19 Cuts \& Metrics

Shortest Path

\min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_{e} \geq 1$	
	$\forall e \in E$	$x_{e} \in\{0,1\}$	

S is the set of subsets that separate s from t.

19 Cuts \& Metrics

Shortest Path

\min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_{e} \quad \geq$	1
	$\forall e \in E$	$x_{e} \geq$	0

S is the set of subsets that separate s from t.
The Dual:

max	$\sum_{S} y_{S}$				
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S}$			
	$\forall S \in S$	y_{S}	\geq	0	

19 Cuts \& Metrics

Shortest Path

\min		$\sum_{e} c(e) x_{e}$	
s.t.	$\forall S \in S$	$\sum_{e \in \delta(S)} x_{e} \quad \geq$	1
	$\forall e \in E$	$x_{e} \geq$	0

S is the set of subsets that separate s from t.
The Dual:

max	$\sum_{S} y_{S}$				
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S}$			
	$\forall S \in S$	y_{S}	\geq	0	

The Separation Problem for the Shortest Path LP is the Minimum
Cut Problem.

19 Cuts \& Metrics

Minimum Cut

\min	$\sum_{e} c(e) x_{e}$		
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	$\in\{0,1\}$

\mathcal{P} is the set of path that connect s and t.

19 Cuts \& Metrics

Minimum Cut

\min	$\sum_{e} c(e) x_{e}$		
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	≥ 0

\mathcal{P} is the set of path that connect s and t.
The Dual:

\max	$\sum_{P} y_{P}$		
s.t.	$\forall e \in E$	$\sum_{P: e \in P} y_{P}$	
	$\forall P \in \mathcal{P}$	$y_{P} \geq 0$	
		≥ 0	

19 Cuts \& Metrics

Minimum Cut

\min	$\sum_{e} c(e) x_{e}$		
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_{e}$	≥ 1
	$\forall e \in E$	x_{e}	≥ 0

\mathcal{P} is the set of path that connect s and t.
The Dual:

max	$\sum_{P} y_{P}$				
s.t.	$\forall e \in E$	$\sum_{P: e \in P} y_{P}$			
	$\forall P \in \mathcal{P}$	y_{P}			

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

19 Cuts \& Metrics

Minimum Cut

\min	$\sum_{e} c(e) \ell_{e}$		
s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} \ell_{e}$	≥ 1
	$\forall e \in E$	ℓ_{e}	≥ 0

\mathcal{P} is the set of path that connect s and t.
The Dual:

\[

\]

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

19 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.

19 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
 Shortest Path Metric induced by ℓ_{e}.

19 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
 Shortest Path Metric induced by ℓ_{e}.
- We have $d(u, v)=\ell_{e}$ for every edge $e=(u, v)$, as otw. we could reduce ℓ_{e} without affecting the distance between s and t.

19 Cuts \& Metrics

Observations:
Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
 Shortest Path Metric induced by ℓ_{e}.
- We have $d(u, v)=\ell_{e}$ for every edge $e=(u, v)$, as otw. we could reduce ℓ_{e} without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

Which value of r should we choose?

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

Which value of r should we choose? choose randomly!!!

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s - t-cut.

Which value of r should we choose? choose randomly!!!

Formally:
choose r u.a.r. (uniformly at random) from interval $[0,1$)

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

O
t

What is the probability that an edge (u, v) is in the cut?

O
t

What is the probability that an edge (u, v) is in the cut?

O
t

What is the probability that an edge (u, v) is in the cut?

t

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

${ }_{t}^{0}$

What is the probability that an edge (u, v) is in the cut?

${ }_{t}$

What is the probability that an edge (u, v) is in the cut?

O
t

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\operatorname{Pr}[e \text { is cut }]
$$

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\operatorname{Pr}[e \text { is cut }]=\operatorname{Pr}[r \in[d(s, u), d(s, v))]
$$

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\operatorname{Pr}[e \text { is cut }]=\operatorname{Pr}[r \in[d(s, u), d(s, v))] \leq \frac{d(s, v)-d(s, u)}{1-0}
$$

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\begin{aligned}
\operatorname{Pr}[e \text { is cut }] & =\operatorname{Pr}[r \in[d(s, u), d(s, v))] \leq \frac{d(s, v)-d(s, u)}{1-0} \\
& \leq \ell_{e}
\end{aligned}
$$

What is the expected size of a cut?

$$
\begin{aligned}
\mathrm{E}[\text { size of cut }] & =\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right] \\
& \leq \sum_{e} c(e) \ell_{e}
\end{aligned}
$$

What is the expected size of a cut?

$$
\begin{aligned}
\mathrm{E}[\text { size of cut }] & =\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right] \\
& \leq \sum_{e} c(e) \ell_{e}
\end{aligned}
$$

On the other hand:

$$
\sum_{e} c(e) \ell_{e} \leq \text { size of mincut }
$$

as the ℓ_{e} are the solution to the Mincut LP relaxation.

What is the expected size of a cut?

$$
\begin{aligned}
\mathrm{E}[\text { size of cut }] & =\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right] \\
& \leq \sum_{e} c(e) \ell_{e}
\end{aligned}
$$

On the other hand:

$$
\sum_{e} c(e) \ell_{e} \leq \text { size of mincut }
$$

as the ℓ_{e} are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges.
Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$.

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges.
Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$.

\min		$\sum_{e} c(e) \ell_{e}$	
s.t.	$\forall P \in \mathcal{P}_{i}$ for some i	$\sum_{e \in P} \ell_{e}$	≥ 1
	$\forall e \in E$	ℓ_{e}	$\in\{0,1\}$

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges.
Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$.

min		$\sum_{e} c(e) \ell_{e}$	
s.t.	$\forall P \in \mathcal{P}_{i}$ for some i	$\sum_{e \in P} \ell_{e}$	≥ 1
	$\forall e \in E$	ℓ_{e}	$\in\{0,1\}$

Here \mathcal{P}_{i} contains all path P between s_{i} and t_{i}.

Re-using the analysis for the single-commodity case is

 difficult.Re-using the analysis for the single-commodity case is difficult.

$$
\operatorname{Pr}[e \text { is cut }] \leq ?
$$

Re-using the analysis for the single-commodity case is

 difficult.$$
\operatorname{Pr}[e \text { is cut }] \leq ?
$$

- If for some R the balls $B\left(s_{i}, R\right)$ are disjoint between different sources, we get a $1 / R$ approximation.
- However, this cannot be guaranteed.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Let $B\left(s_{i}, z\right)$ be the ball in G^{\prime} that contains nodes v with distance $d\left(s_{i}, v\right) \leq z \delta$.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Let $B\left(s_{i}, z\right)$ be the ball in G^{\prime} that contains nodes v with distance $d\left(s_{i}, v\right) \leq z \delta$.

```
Algorithm 1 RegionGrowing \(\left(s_{i}, p\right)\)
1: \(z \leftarrow 0\)
2: repeat
3: \(\quad\) flip a coin \((\operatorname{Pr}[\) heads \(]=p)\)
4: \(\quad z \leftarrow z+1\)
5: until heads
6: return \(B\left(s_{i}, z\right)\)
```


Algorithm 1 Multicut $\left(G^{\prime}\right)$

1: while $\exists s_{i}-t_{i}$ pair in G^{\prime} do
2: $\quad C \leftarrow$ RegionGrowing $\left(s_{i}, p\right)$
3: $\quad G^{\prime}=G^{\prime} \backslash C / /$ cuts edges leaving C
4: return $B\left(s_{i}, z\right)$

Algorithm 1 Multicut $\left(G^{\prime}\right)$

1: while $\exists s_{i}-t_{i}$ pair in G^{\prime} do
2: $\quad C \leftarrow$ RegionGrowing $\left(s_{i}, p\right)$
3: $\quad G^{\prime}=G^{\prime} \backslash C / /$ cuts edges leaving C
4: return $B\left(s_{i}, z\right)$

- probability of cutting an edge is only p

Algorithm 1 Multicut $\left(G^{\prime}\right)$

1: while $\exists s_{i}-t_{i}$ pair in G^{\prime} do
2: $\quad C \leftarrow$ RegionGrowing $\left(s_{i}, p\right)$
3: $\quad G^{\prime}=G^{\prime} \backslash C / /$ cuts edges leaving C
4: return $B\left(s_{i}, z\right)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut

Algorithm 1 Multicut $\left(G^{\prime}\right)$

1: while $\exists s_{i}-t_{i}$ pair in G^{\prime} do
2: $\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)$
3: $\quad G^{\prime}=G^{\prime} \backslash C / /$ cuts edges leaving C
4: return $B\left(s_{i}, z\right)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources

Algorithm 1 Multicut $\left(G^{\prime}\right)$

1: while $\exists s_{i}-t_{i}$ pair in G^{\prime} do
2: $\quad C \leftarrow \operatorname{RegionGrowing}\left(s_{i}, p\right)$
3: $\quad G^{\prime}=G^{\prime} \backslash C / /$ cuts edges leaving C
4: return $B\left(s_{i}, z\right)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p=\delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

Problem:

We may not cut all source-target pairs.

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an $s_{i}-t_{i}$ pair.

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an $s_{i}-t_{i}$ pair.

If we ensure that we cut before reaching radius $1 / 2$ we are in good shape.

- choose $p=6 \ln k \cdot \delta$
- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- we say a Region Growing is not successful if it does not terminate before reaching radius $1 / 2$.

$$
\operatorname{Pr}[\text { not successful }] \leq(1-p)^{\frac{1}{2 \delta}}=\left((1-p)^{1 / p}\right)^{\frac{p}{2 \delta}} \leq e^{-\frac{p}{2 \delta}} \leq \frac{1}{k^{3}}
$$

- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- we say a Region Growing is not successful if it does not terminate before reaching radius $1 / 2$.

$$
\operatorname{Pr}[\text { not successful }] \leq(1-p)^{\frac{1}{2 \delta}}=\left((1-p)^{1 / p}\right)^{\frac{p}{2 \delta}} \leq e^{-\frac{p}{2 \delta}} \leq \frac{1}{k^{3}}
$$

- Hence,

$$
\operatorname{Pr}[\exists i \text { that is not successful }] \leq \frac{1}{k^{2}}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

E[cutsize | succ.]

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$E[$ cutsize \mid succ. $]=\frac{E[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot E[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]}$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize | succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize | succ.] } & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize | no succ.] }}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize | succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT} \leq 8 \ln k \cdot \mathrm{OPT}
\end{aligned}
$$

What is expected cost?

$$
\begin{aligned}
\mathrm{E}[\text { cutsize }]= & \operatorname{Pr}[\text { success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no success }]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}[\text { cutsize | succ. }] & =\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize } \mid \text { no succ. }]}{\operatorname{Pr}[\text { success }]} \\
& \leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT} \leq 8 \ln k \cdot \mathrm{OPT}
\end{aligned}
$$

Note: success means all source-target pairs separated
We assume $k \geq 2$.

If we are not successful we simply perform a trivial k-approximation.

This only increases the expected cost by at most $\frac{1}{k^{2}} \cdot k \mathrm{OPT} \leq \mathrm{OPT} / k$.

Hence, our final cost is $\mathcal{O}(\ln k) \cdot$ OPT in expectation.

