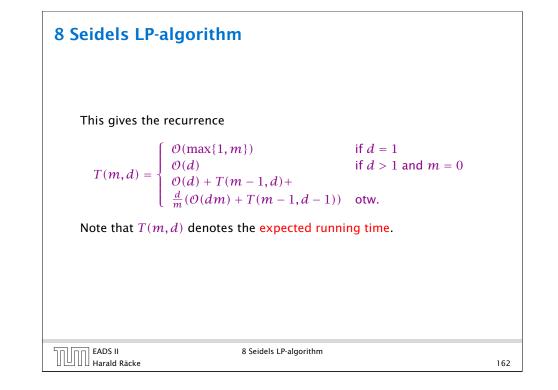
159

8 Seidels LP-algorithm

Note that for the case d = 1, the asymptotic bound $\mathcal{O}(\max\{m, 1\})$ is valid also for the case m = 0.

- If d = 1 we can solve the 1-dimensional problem in time
 O(max{m, 1}).
- If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ► The first recursive call takes time T(m 1, d) for the call plus O(d) for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1, d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

Algorithm 1 SeidelLP(
$$\mathcal{H}, d$$
)1: if $d = 1$ then solve 1-dimensional problem and return;2: if $\mathcal{H} = \emptyset$ then return x on implicit constraint hyperplane3: choose random constraint $h \in \mathcal{H}$ 4: $\hat{\mathcal{H}} - \mathcal{H} \setminus \{h\}$ 5: $\hat{x}^* - \text{SeidelLP}(\hat{\mathcal{H}}, d)$ 6: if \hat{x}^* = infeasible then return infeasible7: if \hat{x}^* fulfills h then return \hat{x}^* 8: $//$ optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$ 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;11: $\hat{x}^* - \text{SeidelLP}(\hat{\mathcal{H}}, d - 1)$ 12: if \hat{x}^* = infeasible then13: return infeasible14: else15: add the value of x_ℓ to \hat{x}^* and return the solution



8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

 $T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$

Note that T(m, d) denotes the expected running time.

EADS II Harald Räcke 8 Seidels LP-algorithm

8 Seidels LP-algorithm

d > 1; m > 1: (by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

 $\leq Cf(d)m$

Sector EADS II	8 Seidels LP-algorithm	
		105
🛛 💾 🛛 🖓 Harald Räcke		165

8 Seidels LP-algorithm

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0:

 $T(0,d) \leq \mathcal{O}(d) \leq Cd \leq Cf(d) \max\{1,m\} \text{ for } f(d) \geq d$

d > 1; m = 1:

$$T(1,d) = O(d) + T(0,d) + d(O(d) + T(0,d-1))$$

$$\leq Cd + Cd + Cd^2 + dCf(d-1)$$

$$\leq Cf(d) \max\{1,m\} \text{ for } f(d) \geq 3d^2 + df(d-1)$$

8 Seidels LP-algorithm

• Define
$$f(1) = 3 \cdot 1^2$$
 and $f(d) = df(d-1) + 3d^2$ for $d > 1$.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

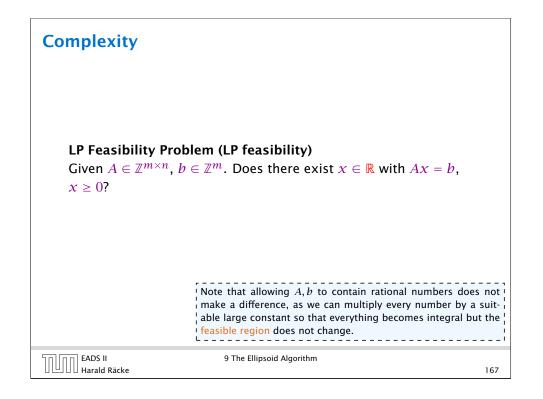
$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$
since $\sum_{i \ge 1} \frac{i^{2}}{i!}$ is a constant.
$$\left[\sum_{i \ge 1} \frac{i^{2}}{i!} = \sum_{i \ge 0} \frac{i+1}{i!} = e + \sum_{i \ge 1} \frac{i}{i!} = 2e\right]$$
EADS II
Harald Räcke
8 Seidels LP-algorithm
166



- In the following we sometimes refer to L := ⟨A⟩ + ⟨b⟩ as the input size (even though the real input size is something in Θ(⟨A⟩ + ⟨b⟩)).
- In order to show that LP-decision is in NP we show that if there is a solution x then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in L).

The Bit Model

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$\lceil \log_2(|a|) \rceil + 1$

• Let for an $m \times n$ matrix M, L(M) denote the number of bits required to encode all the numbers in M.

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set ${\cal B}$ of basic variables such that

 $x_B = A_B^{-1}b$

and all other entries in x are 0.

In the following we show that this x has small encoding length and we give an explicit bound on this length. So far we have only been handwaving and have said that we can compute x via Gaussian elimination and it will be short...

9 The Ellipsoid Algorithm

EADS II

Harald Räcke

169

EADS II Harald Räcke

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertible matrix and let $b \in \mathbb{Z}^m$. Further define $L = \langle M \rangle + \langle b \rangle + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \le 2^L$ and $|D| \le 2^L$.

Proof: Cramers rules says that we can compute x_i as

 $x_j = \frac{\det(M_j)}{\det(M)}$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

החוחר	EADS II Harald Räcke
	Harald Räcke

9 The Ellipsoid Algorithm

Reducing LP-solving to LP decision.

Given an LP max{ $c^T x | Ax = b; x \ge 0$ } do a binary search for the optimum solution

(Add constraint $c^T x - \delta = M$; $\delta \ge 0$ or ($c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

 $\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L')$,

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2^{L'}}$.

Here we use $L' = \langle A \rangle + \langle b \rangle + \langle c \rangle + n \log_2 n$ (it also includes the encoding size of *c*).

Bounding the Determinant

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$
$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$
$$\leq n! \cdot 2^{\langle A \rangle + \langle b \rangle} \le 2^L .$$

9 The Ellipsoid Algorithm

Analogously for $det(M_i)$.

EADS II Harald Räcke

171

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{max} + 1$ and check for feasibility.

Ellipsoid Method

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $E \cap H$.
- REPEAT

EADS II Harald Räcke

9 The Ellipsoid Algorithm	
9 The Empsolu Algorithm	

Ε

175

K

Definition 48

A mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where *L* is an invertible matrix is called an affine transformation.

EADS II	

Harald Räcke

9 The Ellipsoid Algorithm

177

Issues/Questions:

- How do you choose the first Ellipsoid? What is its volume?
- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

EADS II Harald Räcke	9 The Ellipsoid Algorithm	176
		176

Definition 49

A ball in \mathbb{R}^n with center *c* and radius *r* is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\} \\ = \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

B(0,1) is called the unit ball.

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

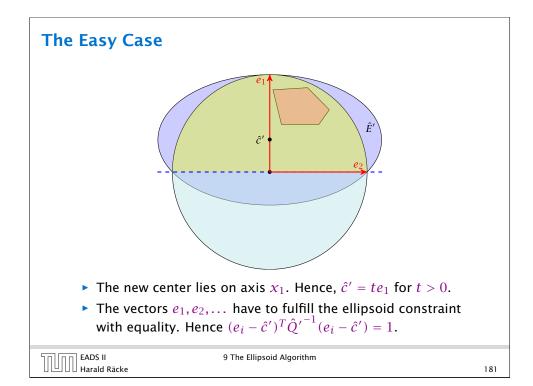
From f(x) = Lx + t follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

= $\{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T L^{-1^T} L^{-1}(y-t) \le 1\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1\}$

where $Q = LL^T$ is an invertible matrix.

EADS II	9 The Ellipsoid Algorithm	
UUU Harald Räcke		179



How to Compute the New Ellipsoid

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation *R*⁻¹ to rotate the unit ball such that the normal vector of the halfspace is parallel to *e*₁.
- Compute the new center ĉ' and the new matrix Q̂' for this simplified setting.
- Use the transformations
 R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.

הח EADS II	9 The Ellipsoid Algorithm	
UUU Harald Räcke		180

â ea

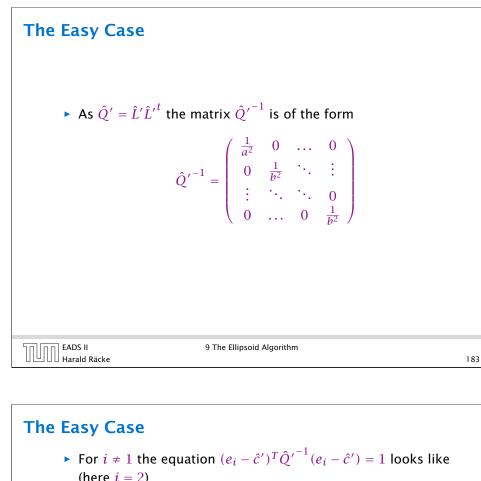
 $E^{\hat{E}}$

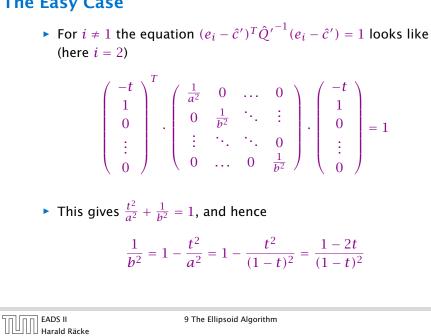
The Easy Case

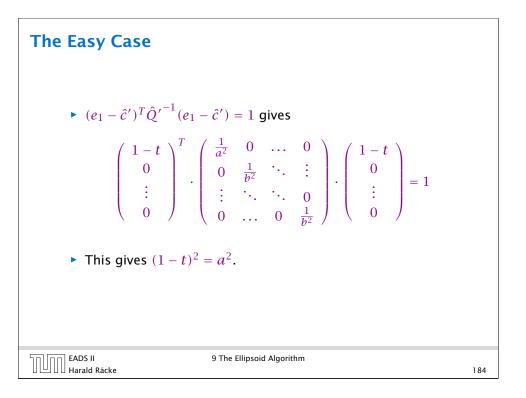
- To obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.
- Let a denote the radius along the x₁-axis and let b denote the (common) radius for the other axes.
- The matrix
- $\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$

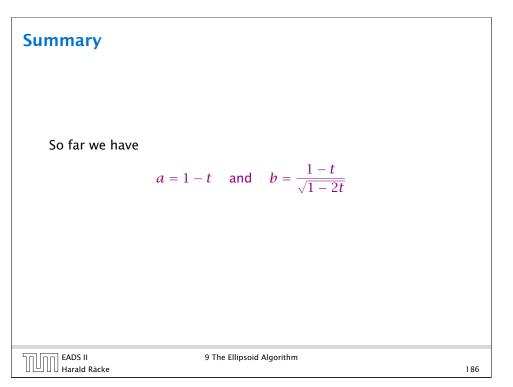
maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

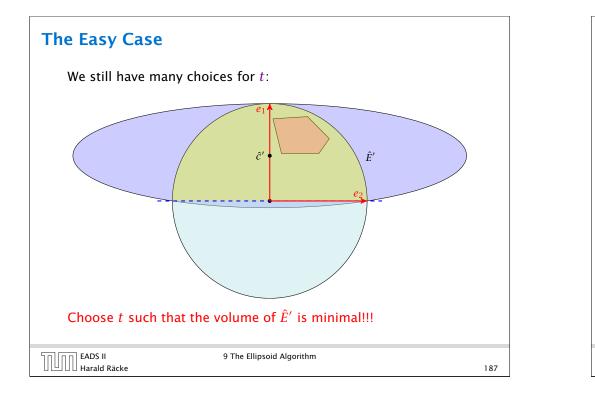
 $\hat{E}' \ \bar{E}'$

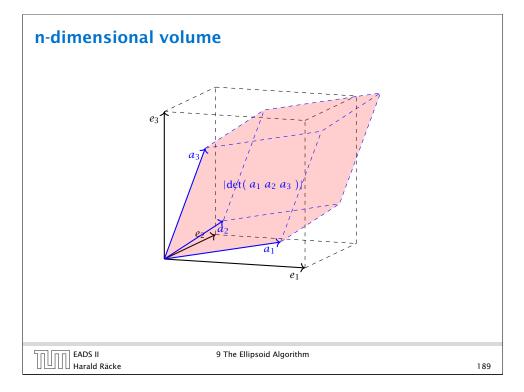






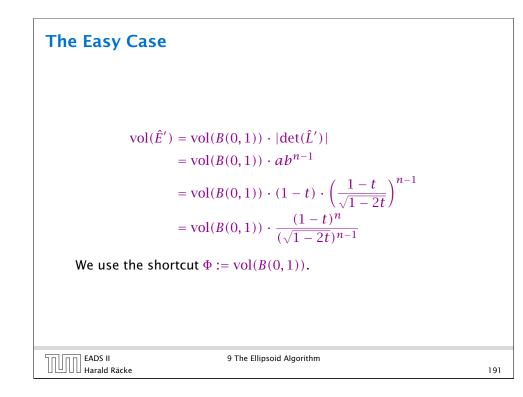






The Easy Case We want to choose *t* such that the volume of \hat{E}' is minimal. Lemma 51 Let *L* be an affine transformation and $K \subseteq \mathbb{R}^n$. Then $\operatorname{vol}(L(K)) = |\det(L)| \cdot \operatorname{vol}(K)$. EADS II Harald Räcke 9 The Ellipsoid Algorithm 188

The Easy Case • We want to choose t such that the volume of \hat{E}' is minimal. $vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$, Recall that $\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$ • Note that *a* and *b* in the above equations depend on *t*, by the previous equations. EADS II Harald Räcke 9 The Ellipsoid Algorithm 190



The Easy Case • We obtain the minimum for $t = \frac{1}{n+1}$. • For this value we obtain $a = 1 - t = \frac{n}{n+1}$ and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$ To see the equation for *b*, observe that $b^2 = \frac{(1-t)^2}{1-2t} = \frac{(1-\frac{1}{n+1})^2}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^2}{\frac{n-1}{n+1}} = \frac{n^2}{n^2-1}$

9 The Ellipsoid Algorithm

EADS II

Harald Räcke

The Easy Case

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

= $\left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$
 $\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$
= $e^{-\frac{1}{n+1}}$

where we used $(1 + x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives
$$\gamma_n \leq e^{-\frac{1}{2(n+1)}}$$
.

EADS II Harald Räcke

193

9 The Ellipsoid Algorithm

How to Compute the New Ellipsoid

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center ĉ' and the new matrix Q̂' for this simplified setting.
- Use the transformations *R* and *f* to get the new center *c'* and the new matrix *Q'* for the original ellipsoid *E*.

EADS II Harald Räcke 9 The Ellipsoid Algorithm

â ea

 $E^{\hat{E}}$

 $\hat{E}' \ \bar{E}'$

195

197

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\};\$

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x-c) \le 0\}$$

= $\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(Ly+c-c) \le 0\}$
= $\{y \mid (a^{T}L)y \le 0\}$

This means $\bar{a} = L^T a$.

החוחר	EADS II Harald Räcke
	Harald Räcke

The center \bar{c} is of course at the origin.

Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$

$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$
Here it is important that mapping a set with affine function $f(x) = Lx + t$ changes the volume by factor det(L).

EADS II 9 The Harald Räcke

9 The Ellipsoid Algorithm

196

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1}e_1 = -\frac{1}{n+1}\frac{L^T a}{\|L^T a\|}$$

$$\begin{aligned} c' &= f(\bar{c}') = L \cdot \bar{c}' + c \\ &= -\frac{1}{n+1} L \frac{L^T a}{\|L^T a\|} + c \\ &= c - \frac{1}{n+1} \frac{Q a}{\sqrt{a^T Q a}} \end{aligned}$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}', \bar{E}' and E' refer to the ellipsoids centered in the origin.

EADS II	9 The Ellipsoid Algorithm	
🛛 🕒 🛛 Harald Räcke		199

9 The Ellips	oid Algorithm	
	$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{R(x) \mid x^T \hat{Q'}^{-1} x \le 1\} \\ &= \{y \mid (R^{-1}y)^T \hat{Q'}^{-1} R^{-1} y \le 1\} \\ &= \{y \mid y^T (R^T)^{-1} \hat{Q'}^{-1} R^{-1} y \le 1\} \\ &= \{y \mid y^T (\underbrace{R \hat{Q'} R^T}_{\bar{Q'}})^{-1} y \le 1\} \end{split}$	
EADS II Harald Räcke	9 The Ellipsoid Algorithm	201

Recall that	$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$
This gives	$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$ Note that $e_1 e_1^T$ is a matrix M that has $M_{11} = 1$ and all other entries equal to 0.
because for a^2 =	$a^{2}/(n+1)^{2}$ and $b^{2} = n^{2}/n^{2}-1$
$b^2 - b^2 \frac{2}{n+1}$	$\frac{1}{n} = \frac{n^2}{n^2 - 1} - \frac{2n^2}{(n-1)(n+1)^2}$
	$=\frac{n^2(n+1)-2n^2}{(n-1)(n+1)^2}=\frac{n^2(n-1)}{(n-1)(n+1)^2}=a^2$

9 The Ellipsoid Algorithm Hence, $\hat{Q}' = R\hat{Q}'R^{T} \\ = R \cdot \frac{n^{2}}{n^{2}-1} \left(I - \frac{2}{n+1}e_{1}e_{1}^{T}\right) \cdot R^{T} \\ = \frac{n^{2}}{n^{2}-1} \left(R \cdot R^{T} - \frac{2}{n+1}(Re_{1})(Re_{1})^{T}\right) \\ = \frac{n^{2}}{n^{2}-1} \left(I - \frac{2}{n+1}\frac{L^{T}aa^{T}L}{\|L^{T}a\|^{2}}\right)$ Here we used the equation for Re_{1} proved before, and the fact that $RR^{T} = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e., $x^{T}Ix = (Rx)^{T}(Rx) = x^{T}(R^{T}R)x$ which means $x^{T}(I - R^{T}R)x = 0$ for every vector x. It is easy to see that this can only be fulfilled if $I - R^{T}R = 0$. Provide the equation of the equation of the event of the even of the

9 The Ellipsoid Algorithm

$$E' = L(\bar{E}')$$

= {L(x) | $x^T \bar{Q}'^{-1} x \le 1$ }
= { y | $(L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1$ }
= { y | $y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1$ }
= { y | $y^T (\underline{L} \bar{Q}' L^T)^{-1} y \le 1$ }

EADS II Harald Räcke	9 The Ellipsoid Algorithm	203

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm 1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$ 2: **output:** point $x \in K$ or "*K* is empty" 3: *Q* ← ??? 4: repeat if $c \in K$ then return c5: else 6: choose a violated hyperplane *a* 7: $c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$ 8: $Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qa} \right)$ 9: endif 10: 11: until ??? 12: return "*K* is empty"

9 The Ellipsoid Algorithm

Hence,

$$Q' = L\bar{Q}'L^{T}$$

$$= L \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} \frac{L^{T}aa^{T}L}{a^{T}Qa}\right) \cdot L^{T}$$

$$= \frac{n^{2}}{n^{2} - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^{T}Q}{a^{T}Qa}\right)$$
EADS I

Harald Räcke
9 The Ellipsoid Algorithm
204

Repeat: Size of basic solutions

Lemma 52

 \mathbb{N}

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a bounded polyhedron. Let $\langle a_{\max} \rangle$ be the maximum encoding length of an entry in A, b. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \le 2^{2n\langle a_{\max} \rangle + 2n\log_2 n}$.

In the following we use $\delta := 2^{2n \langle a_{\max} \rangle + 2n \log_2 n}$.

Note that here we have $P = \{x \mid Ax \le b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

Repeat: Size of basic solutions

Proof:

Let $\overline{A} = [A - A I_m]$, *b*, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the *j*-th column of \bar{A}_B by *b*) can become at most

 $\det(\bar{A}_B), \det(\bar{M}_j) \le \|\vec{\ell}_{\max}\|^{2n}$ $\le (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \le 2^{2n \langle a_{\max} \rangle + 2n \log_2 n} ,$

where $\bar{\ell}_{max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

This holds because columns from I_m selected when going from \overline{A} to \overline{A}_B do not increase the determinant. Only the at most 2n columns from matrices A and -A that \overline{A} consists of contribute.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n \operatorname{vol}(B(0, 1)) \le (n\delta)^n \operatorname{vol}(B(0, 1))$.

Harald Räcke

9 The Ellipsoid Algorithm

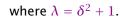
208

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop. Let $\langle a_{\max} \rangle$ be the encoding length of the largest entry in A or b.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \le b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\}$$



9 The Ellipsoid Algorithm

	Lemma 53 P_{λ} is feasible if and only	r if P is feasible.
	⇐: obvious!	
1[_	EADS II	9 The Ellipsoid Algorithm

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}$$

1-1

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \implies (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)_i}$$

and

EADS II

Harald Räcke

$$(\bar{A}_B^{-1}\vec{1})_i \le \det(\bar{M}_j)$$

where \bar{M}_j is obtained by replacing the *j*-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most δ .

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

9 The Ellipsoid Algorithm

213

Let $\overline{A} = \begin{bmatrix} A & -A & I_m \end{bmatrix}$.

 $ar{P}_\lambda$ feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix}1\\\vdots\\1\end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$\begin{aligned} A(x+\vec{\ell}))_i &= (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell} \\ &\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r \\ &\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda} \end{aligned}$$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

9 The Ellipsoid Algorithm

How many iterations do we need until the volume becomes too small?

 $e^{-\frac{\iota}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$

Hence,

$$i > 2(n+1) \ln \left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

= 2(n+1) ln $\left(n^n \delta^n \cdot \delta^{3n}\right)$
= 8n(n+1) ln(δ) + 2(n+1)n ln(n)
= $\mathcal{O}(\operatorname{poly}(n, \langle a_{\max} \rangle))$

EADS II Harald Räcke 9 The Ellipsoid Algorithm

Separation Oracle:

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating *x* from *K*.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball B(c, R) with radius R that contains K,
- a separation oracle for K.

The Ellipsoid algorithm requires $O(\text{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Algorithm T empsoid-algorithm1: input: point
$$c \in \mathbb{R}^n$$
, convex set $K \subseteq \mathbb{R}^n$, radii R and r 2: with $K \subseteq B(c, R)$, and $B(x, r) \subseteq K$ for some x 3: output: point $x \in K$ or " K is empty"4: $Q \leftarrow \text{diag}(R^2, \dots, R^2)$ // i.e., $L = \text{diag}(R, \dots, R)$ 5: repeat6: if $c \in K$ then return c 7: else8: choose a violated hyperplane a 9: $c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$ 10: $Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qa}\right)$ 11: endif12: until det $(Q) \leq r^{2n}$ // i.e., det $(L) \leq r^n$ 13: return " K is empty"

10 Karmarkars Algorithm

Algorithms 1 allingoid algorithms

- inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^\circ$ define

 $s_i(x) := b_i - a_i^T x$

as the slack of the i-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^m \log(s_i(x))$$

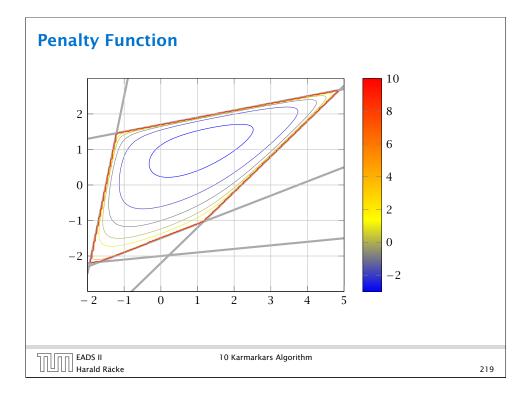
Throughout this section a_i denotes the

i-th row as a column vector.

Penalty for point *x*; points close to the boundary have a very large penalty.

5000	EADS II Harald Räcke
	Harald Räcke

217



Gradient and Hessian

Taylor approximation:

$$\phi(x+\epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

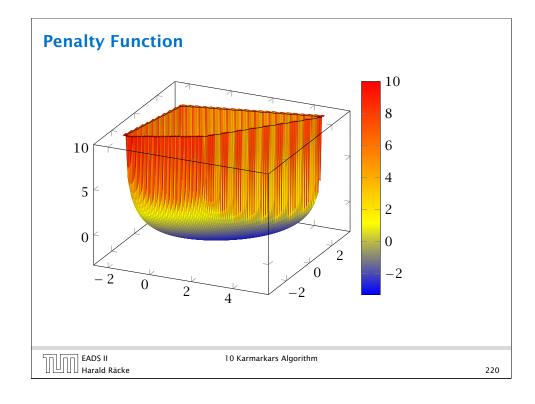
$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_x := \nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)^2} a_i a_i^T = A^T D_x^2 A$$

with $D_x = \operatorname{diag}(d_x)$.



Proof for Gradient $\frac{\partial \phi(x)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(-\sum_r \ln(s_r(x)) \right)$ $= -\sum_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right) = -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right)$ $= -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right) = \sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right)$ $= \sum_r \frac{1}{s_r(x)} A_{ri}$

The *i*-th entry of the gradient vector is $\sum_{r} 1/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} 1/s_r(x) a_r = A^T d_x$$

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_{r} A_{ri}A_{rj} = (A^{T}A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

Hence the Hessian is

$$H_{\mathcal{X}} = A^T D^2 A$$

Dikin Ellipsoid

$$E_{x} = \{ y \mid (y - x)^{T} H_{x}(y - x) \leq 1 \} = \{ y \mid ||y - x||_{H_{x}} \leq 1 \}$$

Points in E_x are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

Properties of the Hessian

 H_X is positive semi-definite for $x \in P^\circ$

$$u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^\circ$

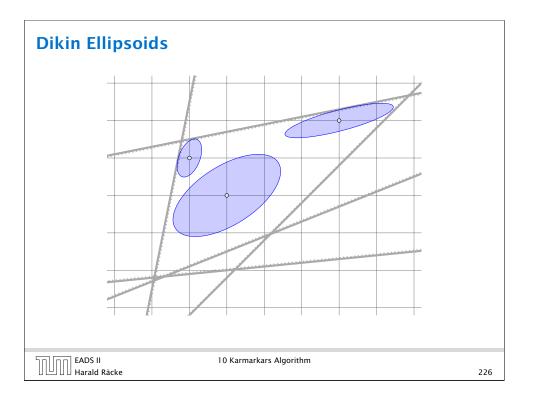
 $u^T H_X u = \|D_X A u\|_2^2 > 0$ for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

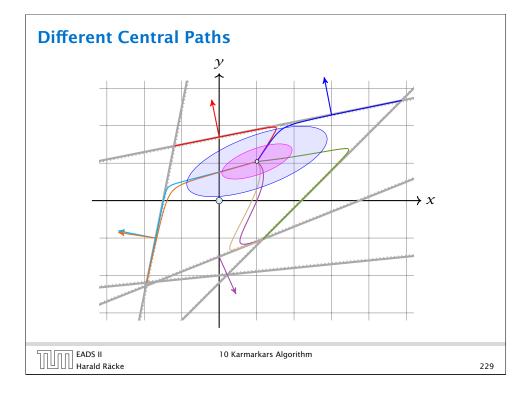
10 Karmarkars Algorithm

EADS II Harald Räcke



Analytic Center

$x_{ac} := \arg \min_{x \in P^{\circ}} \phi(x)$ • x_{ac} is solution to $\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$	
 depends on the description of the polytope x_{ac} exists and is unique iff P° is nonempty and bounded 	
EADS II 10 Karmarkars Algorithm Harald Räcke	227



Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

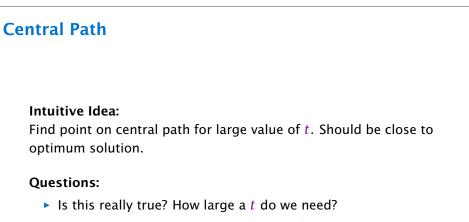
Central Path: Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$$

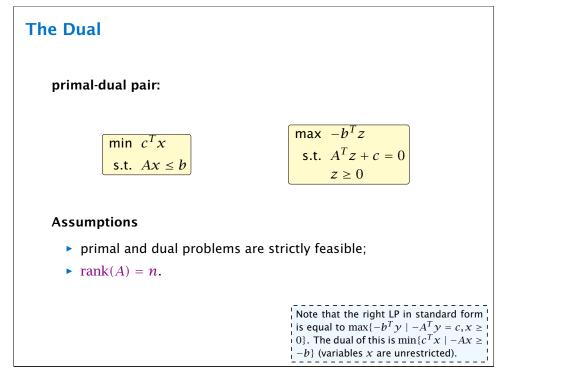
- t = 0: analytic center
- $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

החה	EADS II Harald Räcke	
	Harald Räcke	



• How do we find corresponding point $x^*(t)$ on central path?



Force Field Interpretation

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$

- We can view each constraint as generating a repelling force. The combination of these forces is represented by ∇φ(x).
- In addition there is a force tc pulling us towards the optimum solution.

	10 Karmarkars Algorithm	
Harald Räcke		232

How large should t be?

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

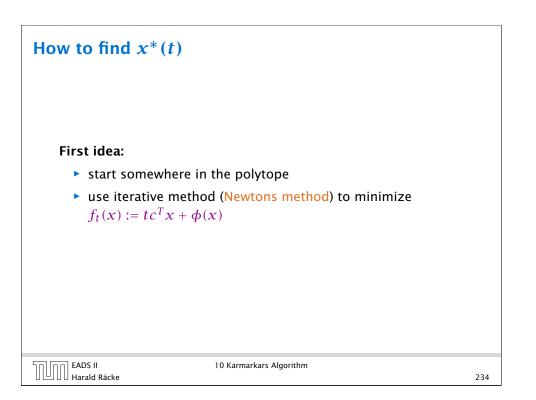
or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

- $z^*(t)$ is strictly dual feasible: ($A^T z^* + c = 0$; $z^* > 0$)
- duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

 $c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point



Newton Method

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x+\epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$$

Note that for the one-dimensional case $g(\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2$, then $g'(\epsilon) = f'(x) + f''(x)\epsilon$.

235

EADS II Harald Räcke

10 Karmarkars Algorithm

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$$

- $\lambda_t(x) = 0$ iff $x = x^*(t)$
- $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Recall that Δx_{nt} fulfills $-H(x)\Delta x_{nt} = \nabla f_t()$.

Newton Method

Observe that $H_{f_l}(x) = H(x)$, where H(x) is the Hessian for the function $\phi(x)$ (adding a linear term like $tc^T x$ does not affect the Hessian).

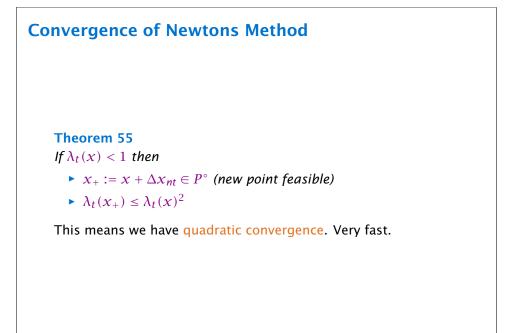
Also $\nabla f_t(x) = tc + \nabla \phi(x)$. We want to move to a point where this gradient is $\overline{0}$:

Newton Step at $x \in P^{\circ}$

$$\begin{aligned} \Delta x_{\mathsf{nt}} &= -H_{f_t}^{-1}(x) \nabla f_t(x) \\ &= -H_{f_t}^{-1}(x) (tc + \nabla \phi(x)) \\ &= -(A^T D_x^2 A)^{-1} (tc + A^T d_x) \end{aligned}$$

Newton Iteration:

 $x := x + \Delta x_{nt}$



Convergence of Newtons Method

feasibility:

λ_t(x) = ||∆x_{nt}||_{H_x} < 1; hence x₊ lies in the Dikin ellipsoid around x.

Convergence of Newtons Method

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

 $a^T(a+b)$

$$= \Delta x_{\mathsf{nt}}^{+T} A^T D_+ \left(D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^T D_+^2 A \Delta x_{\mathsf{nt}}^+ - A^T D^2 A \Delta x_{\mathsf{nt}} + A^T D_+ D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_+ \Delta x_{\mathsf{nt}}^+ - H \Delta x_{\mathsf{nt}} + A^T D_+ \vec{1} - A^T D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(-\nabla f_t(x^+) + \nabla f_t(x) + \nabla \phi(x^+) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||^2$$

if $a^T(a+b) = 0$.

Convergence of Newtons Method

bound on $\lambda_t(x^+)$: we use $D := D_x = \operatorname{diag}(d_x)$ and $D_+ := D_{x^+} = \operatorname{diag}(d_{x^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2}$$

$$\leq \|(I - D_{+}^{-1}D)\vec{1}\|^{4}$$

$$= \|DA\Delta x_{\mathsf{nt}}\|^{4}$$

$$= \lambda_{t}(x)^{4}$$

The second inequality follows from $\sum_{i} y_{i}^{4} \leq (\sum_{i} y_{i}^{2})^{2}$

If $\lambda_t(x)$ is large we do not have a guarantee.

Try to avoid this case!!!

EADS II Harald Räcke	10 Karmarkars Algorithm	

Short Step Barrier Method simplifying assumptions: • a first central point $x^*(t_0)$ is given • $x^*(t)$ is computed exactly in each iteration ϵ is approximation we are aiming for start at $t = t_0$, repeat until $m/t \le \epsilon$ • compute $x^*(\mu t)$ using Newton starting from $x^*(t)$ • $t := \mu t$ where $\mu = 1 + 1/(2\sqrt{m})$

Path-following Methods

Try to slowly travel along the central path.

Alg	gorithm 1 PathFollowing
1:	start at analytic center
2:	while solution not good enough do
3:	make step to improve objective function
4:	recenter to return to central path

Short Step Barrier Method

243

gradient of f_{t^+} at ($x = x^*(t)$)

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\begin{split} \lambda_{t^{+}}(x)^{2} &= \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\ &= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A \\ &\leq (\mu - 1)^{2} m \\ &= 1/4 \end{split}$$

This means we are in the range of quadratic convergence!!!

the number of Newton iterations per outer iteration is very small; in practise only 1 or $2^{trix} (P^2 = P)$ it can only have

Number of outer iterations:

We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when The expression

 $k \ge \frac{\log(m/(\epsilon t_0))}{\log(\mu)}$

 $\max_{v} \frac{v^T P v}{v^T v}$

Explanation for previous slide

 $P = B(B^T B)^{-1} B^T$ is a symmet-

ric real-valued matrix; it has n

linearly independent Eigenvec-

tors. Since it is a projection ma-

Eigenvalues 0 and 1 (because the Eigenvalues of P^2 are λ_i^2 ,

where λ_i is Eigenvalue of *P*).

gives the largest Eigenvalue for *P*. Hence, $\vec{1}^T P \vec{1} \leq \vec{1}^T \vec{1} = m$

247

249

We get a bound of

 $\mathcal{O}\left(\sqrt{m}\log\frac{m}{\epsilon t_0}\right)$

We show how to get a starting point with $t_0 = 1/2^L$. Together with $\epsilon \approx 2^{-L}$ we get $\mathcal{O}(L_{\sqrt{m}})$ iterations.

'nп	linr	EADS II Harald Bäcke
		Harald Räcke

10 Karmarkars Algorithm

Damped Newton Method

Suppose that we move from *x* to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\begin{split} \phi(x + \alpha v) - \phi(x) &= -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x)) \\ &= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x)) \\ &= -\sum_{i} \log(1 - a_i^T \alpha v/s_i(x)) \end{split}$$

 $s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

50.00	EADS II
	EADS II Harald Räcke

10 Karmarkars Algorithm

Damped Newton MethodWe assume that the polytope (not just
the LP) is bounded. Then
$$Av \leq 0$$
 is not
possible.For $x \in P^{\circ}$ and direction $v \neq 0$ define
 $\sigma_x(v) := \max_i \frac{a_i^T v}{s_i(x)}$ $a_i^T v$ is the change on the left
hand side of the *i*-th constraint
when moving in direction of v .
If $\sigma_x(v) > 1$ then for one coor-
dinate this change is larger than
the slack in the constraint at po-
sition x .
By downscaling v we can en-
sure to stay in the polytope. $x + \alpha v \in P$ for $\alpha \in \{0, 1/\sigma_x(v)\}$

$$\begin{array}{c} \hline \text{EADS II} \\ \hline \text{Haraid Racke} \end{array} \\ \hline 10 \text{ Karmarkars Algorithm} \end{array} \\ \hline \hline \text{EADS II} \\ \hline \text{Haraid Racke} \end{array} \\ \hline \hline \text{Figure Haraid Racke} \end{aligned} \\ \hline \hline \text{Damped Newton Method} \\ \hline \hline \nabla f_t(x)^T \alpha v \\ = \left(tc^T + \sum_i a_i^T/s_i(x) \right) \alpha v \\ = tc^T \alpha v + \sum_i \alpha w_i \end{aligned} \\ \hline \text{Define } w_i = a_i^T v/s_i(x) \text{ and } \sigma = \max_i w_i. \text{ Then } \overset{\text{Note that } \|w\| = \|v\|_{H_x}. \end{aligned} \\ \hline f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v \\ = -\sum_i (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i \le 0} \frac{\alpha^2 w_i^2}{2} \\ \leq -\sum_{w_i > 0} \frac{w_i^2}{\sigma^2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i \le 0} \frac{w_i^2}{\sigma^2} \end{aligned} \\ \hline \begin{bmatrix} \text{For } |x| < 1, x \le 0: \\ x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots = \frac{x^2}{2} - \frac{y^2}{2} \frac{x^2}{y^2} \\ \hline \end{bmatrix} \\ \hline \begin{bmatrix} \text{For } |x| < 1, 0 < x \le y: \\ x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^2 x^2}{3} - \frac{y^2 x^2}{4} - \cdots \right) \\ \geq \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^3}{3} - \frac{y^4}{4} - \cdots \right) = \frac{x^2}{y^2} (y + \log(1 - y)) \end{aligned}$$

Damped Newton Method For $x \ge 0$ $\frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x))$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{x}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

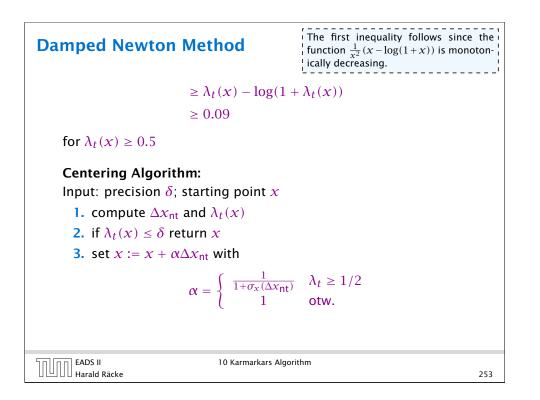
Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{\mathsf{nt}})} \Delta x_{\mathsf{nt}}$$

This means that in the above expressions we choose $\alpha = \frac{1}{1+\sigma}$ and $\nu = \Delta x_{nt}$. Note that it wouldn't make sense to choose α larger than 1 as this would mean that our real target $(x + \Delta x_{nt})$ is inside the polytope but we overshoot and go further than this target.

EADS II ||||||| -Harald Räcke 10 Karmarkars Algorithm



Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

 $\lambda_t(x) - \log(1 + \lambda_t(x))$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x} (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\alpha}$ and $\nu = \Delta x_{nt}$ gives

$$\begin{aligned} \frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \bigg(\frac{\sigma}{1+\sigma} + \log\left(1-\frac{\sigma}{1+\sigma}\right) \bigg) \\ &= \frac{\lambda_t(x)^2}{\sigma^2} \Big(\sigma - \log(1+\sigma)\Big) \end{aligned}$$

With $v = \Delta x_{\text{nt}}$ we have $\|w\|_2 = \|v\|_{H_x} = \lambda_t(x)$; further recall that $\sigma = \|w\|_{\infty}$; hence $\sigma \le \lambda_t(x)$.

Centering

L _ _

251

Lemma 56

The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \leq \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log\log(1/\delta))$$

iterations.

This can be very, very slow...

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \rightarrow b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

٦n	ПП	EADS II
		EADS II Harald Räcke

10 Karmarkars Algorithm

How to get close to analytic center?

Start at x_0 .

Note that an entry in \hat{c} fulfills $|\hat{c}_i| \le 2^{2L}$. This holds since the slack in every constraint at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient is the vector of inverse slacks.

255

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Choose $\hat{c} := -\nabla \phi(x)$.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

(i.e., same value for t but different c, hence, different central path).

Lemma [without proof] The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

```
EADS II
Harald Räcke
```

10 Karmarkars Algorithm

256

How to get close to analytic center?

Clearly,

```
t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\boldsymbol{c}})
```

The different between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

 $tc^{T} \boldsymbol{x}_{\hat{c}} + \phi(\boldsymbol{x}_{\hat{c}}) - tc^{T} \boldsymbol{x}_{c} - \phi(\boldsymbol{x}_{c})$ $\leq t(c^{T} \boldsymbol{x}_{\hat{c}} + \hat{c}^{T} \boldsymbol{x}_{c} - \hat{c}^{T} \boldsymbol{x}_{\hat{c}} - c^{T} \boldsymbol{x}_{c})$ $\leq 4tn2^{3L}$

For $t = 1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.