How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

Definition 2

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

is called the dual problem.

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

$$w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$$

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

- $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
- $\triangleright z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

- $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
- $\triangleright z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^T \hat{x} \le z \le w \le b^T \hat{y}$$
.

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^T\hat{x} \leq z \leq w \leq b^T\hat{y} \ .$$

$$A^T\hat{\mathcal{Y}} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc\;(\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$$

This gives

$$c^T \hat{x} \le \hat{y}^T A \hat{x} \le b^T \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc \; (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$$

This gives

$$c^T\hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$$

This gives

$$c^T\hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$$

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc \ (\hat{x} \geq 0)$$

$$A\hat{\mathbf{x}} \leq \mathbf{b} \Rightarrow \mathbf{y}^T A \hat{\mathbf{x}} \leq \hat{\mathbf{y}}^T b \ (\hat{\mathbf{y}} \geq 0)$$

This gives

$$c^T \hat{x} \le \hat{y}^T A \hat{x} \le b^T \hat{y}$$

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc \ (\hat{x} \geq 0)$$

$$A\hat{x} \leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0)$$

This gives

$$c^T\hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc \ (\hat{x} \geq 0)$$

$$A\hat{x} \leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \; (\hat{y} \geq 0)$$

This gives

$$c^T \hat{x} \le \hat{y}^T A \hat{x} \le b^T \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^T A \hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$$

This gives

$$c^T\hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T\hat{x} = z$, and dual feasible \hat{y} with $b^Ty = w$ we get $z \le w$.

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^T A \hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

$$A^T\hat{y} \geq c \Rightarrow \hat{x}^TA^T\hat{y} \geq \hat{x}^Tc \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^T A \hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Primal:

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

= \text{max}\{c^{T}x \ | Ax \le b, -Ax \le -b, x \ge 0\}

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Primal:

$$\max\{c^T x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^T x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^T x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{[b^T-b^T]y\mid [A^T-A^T]y\geq c, y\geq 0\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min \left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{ \begin{bmatrix} b^T - b^T \end{bmatrix} y \mid \begin{bmatrix} A^T - A^T \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min \left\{ \begin{bmatrix} b^T - b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T - A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min \left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\begin{aligned} & \min\{ \left[b^T - b^T \right] y \mid \left[A^T - A^T \right] y \geq c, y \geq 0 \} \\ &= \min\left\{ \left[b^T - b^T \right] \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \left[A^T - A^T \right] \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \geq c, y^- \geq 0, y^+ \geq 0 \right\} \\ &= \min\left\{ b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \geq c, y^- \geq 0, y^+ \geq 0 \right\} \\ &= \min\left\{ b^T y' \mid A^T y' \geq c \right\} \end{aligned}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$$

This is equivalent to $A^T(A_B^{-1})^Tc_B \ge c$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$$

This is equivalent to $A^T(A_B^{-1})^Tc_B \ge c$

 $y^* = (A_B^{-1})^T c_B$ is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$$

This is equivalent to $A^T(A_B^{-1})^Tc_B \ge c$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{E}$$
$$= c^{T}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_B^{-1})^Tc_B \ge c$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$$

This is equivalent to $A^T(A_B^{-1})^Tc_B \ge c$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$$

This is equivalent to $A^T(A_B^{-1})^Tc_B \ge c$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (X_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$$

This is equivalent to $A^T(A_B^{-1})^T c_B \ge c$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0$$

This is equivalent to $A^T(A_B^{-1})^T c_B \ge c$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$$

This is equivalent to $A^T(A_B^{-1})^T c_B \ge c$

$$y^* = (A_B^{-1})^T c_B$$
 is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Hence, the solution is optimal.

5.3 Strong Duality

$$P = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

 n_A : number of variables, m_A : number of constraints

We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P} = \max\{c^T x \mid \bar{A}x \leq \bar{b}\}$

$$n_{\bar{A}}=n_A$$
, $m_{\bar{A}}=m_A+n_A$

Dual
$$D = \min\{\bar{b}^T y \mid \bar{A}^T y = c, y \ge 0\}.$$

5.3 Strong Duality

If we have a conic combination y of c then b^Ty is an upper bound of the profit we can obtain (weak duality):

$$c^T x = (\bar{A}^T y)^T x = y^T \bar{A} x \le y^T \bar{b}$$

If x and y are optimal then the duality gap is 0 (strong duality). This means

$$0 = c^T x - y^T \tilde{b}$$
$$= (\tilde{A}^T y)^T x - y^T \tilde{b}$$
$$= y^T (\tilde{A} x - \tilde{b})$$

The last term can only be 0 if y_i is 0 whenever the i-th constraint is not tight. This means we have a conic combination of c by normals (columns of \bar{A}^T) of tight constraints.

Conversely, if we have x such that the normals of tight constraint (at x) give rise to a conic combination of c, we know that x is optimal.

The profit vector c lies in the cone generated by the normals for the hops and the corn constraint (the tight constraints).

ale

Strong Duality

Theorem 5 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

$$z^* = w^*$$

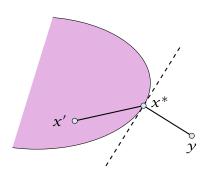
Lemma 6 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x):x\in X\}$ exists.

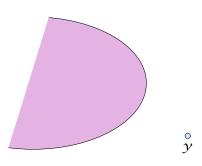
(without proof)

Lemma 7 (Projection Lemma)

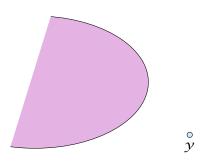
Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.



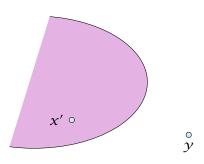
- ▶ Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



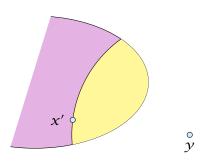
- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $\triangleright X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



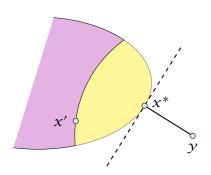
- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence



- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

$$\|y - x^*\|^2$$

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

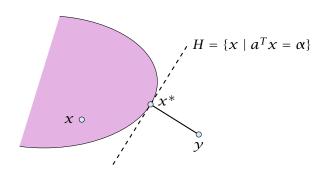
Hence,
$$(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$$
.

Letting $\epsilon \to 0$ gives the result.

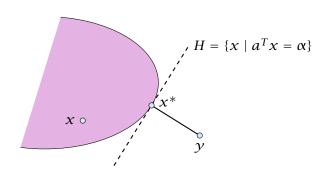
Theorem 8 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. ($a^T y < \alpha$; $a^T x \ge \alpha$ for all $x \in X$)

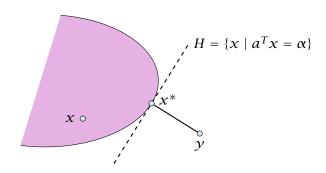
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

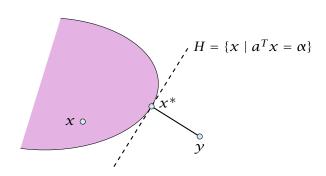


- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

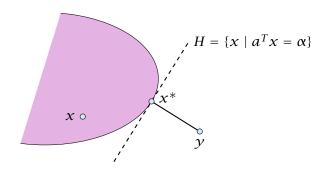


- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.

• Also, $a^T y = a^T (x^* - a) = \alpha - ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{v} satisfies 2. Then

$$0 > y^T b = y^T A x \ge 0$$

Hence, at most one of the statements can hold

Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^T b = y^T A x \ge 0$$

Hence, at most one of the statements can hold

Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

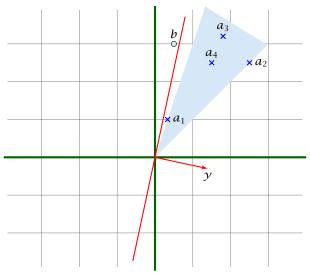
- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^T b = y^T A x \ge 0$$

Hence, at most one of the statements can hold.

Farkas Lemma



If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Lemma 10 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$$

2.
$$\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$$

Lemma 10 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$$

2.
$$\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$$

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

D:
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 11 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

 $z \leq w$: follows from weak duality

 $z \le w$: follows from weak duality

 $z \geq w$:

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible.

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \ge 0$

$$b^{T}y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Definition 12 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof

Definition 12 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- ▶ Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \text{opt}(P)$.
- We can prove this by providing an optimal basis for the dual
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $< \alpha$.

Definition 12 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- ▶ Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \text{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $< \alpha$.

Definition 12 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $< \alpha$.

Complementary Slackness

Lemma 13

Assume a linear program $P = \max\{c^Tx \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^Ty \mid A^Ty \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_j^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

Complementary Slackness

Lemma 13

Assume a linear program $P = \max\{c^Tx \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^Ty \mid A^Ty \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_j^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint and its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{i} (y^T A - c^T)_j x_j^* = 0$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (y^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^TA \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^TA - c^T)_j > 0$ (the j-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\epsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{lll}
\min & (b^T + \epsilon^T) y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}$$

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

```
\begin{array}{lll}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}
```

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

```
min (b^T + \epsilon^T)y

s.t. A^Ty \ge c

y \ge 0
```

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{cccc}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}$$

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \varepsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual warable is 2000)
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource
 - Therefore its slack must be zero.

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious

- If the brewer has stack of some resource (e.g. corn) then he had a some resource (e.g. corn) then he had been some some state of the source of
 - variable is zero)
 - If the dual variable for some resource is non-zero, then an
 - increase of this resource increases the profit of the brewer.
- Hence, it makes no sense to have left-overs of this resourceen
- Therefore its slack must be zee

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource Therefore its slack must be zero.

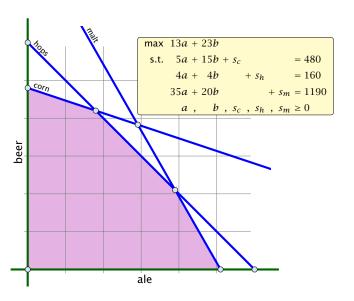
Interpretation of Dual Variables

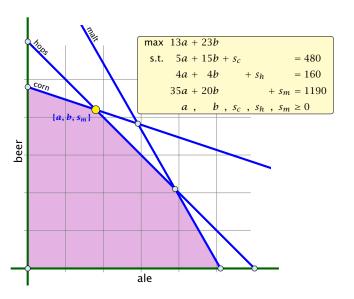
If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

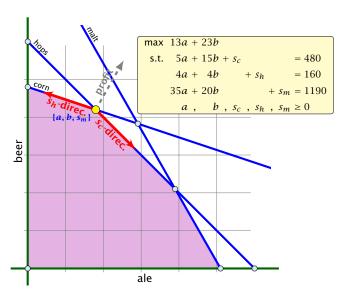
Therefore we can interpret the dual variables as marginal prices.

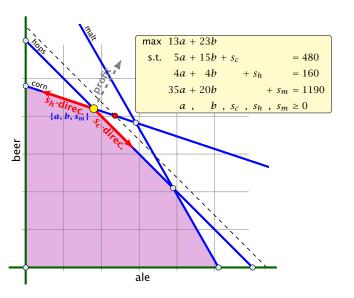
Note that with this interpretation, complementary slackness becomes obvious.

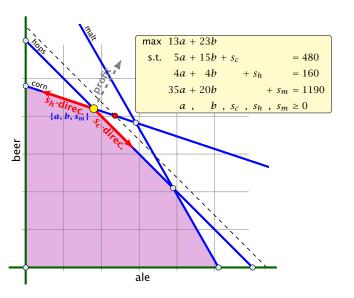
- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

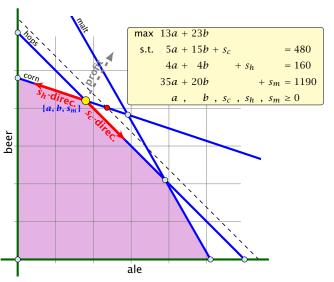




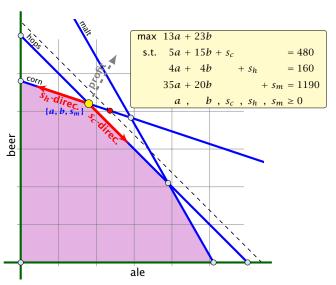








The change in profit when increasing hops by one unit is $= c_R^T A_R^{-1} e_h$.



The change in profit when increasing hops by one unit is

$$=\underbrace{c_B^T A_B^{-1}}_{\mathcal{V}^*} e_h.$$

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Definition 14

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv}$$

(flow conservation constraints)

Definition 14

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

(flow conservation constraints)

Definition 15

The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs}$$
.

Maximum Flow Problem:

Find an (s, t)-flow with maximum value

Definition 15

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

max
$$\sum_{z} f_{sz} - \sum_{z} f_{zs}$$
s.t. $\forall (z, w) \in V \times V$
$$f_{zw} \leq c_{zw} \quad \ell_{zw}$$

$$\forall w \neq s, t \quad \sum_{z} f_{zw} - \sum_{z} f_{wz} = 0 \qquad p_{w}$$

$$f_{zw} \geq 0$$

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1p_y$	≥	0
	$f_{sy} (y \neq s, t)$:	$1\ell_{sy}$ $+1p_y$	≥	1
	$f_{xs}(x \neq s,t)$:	$1\ell_{xs}-1p_x$	≥	-1
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty}$ $+1p_y$	≥	0
	$f_{xt} (x \neq s, t)$:	$1\ell_{xt}$ $-1p_x$	≥	0
	f_{st} :	$1\ell_{st}$	≥	1
	f_{ts} :	$1\ell_{ts}$	≥	-1
		ℓ_{xy}	≥	0

min		$\sum_{(xy)} c_{xy} \ell_{xy}$	
s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy} - 1p_x + 1p_y \ge 0$)
	$f_{sy} (y \neq s, t)$:	$1\ell_{sy}$ - $1+1p_y \geq 0$)
	$f_{xs}(x \neq s, t)$:	$1\ell_{xs} - 1p_x + 1 \ge 0$)
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty} - 0 + 1p_y \ge 0$)
	f_{xt} $(x \neq s, t)$:	$1\ell_{xt} - 1p_x + 0 \ge 0$)
	f_{st} :	$1\ell_{st}$ - $1+$ $0 \geq 0$)
	f_{ts} :	$1\ell_{ts}$ $ 0+$ $1 \geq 0$)
		$\ell_{xy} \geq 0$)

$$\begin{array}{lll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \; (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) \colon & 1\ell_{sy} - \; p_s + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + \; p_s \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) \colon & 1\ell_{ty} - \; p_t + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + \; p_t \; \geq \; 0 \\ & f_{st} \colon & 1\ell_{st} - \; p_s + \; p_t \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{ts} - \; p_t + \; p_s \; \geq \; 0 \\ & \ell_{xy} \; \geq \; 0 \end{array}$$

with $p_t = 0$ and $p_s = 1$.

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_X \le \ell_{XY} + p_Y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{XY} + d(y,t))$

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_X \le \ell_{XY} + p_Y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{XY} + d(y,t))$

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_X \le \ell_{XY} + p_Y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{XY} + d(y,t))$

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_X = 1$ or $p_X = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.