
19 Cuts & Metrics
Shortest Path

min
∑
e c(e)xe

s.t. ∀S ∈ S
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

S is the set of subsets that separate s from t.

The Dual:

max
∑
S yS

s.t. ∀e ∈ E
∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

The Separation Problem for the Shortest Path LP is the Minimum

Cut Problem.
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19 Cuts & Metrics
Minimum Cut

min
∑
e c(e)xe

s.t. ∀P ∈ P
∑
e∈P xe ≥ 1

∀e ∈ E xe ∈ {0,1}

P is the set of path that connect s and t.

The Dual:

max
∑
P yP

s.t. ∀e ∈ E
∑
P :e∈P yP ≤ c(e)

∀P ∈ P yP ≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.
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19 Cuts & Metrics

Observations:

Suppose that `e-values are solution to Minimum Cut LP.

ñ We can view `e as defining the length of an edge.

ñ Define d(u,v) =minpath P btw. u and v
∑
e∈P `e as the

Shortest Path Metric induced by `e.
ñ We have d(u,v) = `e for every edge e = (u,v), as otw. we

could reduce `e without affecting the distance between s
and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.
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How do we round the LP?

ñ Let B(s, r) be the ball of radius r around s (w.r.t. metric d).

Formally:

B = {v ∈ V | d(s, v) ≤ r}

ñ For 0 ≤ r < 1, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)
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What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

EADS II 19 Cuts & Metrics

Harald Räcke 487

What is the expected size of a cut?

E[size of cut] = E
[∑

e c(e)Pr[e is cut]
]

≤
∑
e c(e)`e

On the other hand:∑
e c(e)`e ≤ size of mincut

as the `e are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.
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Minimum Multicut:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a capacity function c : E → R+ on the edges.

Find a subset F ⊆ E of the edges such that all si-ti pairs lie in

different components in G = (V , E \ F).

min
∑
e c(e)`e

s.t. ∀P ∈ Pi for some i
∑
e∈P `e ≥ 1

∀e ∈ E `e ∈ {0,1}

Here Pi contains all path P between si and ti.
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Re-using the analysis for the single-commodity case is

difficult.

Pr[e is cut] ≤ ?

ñ If for some R the balls B(si, R) are disjoint between different

sources, we get a 1/R approximation.

ñ However, this cannot be guaranteed.

EADS II 19 Cuts & Metrics

Harald Räcke 490



ñ Assume for simplicity that all edge-length `e are multiples

of δ� 1.

ñ Replace the graph G by a graph G′, where an edge of length

`e is replaced by `e/δ edges of length δ.

ñ Let B(si, z) be the ball in G′ that contains nodes v with

distance d(si, v) ≤ zδ.

Algorithm 1 RegionGrowing(si, p)
1: z ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z ← z + 1

5: until heads

6: return B(si, z)
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Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.
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Problem:

We may not cut all source-target pairs.

A component that we remove may contain an si-ti pair.

If we ensure that we cut before reaching radius 1/2 we are in

good shape.
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ñ choose p = 6 lnk · δ
ñ we make 1

2δ trials before reaching radius 1/2.

ñ we say a Region Growing is not successful if it does not

terminate before reaching radius 1/2.

Pr[not successful] ≤ (1−p)
1

2δ =
(
(1−p)1/p

) p
2δ
≤ e−

p
2δ ≤ 1

k3

ñ Hence,

Pr[∃i that is not successful] ≤ 1
k2
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What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.
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If we are not successful we simply perform a trivial

k-approximation.

This only increases the expected cost by at most
1
k2 · kOPT ≤ OPT/k.

Hence, our final cost is O(lnk) ·OPT in expectation.
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