Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Change LP := max{ $c^T x, Ax = b; x \ge 0$ } into $LP' := \max\{c^T x, Ax = \mathbf{b}', x \ge 0\}$ such that

- LP is feasible
- II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP has no degenerate basic solutions

החוחר	EADS II Harald Räcke
	Harald Räcke

117

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := max{ $c^T x, Ax = b; x \ge 0$ }. Change it into $LP' := \max\{c^T x, Ax = \mathbf{b}', x \ge 0\}$ such that

L LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

EADS II Harald Räcke

Perturbation Let *B* be index set of some basis with basic solution $x_{R}^{*} = A_{R}^{-1}b \ge 0, x_{N}^{*} = 0$ (i.e. *B* is feasible) Fix $b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varsigma^m \end{pmatrix}$ for $\varepsilon > 0$. This is the perturbation that we are using. EADS II 6 Degeneracy Revisited Harald Räcke

Property I

The new LP is feasible because the set *B* of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=x_B^*+\left(\begin{matrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0$$

EADS II	6 Degeneracy Revisited	
UUU Harald Räcke		121

Property III

Let \tilde{B} be a basis. It has an associated solution

 $x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{B}}^{-1}A_B$ has rank *m*. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

6 Degeneracy Revisited

Property II

EADS II Harald Räcke

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row *i*.

Then for small enough $\epsilon > 0$

 $\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i} < 0$

Hence, \tilde{B} is not feasible.

Since, there are no degeneracies Simplex will terminate when run on $\ensuremath{\mathrm{LP}}'.$

6 Degeneracy Revisited

If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \le 0$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

▶ If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the *j*-th basis direction *d*, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on *b*. Hence, we also know that LP is unbounded.

122

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

EADS II Harald Räcke EADS II

EADS II

|||||||| Harald Räcke

6 Degeneracy Revisited

6 Degeneracy Revisited

125

127

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

EADS II Harald Räcke

6 Degeneracy Revisited

	D		$c_N^T x_N$		
			$A_N x_N$		
	χ_B	,	x_N	\geq	0
Inc-	$(C_N^* - C_B^*)$	D			$Z - c_B^T A_B^{-1} b$
	+	A_{E}			
			x_N		0

solution.

EADS II Harald Räcke 6 Degeneracy Revisited

128

126

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

$$\theta_{\ell} = \frac{b_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \; .$$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

50 [00]	EADS II
	Harald Räcke

6 Degeneracy Revisited

129

Lexicographic Pivoting

Definition 2

 $u \leq_{\text{lex}} v$ if and only if the first component in which u and v differ fulfills $u_i \leq v_i$.

EADS II 6 Degeneracy Revisited Harald Räcke 130

Lexicographic Pivoting This means you can choose the variable/row ℓ for which the vector $\frac{\ell \cdot \text{th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_{\ell}}$ is lexicographically minimal. Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$. This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.