

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

ldea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

If a set 6 of basis variables corresponds to an electronic basis (i.e. (1, 0, 0)), then 6 corresponds to an infeasible basis in 0.0 (note that columns in (0, 0) are linearly independent).

11¹⁰ has no degenerate basic solutions

Degenerate Example

6 Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

\mathbb{D}^{2} is feasible

If a set 2 of basis variables corresponds to an observation basis (i.e. 25, 26, 20) then 2 corresponds to an infeasible basis in 2.2 (note that columns in 25, are linearly independent).

has no degenerate basic solutions

Degenerate Example

6 Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Degenerate Example

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

EADS II

Harald Räcke

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Degenerate Example

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Degenerate Example

Perturbation

Let *B* be index set of some basis with basic solution

 $x_B^* = A_B^{-1}b \ge 0, x_N^* = 0$ (i.e. *B* is feasible)

$$b':=b+A_Begin{pmatrix}arepsilon\arepsil$$

This is the perturbation that we are using.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Perturbation

Let *B* be index set of some basis with basic solution

 $x_{B}^{*} = A_{B}^{-1}b \ge 0, x_{N}^{*} = 0$ (i.e. *B* is feasible)

$b':=b+A_Begin{pmatrix}arepsilon\arepsil$

This is the perturbation that we are using.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Fix

The new LP is feasible because the set B of basis variables provides a feasible basis:

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

The new LP is feasible because the set B of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=x_B^*+\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0$$
.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row *i*.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row i.

Then for small enough $\epsilon > 0$

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row i.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\left(\frac{\varepsilon}{\vdots}_{\varepsilon^{m}}\right)\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\left(\frac{\varepsilon}{\vdots}_{\varepsilon^{m}}\right)\right)_{i} < 0$$

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

6 Degeneracy Revisited

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row i.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\left(\frac{\varepsilon}{\vdots}_{\varepsilon^{m}}\right)\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\left(\frac{\varepsilon}{\vdots}_{\varepsilon^{m}}\right)\right)_{i} < 0$$

Hence, \tilde{B} is not feasible.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

 $x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$

in the perturbed instance.

We can view each component of the vector as a polynom with variable arepsilon of degree at most m.

```
A_{\tilde{B}}^{-1}A_{B} has rank m. Therefore no polynom is 0.
```

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

 $x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

$A_{\tilde{B}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

 $x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

```
A_{\tilde{B}}^{-1}A_B has rank m. Therefore no polynom is 0.
```

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

 $x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

```
A_{\tilde{B}}^{-1}A_B has rank m. Therefore no polynom is 0.
```

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

 $x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

```
A_{\tilde{B}}^{-1}A_B has rank m. Therefore no polynom is 0.
```

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Let \tilde{B} be a basis. It has an associated solution

 $\chi_{\tilde{B}}^{*} = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

```
A_{\tilde{B}}^{-1}A_B has rank m. Therefore no polynom is 0.
```

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Since, there are no degeneracies Simplex will terminate when run on $\ensuremath{\mathrm{LP}}'.$

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

Since, there are no degeneracies Simplex will terminate when run on $\mathrm{LP}^\prime.$

> If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \leq 0$

then we have found an optimal basis.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Since, there are no degeneracies Simplex will terminate when run on $\mathrm{LP}^\prime.$

If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \leq 0$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Since, there are no degeneracies Simplex will terminate when run on $\mathrm{LP}^\prime.$

If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \le 0$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

If it terminates because it finds a variable x_j with c̃_j > 0 for which the *j*-th basis direction *d*, fulfills *d* ≥ 0 we know that LP' is unbounded. The basis direction does not depend on *b*. Hence, we also know that LP is unbounded.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Since, there are no degeneracies Simplex will terminate when run on LP'.

► If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \leq 0$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

If it terminates because it finds a variable x_j with c̃_j > 0 for which the *j*-th basis direction *d*, fulfills *d* ≥ 0 we know that LP' is unbounded. The basis direction does not depend on *b*. Hence, we also know that LP is unbounded.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Since, there are no degeneracies Simplex will terminate when run on LP'.

► If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \leq 0$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

If it terminates because it finds a variable x_j with c̃_j > 0 for which the *j*-th basis direction *d*, fulfills *d* ≥ 0 we know that LP' is unbounded. The basis direction does not depend on *b*. Hence, we also know that LP is unbounded.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Since, there are no degeneracies Simplex will terminate when run on LP'.

► If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \leq 0$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

If it terminates because it finds a variable x_j with c̃_j > 0 for which the *j*-th basis direction *d*, fulfills *d* ≥ 0 we know that LP' is unbounded. The basis direction does not depend on *b*. Hence, we also know that LP is unbounded.

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then ${\rm LP}'$ and ${\rm LP}$ do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_{\it e}>0,$ of course).

If we do not have a choice for the leaving variable then ${\rm LP}'$ and ${\rm LP}$ do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then ${\rm LP}'$ and ${\rm LP}$ do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then ${\rm LP}'$ and ${\rm LP}$ do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Lexicographic Pivoting

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where *B* is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

6 Degeneracy Revisited

Lexicographic Pivoting

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where *B* is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then ${\rm LP}'$ and ${\rm LP}$ do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$\begin{array}{rclcrcrc} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &, & & x_{N} &\geq& 0 \end{array}$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Lexicographic Pivoting

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where *B* is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

6 Degeneracy Revisited

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes $\theta_{\ell} = \frac{b_{\ell}}{A_{\ell e}} = \frac{(A_{\ell}^{-1}b)_{\ell}}{(A_{\ell}^{-1}A_{\ell e})_{\ell}}$

 ℓ is the index of a leaving variable within *B*. This means if e.g $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

Matrix View

Let our linear program be

 $\begin{array}{rcrcrcr} c_B^T x_B &+ & c_N^T x_N &= & Z \\ A_B x_B &+ & A_N x_N &= & b \\ x_B &, & x_N &\geq & 0 \end{array}$

The simplex tableaux for basis B is

 $(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$ $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$ $x_B , \qquad x_N \ge 0$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

6 Degeneracy Revisited

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes $\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell a}} = \frac{(A_{\mu}^{-1}b)_{\ell}}{(A_{\mu}^{-1}A_{\mu e})_{\ell}}$

 ℓ is the index of a leaving variable within *B*. This means if e.g $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

Matrix View

Let our linear program be

 $\begin{array}{rcrcrcr} c_B^T x_B &+ & c_N^T x_N &= & Z \\ A_B x_B &+ & A_N x_N &= & b \\ x_B &, & x_N &\geq & 0 \end{array}$

The simplex tableaux for basis B is

 $(c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N})x_{N} = Z - c_{B}^{T}A_{B}^{-1}b$ $Ix_{B} + A_{B}^{-1}A_{N}x_{N} = A_{B}^{-1}b$ $x_{B} , \qquad x_{N} \ge 0$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

6 Degeneracy Revisited

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

 $\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$

 ℓ is the index of a leaving variable within *B*. This means if e.g. *B* = {1, 3, 7, 14} and leaving variable is 3 then ℓ = 2.

Matrix View

Let our linear program be

 $\begin{array}{rcrcrcr} c_B^T x_B &+ & c_N^T x_N &= & Z \\ A_B x_B &+ & A_N x_N &= & b \\ x_B &, & x_N &\geq & 0 \end{array}$

The simplex tableaux for basis B is

 $(c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N})x_{N} = Z - c_{B}^{T}A_{B}^{-1}b$ $Ix_{B} + A_{B}^{-1}A_{N}x_{N} = A_{B}^{-1}b$ $x_{B} , \qquad x_{N} \ge 0$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

 $\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

Matrix View

Let our linear program be

$$\begin{array}{rcrcrcr} c_B^T x_B &+ & c_N^T x_N &= & Z \\ A_B x_B &+ & A_N x_N &= & b \\ x_B &, & x_N &\geq & 0 \end{array}$$

The simplex tableaux for basis B is

 $(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$ $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$ $x_B , \qquad x_N \ge 0$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Lexicographic Pivoting

Definition 2

 $u \leq_{\text{lex}} v$ if and only if the first component in which u and v differ fulfills $u_i \leq v_i$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

 $\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP' chooses an index that minimizes

 θ_ℓ

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

 $\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP' chooses an index that minimizes

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

 $\theta_{\ell} = rac{b_{\ell}}{\hat{A}_{\ell e}} = rac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \; .$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

EADS II Harald Räcke 6 Degeneracy Revisited

LP^\prime chooses an index that minimizes

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

 $\theta_{\ell} = \frac{b_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

6 Degeneracy Revisited

LP^\prime chooses an index that minimizes

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

 $\theta_{\ell} = \frac{b_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

6 Degeneracy Revisited

This means you can choose the variable/row ℓ for which the vector

 $\frac{\ell\text{-th row of }A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_\ell}$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

Lexicographic Pivoting

 LP^\prime chooses an index that minimizes

$$= \frac{\ell \text{-th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_{\ell}} \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

This means you can choose the variable/row ℓ for which the vector

 $\frac{\ell\text{-th row of }A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_\ell}$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

Lexicographic Pivoting

 LP^\prime chooses an index that minimizes

$$= \frac{\ell \text{-th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_{\ell}} \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

This means you can choose the variable/row ℓ for which the vector

 $\frac{\ell\text{-th row of }A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_\ell}$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

Lexicographic Pivoting

 LP^\prime chooses an index that minimizes

