What can we do?

Hauristics

Exploit special structure of instances occurring in practise

Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum

- ▶ Heuristics
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum

- Heuristics.
- ► Exploit special structure of instances occurring in practise
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

11 Introduction to Approximation

There are many practically important optimization problems that are NP-hard.

What can we do?

- ► Heuristics.
- ► Exploit special structure of instances occurring in practise.
- ► Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

260

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

Why

 Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

- We need algorithms for hard problems.

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

- ▶ We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ► It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fac that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ▶ It provides a metric to compare the difficulty of various optimization problems.

11 Introduction to Approximation

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

EADS II

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ▶ It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

► Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ▶ It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

▶ Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ▶ It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

Definition 3

An optimization problem P = (1, sol, m, goal) is in **NPO** if

- $x \in I$ can be decided in polynomial time
- $\gamma \in \text{sol}(I)$ can be verified in polynomial time
- m can be computed in polynomial time
- ▶ $goal \in \{min, max\}$

In other words: the decision problem is there a solution y with m(x, y) at most/at least z is in NP.

Why approximation algorithms?

- ► We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ► It provides a metric to compare the difficulty of various optimization problems.
- ► Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

► Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

- x is problem instance
- $\triangleright v$ is candidate solution
- $m^*(x)$ cost/profit of an optimal solution

Definition 4 (Performance Ratio)

$$R(x,y) := \max \left\{ \frac{m(x,y)}{m^*(x)}, \frac{m^*(x)}{m(x,y)} \right\}$$

11 Introduction to Approximation

Definition 3

An optimization problem P = (1, sol, m, goal) is in **NPO** if

- $x \in \mathcal{I}$ can be decided in polynomial time
- $y \in sol(I)$ can be verified in polynomial time
- ► *m* can be computed in polynomial time
- ▶ $goal \in \{min, max\}$

In other words: the decision problem is there a solution y with m(x,y) at most/at least z is in NP.

Definition 5 (γ -approximation)

An algorithm A is an γ -approximation algorithm iff

$$\forall x \in \mathcal{I} : R(x, A(x)) \leq r$$
,

and A runs in polynomial time.

- ► *x* is problem instance
- \triangleright γ is candidate solution
- $m^*(x)$ cost/profit of an optimal solution

Definition 4 (Performance Ratio)

$$R(x,y) := \max \left\{ \frac{m(x,y)}{m^*(x)}, \frac{m^*(x)}{m(x,y)} \right\}$$

Definition 6 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon > 0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

Definition 5 (γ -approximation)

An algorithm A is an r-approximation algorithm iff

$$\forall x \in \mathcal{I} : R(x, A(x)) \leq r$$
,

and A runs in polynomial time.

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Definition 6 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x\in\mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

Definition 7 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as input $x\in\mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x| and $1/\epsilon$.

approximation with arbitrary good factor... fast!

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Definition 7 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as input $x\in\mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x| and $1/\epsilon$.

approximation with arbitrary good factor... fast!

Definition 8 (APX - approximable)

A problem P from NPO is in APX if there exist a constant $r \ge 1$ and an r-approximation algorithm for P.

constant factor approximation...

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

Definition 8 (APX - approximable)

A problem P from NPO is in APX if there exist a constant $r \geq 1$ and an r-approximation algorithm for P.

constant factor approximation...

Problems with polylogarithmic approximation guarantees

- Set Cover
- ► Minimum Multicut
- Sparsest Cut
- ► Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^c(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

Problems that are in APX

MAXCUT. Given a graph G=(V,E); partition V into two disjoint pieces A and B s. t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

There are really difficult problems!

Theorem 9 For any constant $\epsilon>0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P=NP.

11 Introduction to Approximation

Note that an n-approximation is trivial

Problems with polylogarithmic approximation guarantees

- ► Set Cover
- ► Minimum Multicut
- ► Sparsest Cut
- ► Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^{c}(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

272

There are really difficult problems!

Theorem 9

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

Problems with polylogarithmic approximation guarantees

- ► Set Cover
- ► Minimum Multicut
- ► Sparsest Cut
- ► Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^{c}(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

There are really difficult problems!

Theorem 9

For any constant $\epsilon>0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P=NP.

11 Introduction to Approximation

Note that an n-approximation is trivial.

Problems with polylogarithmic approximation guarantees

- ► Set Cover
- ► Minimum Multicut
- ► Sparsest Cut
- ► Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^c(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

There are weird problems!

Asymmetric k-Center admits an $\mathcal{O}(\log^* n)$ -approximation.

There is no $o(\log^* n)$ -approximation to Asymmetric k-Center unless $NP \subseteq DTIME(n^{\log\log\log n})$.

There are really difficult problems!

Theorem 9

274/575

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits a 4-approximation.

One only says that a problem is APX-hard.

There are weird problems!

Asymmetric k-Center admits an $\mathcal{O}(\log^* n)$ -approximation.

There is no $o(\log^* n)$ -approximation to Asymmetric k-Center unless $NP \subseteq DTIME(n^{\log\log\log n})$.