Duality
How do we get an upper bound to a maximization LP?
max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Note that a lower bound is easy to derive. Every choice of
a,b = 0 gives us a lower bound (e.g. a = 12, b = 28 gives us a
lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row
with y; = 0) such that >; y;a;j = c; then >; y;b; will be an
upper bound.

Harald Racke
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Duality

Definition 2
Let z = max{c’x | Ax < b,x = 0} be a linear program P (called
the primal linear program).
The linear program D defined by
w=min{bTy | ATy =¢c,y =0}

is called the dual problem.

EADS 11 5.1 Weak Duality
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Duality

Lemma 3
The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy > ¢,y =0}
» w=-max{-bTy | -ATy < —c,y =0}

The dual problem is
» z=-—min{-cTx | ~Ax = -b,x = 0}

» z=max{cTx | Ax < b,x = 0}

5.1 Weak Duality
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Weak Duality

Let z = max{c'x | Ax < b,x = 0} and
w =min{bTy | ATy = ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

7y is dual feasible, iff y € {y | ATy = ¢,y = 0]}.

Theorem 4 (Weak Duality)
Let X be primal feasible and let Vv be dual feasible. Then

cTx<z<w=<bTy .

5.1 Weak Duality

Harald Racke

80




Weak Duality

ATy >c=>xTATY > %Tc (X 2 0)
A% <b = yTA% < 5Th (5 = 0)

This gives

Since, there exists primal feasible X with ¢’ % = z, and dual
feasible 7 with bTy = w we get z < w.

If P is unbounded then D is infeasible.

5.1 Weak Duality
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5.2 Simplex and Duality

The following linear programs form a primal dual pair:

z=max{c'x | Ax =b,x > 0}

w = min{bTy | ATy >c}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.

EADS Il 5.2 Simplex and Duality
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Proof
Primal:

max{cTx | Ax =b,x > 0}

=max{c’x | Ax <b,—-Ax < —-b,x > 0}
=max{cx | [AA]x < [bb],x > 0}
Dual:
min{[bT -bT]y | [AT -AT]y = ¢,y =0}
+ +
= min{[bT -bT] - [;] ' [AT —AT] . [i] >c,y 20,y > O}

in{loT (YT =) ‘AT Yyt =y )=,y =0,y = O}
in{bTy' ATy’ zc}

5.2 Simplex and Duality
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —cfAp'A<0

This is equivalent to AT (A1) cp = ¢
v* = (A1) Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Agxf)Ty*
= (Apx;)T(AgH)Tep = (x)HTAL(AgY) Tep

=cTx*

Hence, the solution is optimal.

Harald Racke
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5.3 Strong Duality

P =max{c’x | Ax <b,x =0}
na: humber of variables, m 4: number of constraints

We can put the non-negativity constraints into A (which gives us
unrestricted variables): P = max{c x | Ax < b}

Nig=MNA, MJ =MA +NA

Dual D = min{bTy | ATy = ¢,y = 0}.

EADS Il 5.3 Strong Duality
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I
| If we have a conic combination y of ¢ then

' bTy is an upper bound of the profit we can

: obtain (weak duality):
I

1cTx = (ATy)Tx = yTAx < yTh

1

: If x and y are optimal then the duality gap
1 is 0 (strong duality). This means

5.3 Strong Duality

0=cTx-»Th
= (AT)Tx - yTh
= yT(Ax - b)

beer

| The last term can only be 0 if y; is 0 when-
:ever the i-th constraint is not tight. This:
| means we have a conic combination of c
by normals (columns of AT) of tight con-,
4 : straints. :
A ! ; 1
' , Conversely, if we have x such that the nor-
,'gio ; mals of tight constraint (at x) give rise to a 1
" conic combination of ¢, we know that x is'

_T ale | optimal. I

The profit vector ¢ lies in the cone generated by the normals for
the hops and the corn constraint (the tight constraints).

Strong Duality

Theorem 5 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*
and w* denote the optimal solution to P and D, respectively.
Then

m EADS Il 5.3 Strong Duality
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Lemma 6 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Then min{ f(x) : x € X} exists.

(without proof)

m EADS Il 5.3 Strong Duality
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Lemma 7 (Projection Lemma)

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from y. Moreover for
all x € X we have (y — x*)T(x —x*) <0.

EADS Il 5.3 Strong Duality
Harald Racke

89

Proof of the Projection Lemma
Define f(x) = lly — x|

X # (. Hence, there exists x’ € X.

Define X' = {x e X | [[y — x|l < |ly — x"||}. This setis
closed and bounded.

Applying Weierstrass gives the existence.

vV vV vvY

\4

EADS Il 5.3 Strong Duality
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We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma (continued)
x* is minimum. Hence ||y — x*||? < ||y — x| for all x € X.

By convexity: x € X then x* +e(x —x*) e X forall 0 <€ < 1.

Iy = x*[I? < |y — x* —e(x — x*)|?

=y - x*|I> + €®llx - x*||I* = 2e(y — x*)T(x — x*)

Hence, (v — x™)T(x — x*) < %ellx — x*|2.

Letting € — O gives the result.

5.3 Strong Duality
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Theorem 8 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let v ¢ X.
Then there exists a separating hyperplane {x € R: al x = «}
where a € R™, o« € R that separates y from X. (a' y < «;
alx = « forall x € X)

5.3 Strong Duality
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Proof of the Hyperplane Lemma

> Let x* € X be closest point to v in X. Lemma 9 (Farkas Lemma)

> By previous lemma (y — x*)T(x —x*) < 0 forall x € X. Let A be an m x n matrix, b € R™. Then exactly one of the
» Choose a = (x* —y) and & = alx*, following statements holds.

» Forx € X:al(x —x*) =0, and, hence, a’ x > «. 1. 3x eR" with Ax = b, x = 0

» Also, a’y =al (x* —a) = x - ||al® < « 2.3y eR™ with ATy = 0, bTy <0

JH={x|aTx = o Assume X satisfies 1. and ¥ satisfies 2. Then

0>yIb=yTAx >0

Hence, at most one of the statements can hold.

m EADS Il 5.3 Strong Duality EADS Il 5.3 Strong Duality
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Farkas Lemma Proof of Farkas Lemma
b 2
0 a X Now, assume that 1. does not hold.
x4 X A

Consider S = {Ax : x > 0} so that S closed, convex, b ¢ S.

v We want to show that there is v with ATy > 0, bTy < 0.
Let v be a hyperplane that separates b from S. Hence, y'h < «

=, and y's > «xforall s € S.

0eS=>a=<0=>yIb<0

yTAx > « for all x = 0. Hence, ¥TA > 0 as we can choose x
arbitrarily large.

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.




Lemma 10 (Farkas Lemma; different version)

Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. dx e R" with Ax <b,x >0
2.3y e R™ withATy >0,bTy <0,y =0

Rewrite the conditions:

1. 3x € R™ with [AI]-[?]=b,sz,520

T

A
2. 3y € R™ with [ ;

}yzO,bTy<0

5.3 Strong Duality
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Proof of Strong Duality

P: z=max{cTx | Ax < b,x = 0}

D: w=min{bTy | ATy > ¢,y = 0}

Theorem 11 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=w .

EADS Il 5.3 Strong Duality
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < @ implies w < «.

dx € R" dy e R"™;v € R
s.t. Ax < b st. ATy—cv = 0
—-cI'x < -« by —axv < 0
x = 0 y,v = 0

From the definition of & we know that the first system is
infeasible; hence the second must be feasible.

5.3 Strong Duality
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Proof of Strong Duality

dy e R"™;v € R

st. ATy—-cv = 0
bTy—av < 0
y, v = 0

If the solution v, v has v = 0 we have that

dy e R™
st. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.

5.3 Strong Duality
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Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.
We can rescale this solution (scaling both v and v) s.t. v = 1.

Then v is feasible for the dual but b”y < «. This means that
w < K.

5.3 Strong Duality
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Fundamental Questions

Definition 12 (Linear Programming Problem (LP))
Let A € Q™" beQ™, c e Q" x e Q. Does there exist
xeQst. Ax=b,x>0,cTx > o?

Questions:
> Is LP in NP?
» Is LP in co-NP? yes!
» Is LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.

» A verifier can check that the associated dual solution fulfills
all dual constraints and that it has dual cost < «.

EADS Il 5.3 Strong Duality
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Complementary Slackness

Lemma 13
Assume a linear program P = max{c'x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy > ¢;y = 0} has
solution y*.

1. Ifx;k > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than xj-‘ = 0.

3. If ¥ > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than v = 0.

If we say that a variable x7 (") has slack if x7 > 0 (" > 0),
(i.e., the corresponding variable restriction is not tight) and a
contraint has slack if it is not tight, then the above says that for
a primal-dual solution pair it is not possible that a constraint
and its corresponding (dual) variable has slack.

Harald Racke

5.4 Interpretation of Dual Variables

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain
CTX* < y*TAx* < bTy*
Because of strong duality we then get
cTx* = y*TAx* _ bTy*

This gives e.g.

DTA-chx¥ =0

J
From the constraint of the dual it follows that Y7 A > ¢”. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (yTA —cT); > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.

Harald Racke
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Interpretation of Dual Variables

» Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M =13
15C + 4H + 20M =23
C,HM =0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H +35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

» We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,
and ¢y, respectively.

The profit increases to max{c’x | Ax < b + & x = 0}. Because of
strong duality this is equal to

min (bT +€T)y

s.t. ATy > ¢
y = 0
EADS Il 5.4 Interpretation of Dual Variables

Harald Racke

106

Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by > ; €;y/".

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.

» If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).

» If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.
Hence, it makes no sense to have left-overs of this resource.
Therefore its slack must be zero.

5.4 Interpretation of Dual Variables

Harald Racke 107

Example

max 13a + 23b
s.t. 5a + 15b + s =480

4a + 4b + sp =160
> 35a + 20b + $m = 1190
St~ a , b,S,Sh,Sm=0

beer

: \
A
N
N
N
N
N
N
‘\ N

B ale

The change in profit when increasing hops by one unit is

= chgleh.
[ —
y*




Of course, the previous argument about the increase in the
primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.

m EADS Il 5.4 Interpretation of Dual Variables
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Flows

Definition 14

An (s,1)-flow in a (complete) directed graph G = (V,V x V,c) is

a function f: V xV — R that satisfies

1. For each edge (x, y)

0 < fxy <cCxy .

(capacity constraints)

2. Foreachv e V' \ {s,t}
vax = fov .

(flow conservation constraints)

EADS Il 5.5 Computing Duals
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Flows

Definition 15
The value of an (s, f)-flow f is defined as

Val(f) = Zfsx - fos .

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.

m EADS Il 5.5 Computing Duals
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LP-Formulation of Maxflow

max 2z foz = 2z fas
s.t. V(zyzw) eV xV ow & Cawy fow
Vw # st 2 fzw— 2 fuz 0 pw
Tw =2 @
min Slxy) Cxylxy
st faxy (x,y =5,8) 1 1lxy—1px+lp, = 0O
Sfoy (¥ #£5,1): 145y +1py = 1
fxs (x =5,t): 10xs—1px > -1
Sy ( £5,t): 1:y +1py = 0
Fxt (x #5s,t): 105t —1px > 0
fst - W > 1
Jis: 1 > -1
Ly > 0
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LP-Formulation of Maxflow

min 2 xy) Cxylxy
s.t. fay (6, #=5,8) 1 1lxy—1pxt+lpy = O
fsy (¥ £5,1): 14sy— 1+1py, = O
Jxs (x #s,t): 10s—1px+ 1 = O
Sty (¥ =5,t): 14— 0+1p, = 0
fxt (x =5s,t): 10i—1px+ 0 = 0
Sfot: 14— 1+ 0= 0
Jis 14— 0+ 1 = 0
by = 0

5.5 Computing Duals
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LP-Formulation of Maxflow

min
s.t.

Sxy (X, #5,0):
fsy (v #s,t):
Jxs (x #s,t):
fty (v #s,t):
Jxt (x £5,t):
Sst

Sis

2. (xy) Cxylxy

14xy—1px+1lp, =

14sy— ps+1lpy
1xs—1px+ Ps
lyty— pt-i-lpy

Wxi—1px+ pi
st~ ps+ pr
Wis— pe+ ps

e

vV IV IV IV IV IV

%

S O O O O ©o O O

with p; = 0 and p; = 1.

EADS 11
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LP-Formulation of Maxflow

min > xy) Cxylxy

s.t. fxy: lxy—lpx+lpy, = O
lxy =2 0
ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value p, for a variable, then can be seen as the distance of x to
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥x, + p, then simply follows from triangle

inequality (d(x,t) = d(x,y) +d(y,t) = d(x,t) < lxy +d(y,1)).

5.5 Computing Duals
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One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

Harald Racke

5.5 Computing Duals

116




	Duality
	Weak Duality
	Simplex and Duality
	Strong Duality
	Interpretation of Dual Variables
	Computing Duals


