Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

EADS II Harald Räcke	12

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max	13a	+	23 <i>b</i>	
s.t.	5a	+	15b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20 <i>b</i>	≤ 1190
			a,b	≥ 0

5000	EADS II Harald Räcke
	Harald Räcke

3 Introduction to Linear Programming

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

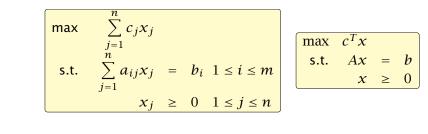
How can brewer maximize profits?

only brew ale: 3	4 barrels of ale	⇒ 442€	
only brew beer:	⇒ 736€		
► 7.5 barrels ale,	⇒ 776€		
12 barrels ale, 2	⇒ 800€		
EADS II Harald Räcke	3 Introduction to Linear Programming		13

Standard Form LPs

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities



EADS II Harald Räcke

14

3 Introduction to Linear Programming

Standard Form LPs

Original LP

max	13a	+	23 <i>b</i>	
s.t.	5a	+	15b	≤ 480
	4a	+	4b	≤ 160
	35a	+	20b	≤ 1190
			a,b	≥ 0

Standard Form

Add a slack variable to every constraint.

ĺ	max	13a	+	23 <i>b</i>								
	s.t.	5 <i>a</i>	+	15b	+	S_C					= 480	
		4 <i>a</i>	+	4b			+	s_h			= 160	
		35a	+	20 <i>b</i>					+	s_m	= 1190	
		а	,	b	,	S_C	,	s_h	,	S_m	≥ 0	J
EADS Haral	ll d Räcke			3 Introdu	iction	to Linea	ar Prog	Irammir	ıg			

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

 $a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$ $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

הם הר	EADS II Harald Räcke
	Harald Räcke

3 Introduction to Linear Programming

18

16

Standard Form LPs

There are different standard forms:

	tandard	-							
max	$c^T x$				min	$c^T x$			
s.t	. Ax	=	b		s.t.	Ax	=	b	
	x	\geq	0			x	\geq	0	
ma	standa kimizatio		rm			standa mizatio		rm	
max	$c^T x$) (min	$c^T x$			
s.t	. Ax	\leq	b		s.t.	Ax	\geq	b	
	x	\geq	0			x	\geq	0	
EADS II Harald Räcke		3	Intro	duction to Linear Progra	mming				17

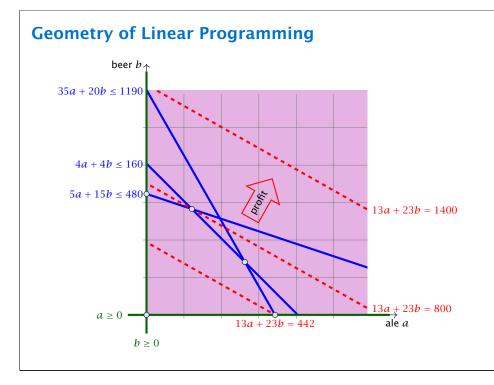
Standard Form LPs It is easy to transform variants of LPs into (any) standard form: • equality to less or equal: $a - 3b + 5c = 12 \implies \begin{array}{c} a - 3b + 5c \leq 12 \\ -a + 3b - 5c \leq -12 \end{array}$ • equality to greater or equal: $a - 3b + 5c = 12 \implies \begin{array}{c} a - 3b + 5c \geq 12 \\ -a + 3b - 5c \geq -12 \end{array}$ • unrestricted to nonnegative: x unrestricted to nonnegative: x unrestricted $\implies x = x^+ - x^-, x^+ \geq 0, x^- \geq 0$

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

EADS II	3 Introduction to Linear Programming	
🛛 🕒 🖯 Harald Räcke		20



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

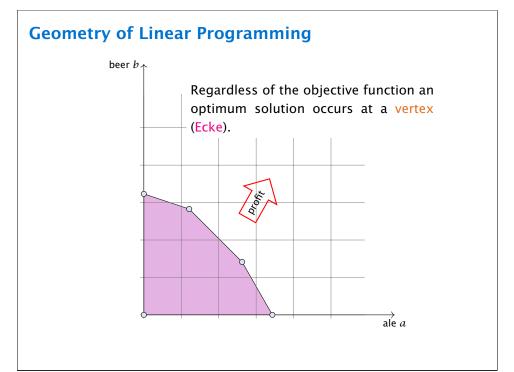
- ► Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

5

n number of variables, *m* constraints, *L* number of bits to encode the input

EADS II Harald Räcke	3 Introduction to Linear Programming



Definitions

Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$
P is called the feasible region (Lösungsraum) of the LP.
• A point $x \in P$ is called a feasible point (gültige Lösung).
If P ≠ Ø then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
 An LP is bounded (beschränkt) if it is feasible and c^Tx < ∞ for all x ∈ P (for maximization problems) c^Tx > -∞ for all x ∈ P (for minimization problems)

	3 Introduction to Linear Programming	
🛛 🕒 🖯 Harald Räcke		24

Definition 3

A set $X \subseteq \mathbb{R}^n$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

Definition 2

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- linear combination if $\lambda_i \in \mathbb{R}$.
- affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \ge 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \ge 0$.

Note that a combination involves only finitely many vectors.

Π	lIг	٦Г	1	EADS II
	Ц			EADS II Harald Räcke

3 Introduction to Linear Programming

Definition 4

EADS II Harald Räcke

Given a set $X \subseteq \mathbb{R}^n$.

- span(X) is the set of all linear combinations of X (linear hull, span)
- aff(X) is the set of all affine combinations of X (affine hull)
- conv(X) is the set of all convex combinations of X (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

Definition 5

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

Lemma 6 If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

 $Q = \{ x \in P \mid f(x) \le t \}$

	3 Introduction to Linear Programming	
UUU Harald Räcke		28

Definition 9 A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \le b\}$, for $a \ne 0$.

EADS II Harald Räcke

3 Introduction to Linear Programming

30

Dimensions

Definition 7

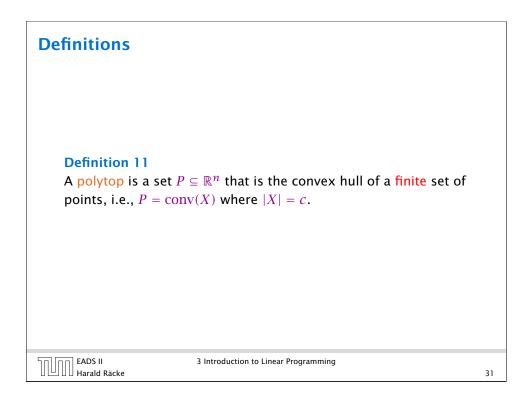
The dimension dim(*A*) of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull $\operatorname{aff}(X)$.

EADS II Harald Räcke

3 Introduction to Linear Programming



Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1, b_1), \dots, H(a_m, b_m)\}$, where

 $H(a_i, b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$

Definition 13 A polyhedron *P* is bounded if there exists *B* s.t. $||x||_2 \le B$ for all $x \in P$.

EADS II	3 Introduction to Linear Programming	
🛛 🕒 🛛 🖓 Harald Räcke		32

Definition 15

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

 $H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$

is a supporting hyperplane of *P* if $\max\{a^T x \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. *F* is a face of *P* if F = P or $F = P \cap H$ for some supporting hyperplane *H*.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face *e* is an edge of *P* if *e* is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and dim(F) = dim(P) - 1.

```
EADS II
Harald Räcke
```

3 Introduction to Linear Programming

Definitions Theorem 14 *P is a bounded polyhedron iff P is a polytop.*

EADS II Harald Räcke 3 Introduction to Linear Programming

Equivalent definition for vertex:

Definition 18

Given polyhedron *P*. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron *P*. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

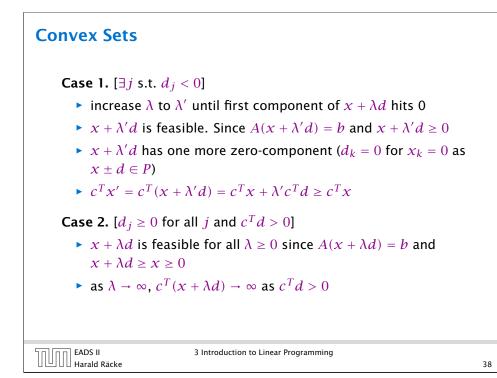
A vertex is also an extreme point.

34

Observation

The feasible region of an LP is a Polyhedron.

EADS II	3 Introduction to Linear Programming	
🛛 🕒 🛛 🖓 Harald Räcke		36



Convex Sets

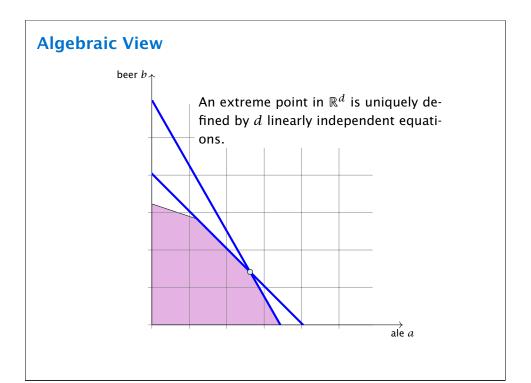
Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

EADS II	3 Introduction to Linear Programming	
UUU Harald Räcke		37



Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

EADS II Harald Räcke	3 Introduction to Linear Programming

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

- ► assume *A_B* has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend *d* to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

הח הר	EADS II Harald Räcke	3	3 Intr
	Harald Räcke		

ntroduction to Linear Programming

Theorem 23

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

• define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x

EADS II Harald Räcke

hence, x is a vertex of P

40

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- **C2** if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. *x* is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- \blacktriangleright A_B is non-singular
- $\bullet \ x_B = A_B^{-1}b \ge 0$
- $x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

EADS II Harald Räcke

3 Introduction to Linear Programming

45

Basic Feasible Solutions $x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if Ax = b and $rank(A_{J}) = |J|$ where $J = \{j \mid x_{j} \neq 0\}$; x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$. A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_{B}) = m$ and |B| = m. $x \in \mathbb{R}^{n}$ with $A_{B}x_{B} = b$ and $x_{j} = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu *B* assoziierte Basislösung)

Basic Feasible Solutions

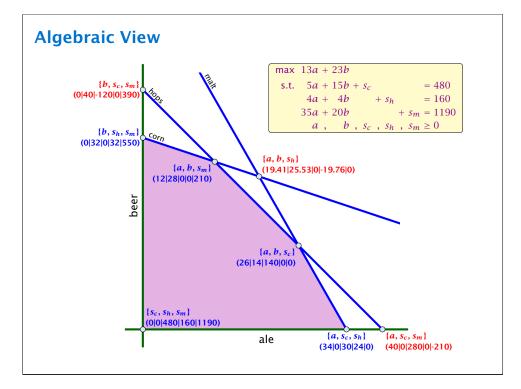
A BFS fulfills the m equality constraints.

In addition, at least n - m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.

EADS II Harald Räcke	3 Introduction to Linear Programming	48



Basic Feasible Solutions

Definition 25

For a general LP (max{ $c^T x | Ax \le b$ }) with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

EADS II Harald Räcke

3 Introduction to Linear Programming

Fundamental Questions

Linear Programming Problem (LP) Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- ► Is LP in P?

Proof:

Given a basis *B* we can compute the associated basis solution by calculating A_B⁻¹b in polynomial time; then we can also compute the profit.

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

	3 Introduction to Linear Programming	
	5 Introduction to Linear Programming	
□ Harald Räcke		52
		*-

