We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{llll} \min & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i \geq 1 \\ & \forall i \in \{1,\dots,k\} & x_i \in [0,1] \end{array}$$

Let f_u be the number of sets that the element u is contained in the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f=\max_u\{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i & \geq & 1 \\ & \forall i \in \{1,\dots,k\} & & x_i & \in & [0,1] \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{|c|c|c|c|}\hline \min & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i & \geq & 1 \\ & \forall i \in \{1,\dots,k\} & x_i & \in & [0,1] \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_{u} \{f_u\}$ be the maximum frequency.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 2 The rounding algorithm gives an f-approximation.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 2 The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most f < f elements
- ▶ Therefore one of the sets that contain u must have $x_i > 1/f$
- This set will be selected. Hence, as is severed

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$
- This set will be selected. Hence wis covered

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- This set will be selected. Hence wis severed

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ► This set will be selected. Hence, *u* is covered.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

The cost of the rounded solution is at most $f \cdot OPT$.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

The cost of the rounded solution is at most $f \cdot \mathsf{OPT}$.

$$\sum_{i\in I} w_i$$

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ► The sum contains at most $f_u \le f$ elements.
- ► Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ► This set will be selected. Hence, *u* is covered.

The cost of the rounded solution is at most $f \cdot OPT$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

The cost of the rounded solution is at most $f \cdot OPT$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \text{cost}(x)$$

Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

The cost of the rounded solution is at most $f \cdot \mathsf{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

$$= f \cdot \text{cost}(x)$$

$$\le f \cdot \text{OPT}.$$

Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ► The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- This set will be selected. Hence, u is covered.

Technique 1: Round the LP solution.

Relaxation for Set Cover

The cost of the rounded solution is at most $f \cdot OPT$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

$$= f \cdot \text{cost}(x)$$

$$\le f \cdot \text{OPT} .$$

Relaxation for Set Cover

Primal:

$$\begin{array}{ll}
\min & \sum_{i \in I} w_i x_i \\
\text{s.t. } \forall u & \sum_{i:u \in S_i} x_i \ge 1 \\
& x_i \ge 0
\end{array}$$

......

max
$$\sum_{u \in U} y_u$$

s.t. $\forall i \ \sum_{u:u \in S_i} y_u \leq w_i$
 $y_u \geq 0$

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot \mathsf{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

$$= f \cdot \text{cost}(x)$$

$$\le f \cdot \text{OPT}.$$

Technique 1: Round the LP solution.

Relaxation for Set Cover

Primal:

 $\sum_{i\in I} w_i x_i$ min s.t. $\forall u \quad \sum_{i:u \in S_i} x_i \geq 1$ Dual:

 $\sum_{u \in U} y_u$ max s.t. $\forall i \ \sum_{u:u \in S_i} y_u \leq w_i$ $y_u \ge 0$

The cost of the rounded solution is at most $f \cdot OPT$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

$$= f \cdot \text{cost}(x)$$

$$\le f \cdot \text{OPT}.$$

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i} y_u = w_i$$

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

$$\begin{array}{ll}
\min & \sum_{i \in I} w_i x_i \\
\text{s.t. } \forall u & \sum_{i:u \in S_i} x_i \ge 1 \\
& x_i \ge 0
\end{array}$$

Dual:

13.2 Rounding the Dual

$$\max \sum_{u \in U} y_u$$
s.t. $\forall i \sum_{u:u \in S_i} y_u \leq w_i$

$$y_u \geq 0$$

Lemma 3

The resulting index set is an f-approximation.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let *I* denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let *I* denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- ▶ This means $\sum_{u,u \in S_i} v_u < w_i$ for all sets S_i that contain u
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- ▶ Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Proof:

$$\sum_{i\in I} w_i$$

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- \blacktriangleright Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

297/575

Every $u \in U$ is covered.

- ► Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ightharpoonup But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$
$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

297/575

Every $u \in U$ is covered.

- ► Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ightharpoonup But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- \blacktriangleright Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- \blacktriangleright Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \operatorname{cost}(x^*)$$

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- ► Suppose there is a *u* that is not covered.
- ► This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- ► Suppose there is a *u* that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ightharpoonup But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

$$I \subset I'$$
.

This means I' is never better than I.

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot \text{OPT}$$

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{4}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot \text{OPT}$$

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ► Hence, the second algorithm will also choose S_i

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot \text{OPT}$$

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ► Hence the second algorithm will also choose S:

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

$$I \subset I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

Of course, we also need that *I* is a cover-

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- \blacktriangleright Hence, the second algorithm will also choose S_i .

Of course, we also need that *I* is a cover.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \leq \operatorname{cost}(x^{*}) \leq \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that I is a cover.

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \cot(x^{*}) \le OPT$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that I is a cover

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I\subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ► This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \cot(x^{*}) \le OPT$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ► This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- \blacktriangleright Hence, the second algorithm will also choose S_i .

Algorithm 1 PrimalDual

- 1: *y* ← 0
- 2: *I* ← Ø
- 3: while exists $u \notin \bigcup_{i \in I} S_i$ do
- 4: increase dual variable y_u until constraint for some new set S_ℓ becomes tight
- 5: $I \leftarrow I \cup \{\ell\}$

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_u \le \cot(x^*) \le \mathsf{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

Algorithm 1 Greedy

- 1: *I* ← Ø
- 2: $\hat{S}_i \leftarrow S_i$ for all j
- 3: **while** *I* not a set cover **do**
- 4: $\ell \leftarrow \arg\min_{j:\hat{S}_i \neq 0} \frac{w_j}{|\hat{S}_i|}$
- 5: $I \leftarrow I \cup \{\ell\}$
 - $\hat{S}_j \leftarrow \hat{S}_j S_\ell$ for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

- 1: *y* ← 0
- 2: *I* ← Ø
- 3: while exists $u \notin \bigcup_{i \in I} S_i$ do
- 4: increase dual variable y_u until constraint for some new set S_ℓ becomes tight
- 5: $I \leftarrow I \cup \{\ell\}$

Lemma 4

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k , and $S \subseteq \{1, \dots, k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

- 2: $\hat{S}_i \leftarrow S_j$ for all j
- 3: while I not a set cover do
- 4: $\ell \leftarrow \arg\min_{j: \hat{S}_j \neq 0} \frac{w_j}{|\hat{S}_j|}$ 5: $I \leftarrow I \cup \{\ell\}$ 6: $\hat{S}_j \leftarrow \hat{S}_j S_\ell$ for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k , and $S \subseteq \{1, \dots, k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{f}}$$

since an optimal algorithm can cover the remaining n_ℓ element with cost $\Omega^{\rm DT}$

Let \hat{S}_j be a subset that minimizes this ratio. Hence $w_i/|\hat{S}_i| \leq \frac{OPT}{2}$.

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{i}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{i \in \text{OPT}} |\hat{S}_{i}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{i}|} \leq \frac{\text{OPT}}{n_{f}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost $\Omega^{\rm DT}$

Let \hat{S}_j be a subset that minimizes this ratio. Hence $w_i/|\hat{S}_i| \leq \frac{OPT}{2}$.

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{i}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{i \in \text{OPT}} |\hat{S}_{i}|} = \frac{\text{OPT}}{\sum_{i \in \text{OPT}} |\hat{S}_{i}|} = \frac{\text{OPT}}{n_{i}}$$

since an optimal algorithm can cover the remaining n_ℓ element with cost $\Omega \mathbb{R}^{T}$

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_i/|\hat{S}_i| < \frac{\mathrm{OPT}}{2}$.

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

13.4 Greedy

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ element with cost $\Omega^{\rm PT}$

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_i/|\hat{S}_i| \leq \frac{OPT}{2}$.

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT .

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_i/|\hat{S}_i| \leq \frac{OPT}{2}$.

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k , and $S \subseteq \{1, \ldots, k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the **ℓ**-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{i}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{i}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{i}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost $\mathrm{OPT}.$

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_0}$.

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \leq \frac{|\hat{S}_j|\mathsf{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \mathsf{OPT}$$

Technique 4: The Greedy Algorithm

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the **ℓ**-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT .

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\mathrm{OPT}}{n_\ell}$.

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_{\ell}} = \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$$

Te

Technique 4: The Greedy Algorithm

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the **ℓ**-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost $\ensuremath{\mathsf{OPT}}.$

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq rac{ ext{OPT}}{n_\ell}$.

Technique 4: The Greedy Algorithm

Adding this set to our solution means
$$n_{\ell+1}=n_\ell-|\hat{S}_j|.$$

$$w_j \leq \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell-n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

304

 $\sum_{j\in I} w_j$

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_i|$.

13.4 Greedy

Technique 4: The Greedy Algorithm

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

13.4 Greedy

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1}=n_\ell-|\hat{S}_j|.$ $w_j \leq \frac{|\hat{S}_j| \mathrm{OPT}}{n_\ell} = \frac{n_\ell-n_{\ell+1}}{n_\ell} \cdot \mathrm{OPT}$

$$\sum_{j \in I} w_j \leq \sum_{\ell=1}^s rac{n_\ell - n_{\ell+1}}{n_\ell} \cdot ext{OPT}$$

$$i \leq \sum_{\ell=1}^{s} \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$$

$$\leq \text{OPT} \sum_{\ell=1}^{s} \left(\frac{1}{n_{\ell}} + \frac{1}{n_{\ell} - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$= \text{OPT} \sum_{i=1}^{k} \frac{1}{i}$$

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_i|$.

$$w_j \leq \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$

13.4 Greedy

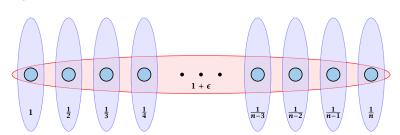
Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_i|$.

13.4 Greedy

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

A tight example:



Technique 4: The Greedy Algorithm

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$

$$= H_n \cdot \text{OPT} \le \text{OPT}(\ln n + 1) .$$

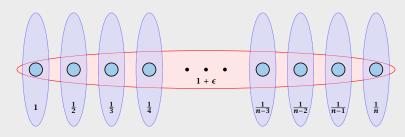
One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm

Technique 4: The Greedy Algorithm

A tight example:



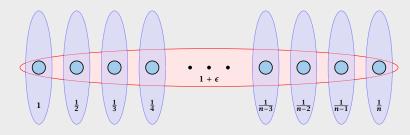
One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP Otherwise, repeat the whole algorithm

Technique 4: The Greedy Algorithm

A tight example:



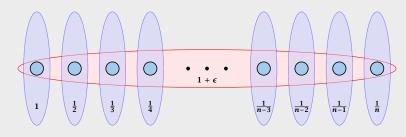
One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all i).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 4: The Greedy Algorithm

A tight example:



One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

EADS II

Pr[u not covered in one round]

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

EADS II

$$Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_i} (1 - x_j)$$

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_i} (1 - x_j) \le \prod_{j:u \in S_i} e^{-x_j}$$

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j}$$

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

$$Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$$

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

 $\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{a\ell}$.

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

$$\begin{aligned} \Pr[u \text{ not covered in one round}] \\ &= \prod_{j: u \in S_j} (1 - x_j) \leq \prod_{j: u \in S_j} e^{-x_j} \\ &= e^{-\sum_{j: u \in S_j} x_j} \leq e^{-1} \ . \end{aligned}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

 $\Pr[\exists u \in U \text{ not covered after } \ell \text{ round}]$

Probability that $u \in U$ is not covered (in one round):

$$\begin{aligned} \Pr[u \text{ not covered in one round}] \\ &= \prod_{j: u \in S_j} (1 - x_j) \leq \prod_{j: u \in S_j} e^{-x_j} \\ &= e^{-\sum_{j: u \in S_j} x_j} \leq e^{-1} \ . \end{aligned}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}.$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

- = $\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$
- $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}]$

Probability that $u \in U$ is not covered (in one round):

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

- = $\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$
- $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$.

Probability that $u \in U$ is not covered (in one round):

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{e^{\ell}}$$
.

= $Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$

$$\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$$
.

Lemma 5

With high probability $O(\log n)$ rounds suffice.

Probability that $u \in U$ is not covered (in one round):

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{a\ell}$$
.

- = $Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$
- $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$.

Lemma 5

With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1 - n^{-\alpha}$.

Probability that $u \in U$ is not covered (in one round):

Pr[u not covered in one round]

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j} \le e^{-1}.$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\rho \ell}$$
.

Proof: We have

$$\Pr[\#\text{rounds} \ge (\alpha+1)\ln n] \le ne^{-(\alpha+1)\ln n} = n^{-\alpha}.$$

$$\begin{split} \Pr[\exists u \in U \text{ not covered after } \ell \text{ round}] \\ &= \Pr[u_1 \text{ not covered} \vee u_2 \text{ not covered} \vee \ldots \vee u_n \text{ not covered}] \\ &\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} \enspace. \end{split}$$

Lemma 5

310/575

With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1-n^{-\alpha}$.

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

Proof: We have

 $\Pr[\#\mathsf{rounds} \ge (\alpha+1) \ln n] \le n e^{-(\alpha+1) \ln n} = n^{-\alpha} \ .$

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

E[cost]

Proof: We have

 $\Pr[\#\text{rounds} \ge (\alpha + 1) \ln n] \le ne^{-(\alpha + 1) \ln n} = n^{-\alpha}$.

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cot(LP) + (n \cdot OPT) n^{-\alpha}$$

Proof: We have

 $\Pr[\#\mathsf{rounds} \ge (\alpha+1) \ln n] \le n e^{-(\alpha+1) \ln n} = n^{-\alpha} \ .$

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Proof: We have

$$\Pr[\#\mathsf{rounds} \ge (\alpha+1) \ln n] \le n e^{-(\alpha+1) \ln n} = n^{-\alpha} \ .$$

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[cost] =$$

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$\begin{split} E[\cos t] &= \Pr[\mathsf{success}] \cdot E[\cos t \mid \mathsf{success}] \\ &\quad + \Pr[\mathsf{no} \ \mathsf{success}] \cdot E[\cos t \mid \mathsf{no} \ \mathsf{success}] \end{split}$$

Expected Cost

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}] + \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means

Expected Cost

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}] + \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means

$$E[\cos t \mid success]$$

$$= \frac{1}{\Pr[succ.]} (E[\cos t] - \Pr[\text{no success}] \cdot E[\cos t \mid \text{no success}])$$

Expected Cost

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}] + \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means

$$E[\cos t \mid success]$$

$$= \frac{1}{\Pr[succ.]} \left(E[\cos t] - \Pr[no \ success] \cdot E[\cos t \mid no \ success] \right)$$

$$\leq \frac{1}{\Pr[succ.]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \cos t(LP)$$

Expected Cost

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

13.5 Randomized Rounding

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}]$$
$$+ \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means

$$E[\cos t \mid \text{success}]$$

$$= \frac{1}{\Pr[\text{succ.}]} \left(E[\cos t] - \Pr[\text{no success}] \cdot E[\cos t \mid \text{no success}] \right)$$

$$\leq \frac{1}{\Pr[\text{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \text{cost(LP)}$$

$$\leq 2(\alpha + 1) \ln n \cdot \text{OPT}$$

Expected Cost

► Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = O(\ln n) \cdot OPT$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}] + \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means *E*[cost | success] $= \frac{1}{\Pr[\mathsf{succ.}]} \Big(E[\mathsf{cost}] - \Pr[\mathsf{no} \ \mathsf{success}] \cdot E[\mathsf{cost} \mid \mathsf{no} \ \mathsf{success}] \Big)$ $\leq \frac{1}{\Pr[\mathsf{succ}]} E[\mathsf{cost}] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \mathsf{cost}(\mathsf{LP})$ $\leq 2(\alpha + 1) \ln n \cdot OPT$

for $n \ge 2$ and $\alpha \ge 1$.

Expected Cost

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that

contains u. $E[\cos t] \leq (\alpha+1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[\operatorname{success}] \cdot E[\cos t \mid \operatorname{success}]$$
$$+ \Pr[\operatorname{no success}] \cdot E[\cos t \mid \operatorname{no success}]$$

This means

$$E[\cos t \mid success]$$

$$= \frac{1}{\Pr[succ.]} \Big(E[\cos t] - \Pr[no \ success] \cdot E[\cos t \mid no \ success] \Big)$$

$$\leq \frac{1}{\Pr[succ.]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \cos t(LP)$$

$$\leq 2(\alpha + 1) \ln n \cdot OPT$$
for $n \geq 2$ and $\alpha \geq 1$.

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2} \log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2\text{poly}(\log n)$

Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success]$$

$$+ \Pr[no success] \cdot E[\cos t \mid no success]$$

This means

E[cost | success] $= \frac{1}{\Pr[\mathsf{succ}]} \Big(E[\mathsf{cost}] - \Pr[\mathsf{no} \; \mathsf{success}] \cdot E[\mathsf{cost} \; | \; \mathsf{no} \; \mathsf{success}] \Big)$ $\leq \frac{1}{\Pr[\mathsf{succ}]} E[\mathsf{cost}] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \mathsf{cost}(\mathsf{LP})$ $\leq 2(\alpha + 1) \ln n \cdot OPT$ for n > 2 and $\alpha > 1$.

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n = 2^k 1$
- ► Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$S_{\vec{\mathbf{v}}} := \{ \vec{\mathbf{x}} \mid \vec{\mathbf{x}}^T \vec{\mathbf{y}} = 1 \}$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_i = \frac{1}{2k-1} = \frac{2}{n+1}$ is fractional solution.

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text{poly}(\log n)}$).

Integrality Gap

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

$$n = 2^k - 1$$

- Elements are all vectors \vec{x} over GF[2] of length k (excluding
- zero vector). • Every vector \vec{v} defines a set as follows

$$S_{\vec{\mathbf{v}}} := \{ \vec{\mathbf{x}} \mid \vec{\mathbf{x}}^T \vec{\mathbf{v}} = 1 \}$$

- \blacktriangleright each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_i = \frac{1}{2k-1} = \frac{2}{n+1}$ is fractional solution.

- Every collection of p < k sets does not cover all elements.
- Hence, we get a gap of $\Omega(\log n)$.

EADS II 13.5 Randomized Rounding

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.