Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew been 32 barrels of been
barrels ale, 255 barrels been
barrels ale, 26 barrels been

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale \Rightarrow 442 €
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

 $\Rightarrow 800 \in$

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale \Rightarrow 442 €
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

 \rightarrow 800 \in

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale \Rightarrow 442 €
- only brew beer: 32 barrels of beer \Rightarrow 736 \in
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer

- ⇒ 442€
- ⇒ 736€

FADS II Harald Räcke

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale \Rightarrow 442 €
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

⇒ 736€

⇒ 776€

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale ⇒ 442€
- only brew beer: 32 barrels of beer
- ▶ 7.5 barrels ale, 29.5 barrels beer
- ▶ 12 barrels ale, 28 barrels beer

- ⇒ 736€
 - ⇒ 776€

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale \Rightarrow 442 €
- only brew beer: 32 barrels of beer =
- ► 7.5 barrels ale, 29.5 barrels beer
- ▶ 12 barrels ale, 28 barrels beer

- ⇒ 736€
 - ⇒ 776€
 - ⇒ 800€

Linear Program

- Introduce subdivision and dothat define how much ale and beer to produce.
- Choose the variables in such a way that the (profit) is maximized.
- Make: sure that no consistent (due to limited supply) are violated.

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max	13a	+	23 <i>b</i>
s.t.	5a	+	$15b \leq 480$
	4 <i>a</i>	+	$4b \leq 160$
	35a	+	$20b \leq 1190$
			$a,b \geq 0$

LP in standard form:

- output: numbers >
- #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\begin{array}{|c|c|c|c|c|} \max & \sum_{j=1}^{n} c_{j} x_{j} \\ \text{s.t.} & \sum_{j=1}^{n} a_{ij} x_{j} &= b_{i} \ 1 \leq i \leq m \\ & x_{j} \geq 0 \ 1 \leq j \leq n \end{array} \qquad \begin{array}{|c|c|c|c|c|c|} \max & c^{T} x \\ \text{s.t.} & Ax &= b \\ & x \geq 0 \\ & x \geq 0 \end{array}$$

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{\substack{j=1\\n}}^{n} c_j x_j$$

s.t.
$$\sum_{\substack{j=1\\j=1}}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$
$$x_j \ge 0 \quad 1 \le j \le n$$

$$\begin{array}{rcl} \max & c^T x \\ \text{s.t.} & Ax &= b \\ & x &\geq 0 \end{array}$$

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

Original LP

max	13a	+	23 <i>b</i>	
s.t.	5 <i>a</i>	+	15b	≤ 480
	4a	+	4b	≤ 160
	35a	+	20b	≤ 1190
			a,b	≥ 0

Standard Form

Add a slack variable to every constraint.

Original LP

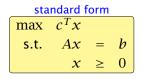
max	13a	+	23 <i>b</i>	
s.t.	5a	+	15b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20b	≤ 1190
			a,b	≥ 0

Standard Form

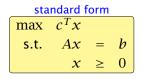
Add a slack variable to every constraint.

max	13a	+	23 <i>b</i>							
s.t.	5a	+	15 <i>b</i>	+	S_C					= 480
	4 <i>a</i>	+	4b			+	S_h			= 160
	35a	+	20 <i>b</i>					+	S_m	= 1190
	а	,	b	,	S_C	,	s_h	,	Sm	≥ 0

There are different standard forms:

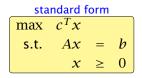


There are different standard forms:



min	$c^T x$		
s.t.	Ax	=	b
	X	≥	0

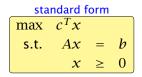
There are different standard forms:



standard					
maximization form					
max	$c^T x$				
s.t.	Ax	\leq	b		
	x	\geq	0		

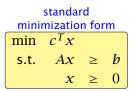
min	$c^T x$		
s.t.	Ax	=	b
	X	\geq	0

There are different standard forms:



standard					
maximization form					
max	$c^T x$				
s.t.	Ax	\leq	b		
	x	\geq	0		

min	$c^T x$		
s.t.	Ax	=	b
	X	\geq	0



It is easy to transform variants of LPs into (any) standard form:

greater or equal to equality:

min to max:

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

min to max:

nina-3b+3c--> **max**--a+3b--3c

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

min to max:

nina --3b--3c --> **max**--a+3b--3c

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

 $a - 3b + 5c \ge 12 \implies \frac{a - 3b + 5c - s = 12}{s \ge 0}$

min to max:

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

ai∂—db+5a —> **xsm** <== ai∂+db—5a

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

 $\min a - 3b + 5c \implies \max -a + 3b - 5c$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

 $a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$ $-a + 3b - 5c \le -12$

equality to greater or equal:

unrestricted to nonnegative:

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

unrestricted to nonnegative:

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \le 12}{-a + 3b - 5c \le -12}$$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$
$$-a + 3b - 5c \ge -12$$

unrestricted to nonnegative:

unrespricted and an an an artistic of a comparison of the light set of the se

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \le 12}{-a + 3b - 5c \le -12}$$

equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

3 Introduction to Linear Programming

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \le 12}{-a + 3b - 5c \le -12}$$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \ge 12}{-a + 3b - 5c \ge -12}$$

unrestricted to nonnegative:

x unrestricted $\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \le 12}{-a + 3b - 5c \le -12}$$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \ge 12}{-a + 3b - 5c \ge -12}$$

unrestricted to nonnegative:

x unrestricted $\implies x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions

- Is LP in NP?
- > Is LP in co-NP?
- Is LP in P?

Input size:

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

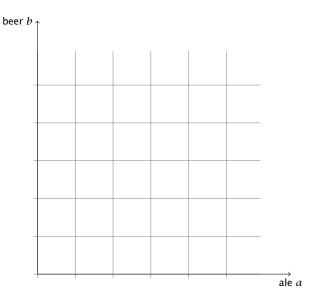
Definition 1 (Linear Programming Problem (LP))

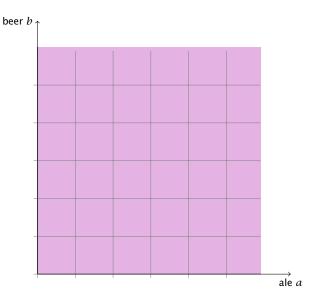
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

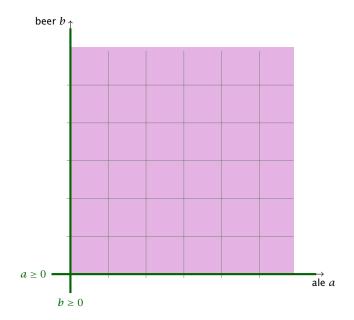
Questions:

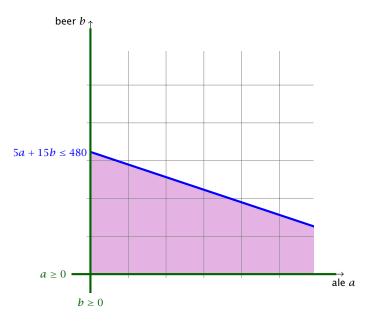
- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

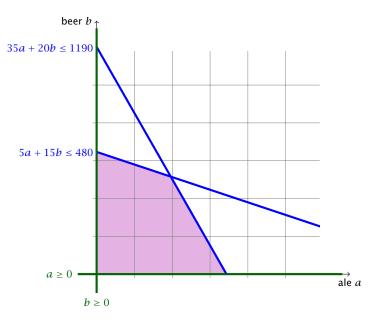
Input size:

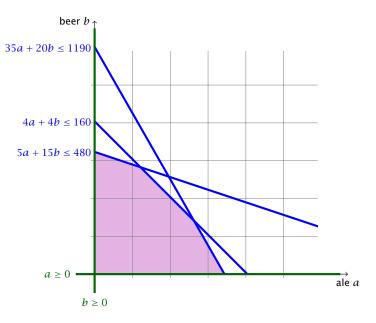


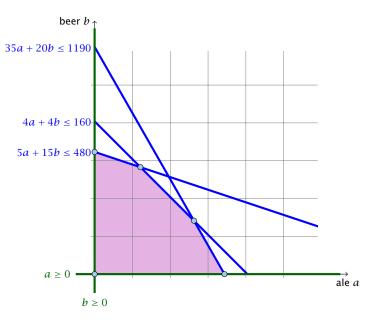


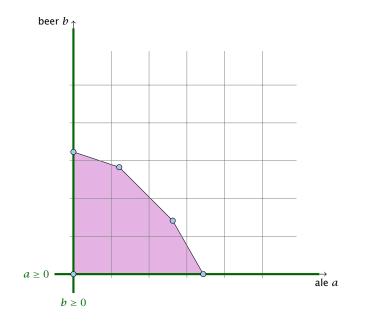


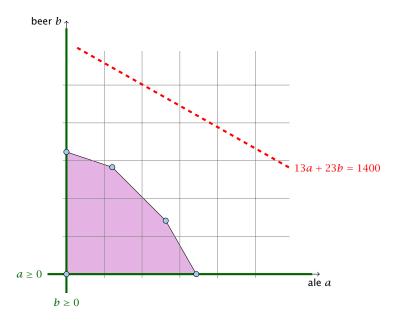


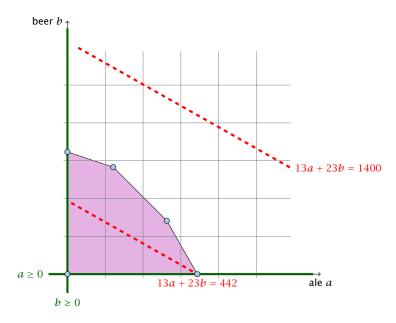


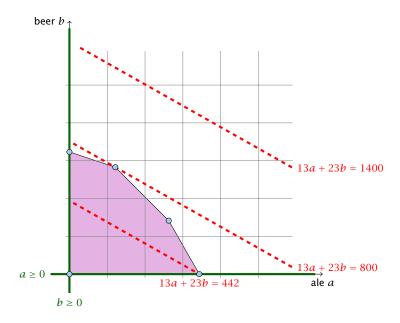


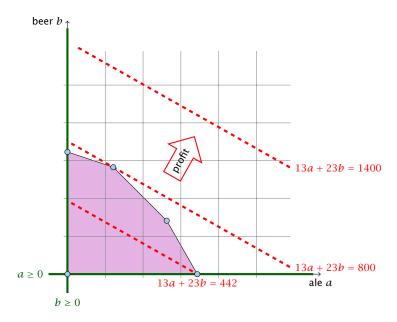


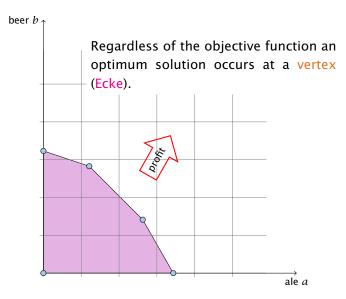












Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

Is called the second constraints (Losungsraum) of the LR A point second is called a second constraint (gültige Losung). If A constraints the LP is called Second (gültige Losung).

An LP is bounded (beschränkt) if it is feasible and

Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- An LP is bounded (beschränkt) if it is feasible and

Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If P ≠ Ø then the LP is called feasible (erfüllbar). Otherwise, it is called (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and for all control (for maximization problems)

Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If P ≠ Ø then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and for all (for maximization problems) for all so in for minimization problems)

Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- ► If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

for all see (for minimization problems)

Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- ► If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

• $c^T x < \infty$ for all $x \in P$ (for maximization problems) • $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- ► If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems) • $c^T x > \infty$ for all $x \in P$ (for minimization problems)

Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- ► If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- linear combination if $\lambda_i \in \mathbb{R}$.
- affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \ge 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \ge 0$.

Note that a combination involves only finitely many vectors.

A set $X \subseteq \mathbb{R}^n$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

Given a set $X \subseteq \mathbb{R}^n$.

- span(X) is the set of all linear combinations of X (linear hull, span)
- aff(X) is the set of all affine combinations of X (affine hull)
- conv(X) is the set of all convex combinations of X (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

Definition 5 A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

 $f(\lambda x + (1-\lambda)\gamma) \leq \lambda f(x) + (1-\lambda)f(\gamma)$

Lemma 6 If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

 $Q = \{x \in P \mid f(x) \le t\}$

3 Introduction to Linear Programming

Definition 5 A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

Lemma 6 If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

 $Q = \{x \in P \mid f(x) \le t\}$

3 Introduction to Linear Programming

Dimensions

Definition 7

The dimension dim(*A*) of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull $\operatorname{aff}(X)$.

Definition 9 A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10 A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \leq b\}$, for $a \neq 0$.

Definition 9 A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10 A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \le b\}$, for $a \ne 0$.

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where |X| = c.

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1, b_1), \ldots, H(a_m, b_m)\}$, where

 $H(a_i, b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$

Definition 13

A polyhedron *P* is bounded if there exists *B* s.t. $||x||_2 \le B$ for all $x \in P$.

3 Introduction to Linear Programming

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1, b_1), \ldots, H(a_m, b_m)\}$, where

 $H(a_i, b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$

Definition 13 A polyhedron *P* is bounded if there exists *B* s.t. $||x||_2 \le B$ for all $x \in P$.

Theorem 14

P is a bounded polyhedron iff P is a polytop.

3 Introduction to Linear Programming

Definition 15 Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

 $H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$

is a supporting hyperplane of *P* if $\max\{a^T x \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face e is an edge of P if e is a face and $\dim(e) = 1$.
- a face F is a facet of P if F is a face and $\dim(F) = \dim(P) 1$.

Definition 15 Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of *P* if $\max\{a^T x \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. *F* is a face of *P* if F = P or $F = P \cap H$ for some supporting hyperplane *H*.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- ▶ a face *v* is a vertex of *P* if {*v*} is a face of *P*.
- a face e is an edge of P if e is a face and $\dim(e) = 1$.
- a face F is a facet of P if F is a face and $\dim(F) = \dim(P) 1$.

Definition 15 Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of *P* if $\max\{a^T x \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. *F* is a face of *P* if F = P or $F = P \cap H$ for some supporting hyperplane *H*.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face e is an edge of P if e is a face and $\dim(e) = 1$.
- a face F is a facet of P if F is a face and $\dim(F) = \dim(P) 1$.

Equivalent definition for vertex:

Definition 18

Given polyhedron *P*. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron *P*. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Equivalent definition for vertex:

Definition 18

Given polyhedron *P*. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron *P*. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose of is optimal solution that is not extreme point:
- there exists direction d = 0 such that a = 0
- Ad = 0 because A (scalad) = b
- Wlog. assume $c^{(j)} c^{(j)} \geq 0$ (by taking either c or -c)
- \sim Consider $\sim + \lambda d_{\mu} \lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x = \lambda/\ell$ hits 0
- $\sim \sim -\lambda/d$ is feasible. Since $\lambda(z + \lambda/d) = b$ and $z + \lambda/d = 0$

Case 2. $[d_j \ge 0$ for all j and $c^T d > 0$]

Since Addis feasible for all Area Sistere Address Address and area 32 Address A Address Add

as 1 - or all a - or as all - or as all a -

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

Case 2. $[d_j \ge 0$ for all j and $c^T d > 0$]

 $a_{\rm S}$ $\lambda \rightarrow m_{\rm p}$ c^{-1} $(a_{\rm C} + h_{\rm c}) \rightarrow m_{\rm s}$ $a_{\rm S}$ c^{-1} a > 0

3 Introduction to Linear Programming

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

• increase λ to λ' until first component of $x + \lambda d$ hits 0

- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

3.2 States in the second se

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

• increase λ to λ' until first component of $x + \lambda d$ hits 0

- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Solution of the second seco

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Solution of the state of the second secon

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0$ for all j and $c^T d > 0$]

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

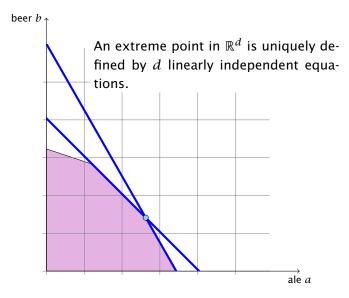
Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Algebraic View



Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22 Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22 Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume >> is not extreme point.
- there exists direction distance direction
- Ad = 0 because $A(x \pm d) = b$
- e define 82 17 (12) 20)
- Algorithms linearly dependent columns as Ad = 0.0
- $d_{ij} = 0$ for all j with $c_{ij} = 0$ as $c = d \ge 0$
- Hence, $M \subseteq R$, M_{0} is sub-matrix of M_{0}

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

- assume 🖄 has linearly dependent columns
- there exists d = 0 such that dod
- extend if to 80° by adding 0-components
- \sim now, $\Delta d \simeq 0$ and $d_{0} \simeq 0$ whenever $\alpha_{0} \simeq 0$
- for sufficiently small λ we have $\infty = \lambda d = 2^{n}$
- hence, or is not extreme point

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to Rⁿ by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

• then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$

- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

• then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$

• assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$

• $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B - y_B) = 0$;

- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T \gamma = 0$; then $\gamma_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that x_B = y_B since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T \gamma = 0$; then $\gamma_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- ▶ we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T \gamma = 0$; then $\gamma_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T \gamma = 0$; then $\gamma_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that mode(A) = m
- e assume wlog, that the first row الله in the span of the other rows المنافعة الم

- if now $b_1 = \sum_{i=1}^{n} b_i > b_i$ then
- then the LP is infeasible, since for all is the LP is infeasible, since for all is that fulfill constraints device we have

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

• assume that rank(A) < m

▶ assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all so with the superfluous have
- **C2** if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ► assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all s with the superfluence distance the first constraint is superfluence.
- **C2** if $b_1 \neq \sum_{i=2}^{m} \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A₁ lies in the span of the other rows A₂,...,A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all s with these bowe also have
- **C2** if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A₁ lies in the span of the other rows A₂,...,A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

C1 if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous

C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 \mathbf{x} = \sum_{i=2}^{m} \lambda_i \cdot A_i \mathbf{x} = \sum_{i=2}^{m} \lambda_i \cdot b_i \neq b_1$$

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 \mathbf{x} = \sum_{i=2}^m \lambda_i \cdot A_i \mathbf{x} = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A₁ lies in the span of the other rows A₂,...,A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

3 Introduction to Linear Programming

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- A_B is non-singular
- $\bullet \ x_B = A_B^{-1}b \ge 0$
- $x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- A_B is non-singular
- $\bullet \ x_B = A_B^{-1}b \ge 0$
- $x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank $(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_B) = m$ and |B| = m.

A BFS fulfills the m equality constraints.

In addition, at least n - m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

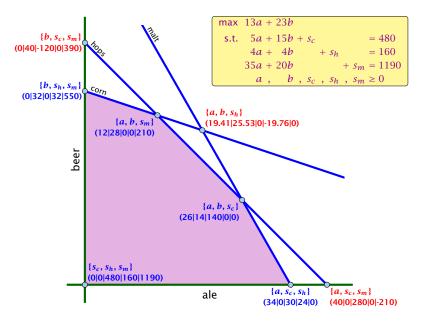
Fact:

In a BFS at least n constraints are fulfilled with equality.

Definition 25

For a general LP (max{ $c^T x | Ax \le b$ }) with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Algebraic View



Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP? yes!
- ▶ Is LP in co-NP?
- Is LP in P?

Proof:

Given a basis B we can compute the associated basis solution by calculating A⁻¹_B in polynomial time; then we can also compute the profit.

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

Given a basis B we can compute the associated basis solution by calculating A⁻¹_Bb in polynomial time; then we can also compute the profit.

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

