19 Cuts & Metrics

Shortest Path

min		$\sum_{e} c(e) x_{e}$		
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_e$	\geq	1
	$\forall e \in E$	x_e	\in	$\{0, 1$

S is the set of subsets that separate s from t.

The Dual:

ĺ	max		$\sum_{S} \gamma_{S}$		
	s.t.	$\forall e \in E$	$\sum_{S:e\in\delta(S)} \mathcal{Y}_S$	\leq	c(e)
		$\forall S \in S$	Уs	\geq	0

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

50,00	EADS II Harald Räcke
	Harald Räcke

483

19 Cuts & Metrics

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ► We have d(u, v) = l_e for every edge e = (u, v), as otw. we could reduce l_e without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

EADS II Harald Räcke

19 Cuts & Metrics

485

19 Cuts & Metrics

Minimum Cut

min		$\sum_{e} c(e) x_{e}$		
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e\in P} x_e$	\geq	1
	$\forall e \in E$	x_e	\in	$\{0, 1\}$

\mathcal{P} is the set of path that connect s and t.

The Dual:

max		$\sum_{P} \gamma_{P}$		
s.t.	$\forall e \in E$	$\sum_{P:e\in P} \mathcal{Y}_P$	\leq	c(e)
	$\forall P \in \mathcal{P}$	\mathcal{Y}_P	\geq	0

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

	19 Cuts & Metrics	
UUU Harald Räcke		484

How do we round the LP?

Let B(s, r) be the ball of radius r around s (w.r.t. metric d). Formally:

 $B = \{ v \in V \mid d(s, v) \le r \}$

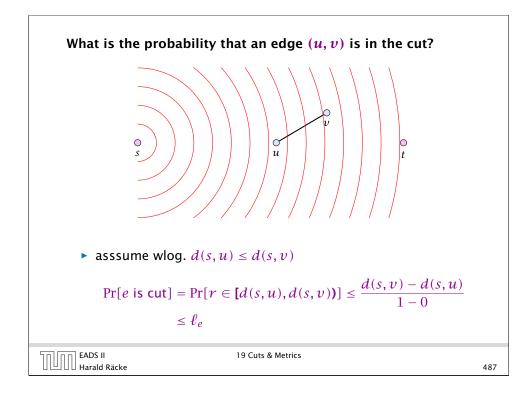
• For $0 \le r < 1$, B(s, r) is an *s*-*t*-cut.

Which value of *r* should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0, 1)

19 Cuts & Metrics



Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a capacity function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G = (V, E \setminus F)$.

m	in		$\sum_{e} c(e) \ell_{e}$		
s	.t.	$\forall P \in \mathcal{P}_i \text{ for some } i$	$\sum_{e\in P} \ell_e$	\geq	1
		$\forall e \in E$	ℓ_e	\in	{0,1}

Here \mathcal{P}_i contains all path *P* between s_i and t_i .

What is the expected size of a cut?

$$E[\text{size of cut}] = E[\sum_{e} c(e) \Pr[e \text{ is cut}]]$$
$$\leq \sum_{e} c(e) \ell_{e}$$

On the other hand:

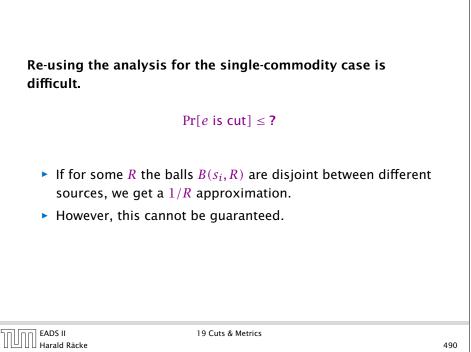
 $\sum_{e} c(e) \ell_e \leq \text{size of mincut}$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence, our rounding gives an optimal solution.

EADS II Harald Räcke

19 Cuts & Metrics



19 Cuts & Metrics

488

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- Replace the graph *G* by a graph *G'*, where an edge of length *ℓ_e* is replaced by *ℓ_e/δ* edges of length *δ*.
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing(<i>s_i</i> , <i>p</i>)
$1: z \leftarrow 0$
2: repeat
3: flip a coin ($Pr[heads] = p$)
4: $Z \leftarrow Z + 1$
5: until heads
6: return <i>B</i> (<i>s</i> _{<i>i</i>} , <i>z</i>)
ADS II 19 Cuts & Metrics Iarald Räcke

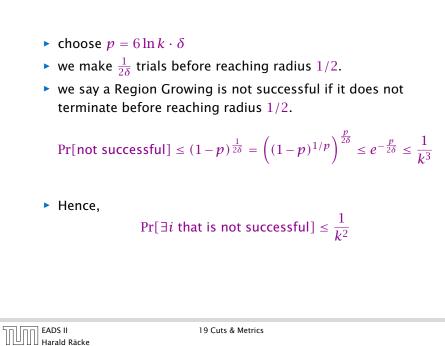
```
Algorithm 1 Multicut(G')1: while \exists s_i \text{-} t_i pair in G' do2: C \leftarrow \text{RegionGrowing}(s_i, p)3: G' = G' \setminus C // \text{ cuts edges leaving } C4: return B(s_i, z)
```

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

```
EADS II
Harald Räcke
```

19 Cuts & Metrics

492



Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius $1/2 \mbox{ we are in good shape.} \label{eq:linear}$

EADS II Harald Räcke

491

What is expected cost?

$$\begin{split} E[\texttt{cutsize}] &= Pr[\texttt{success}] \cdot E[\texttt{cutsize} \mid \texttt{success}] \\ &+ Pr[\texttt{no success}] \cdot E[\texttt{cutsize} \mid \texttt{no success}] \end{split}$$

 $E[\text{cutsize} \mid \text{succ.}] = \frac{E[\text{cutsize}] - \Pr[\text{no succ.}] \cdot E[\text{cutsize} \mid \text{no succ.}]}{\Pr[\text{success}]}$ $\leq \frac{E[\text{cutsize}]}{\Pr[\text{success}]} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT}$

Note: success means all source-target pairs separated

We assume $k \ge 2$.

רח (הה) EADS II	19 Cuts & Metrics	
UUU Harald Räcke		495

If we are not successful we simply perform a trivial *k*-approximation.

This only increases the expected cost by at most $\frac{1}{k^2} \cdot k\text{OPT} \leq \text{OPT}/k$.

Hence, our final cost is $\mathcal{O}(\ln k) \cdot \text{OPT}$ in expectation.

EADS II Harald Räcke 19 Cuts & Metrics

496

