Brewery Problem

Brewery brews ale and beer

- Production limited by supply of corn, hops and barley malt

$1 \square$ EADS II

Harald Räcke

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{\epsilon})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit (ϵ)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442 €$

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{\epsilon})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit (ϵ)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442 €$
- only brew beer: 32 barrels of beer

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442$ €
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442$ €
- only brew beer: 32 barrels of beer
$\Rightarrow 736$ €

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

- 7.5 barrels ale, 29.5 barrels beer

Brewery Problem

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442$ €
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
$\Rightarrow 776$ €

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit $(\boldsymbol{\epsilon})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442$ €
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
$\Rightarrow 776$ €

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{\epsilon})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

- 12 barrels ale, 28 barrels beer

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit $(\boldsymbol{\epsilon})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442$ €
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
$\Rightarrow 776$ €
- 12 barrels ale, 28 barrels beer

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

Brewery Problem

Linear Program

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{\epsilon})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442$ €
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
$\Rightarrow 776$ €
- 12 barrels ale, 28 barrels beer
$\Rightarrow 800 €$

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442$ €
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer
$\Rightarrow 800$ €

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442 €$
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442 €$
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
- 12 barrels ale, 28 barrels beer

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$\max 13 a$	$+23 b$
s.t. $\quad 5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	$a, b \leq 0$

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442 €$
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
$\Rightarrow 776$ €
- 12 barrels ale, 28 barrels beer
$\Rightarrow 800$ €

Standard Form LPs

LP in standard form:

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$\max 13 a$	$+23 b$
s.t. $5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	$a, b \leq 0$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$\max 13 a$	$+23 b$
s.t. $\quad 5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	$a, b \geq 0$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$\max 13 a$	$+23 b$
s.t. $\quad 5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	$a, b \geq 0$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$\max 13 a$	$+23 b$
s.t. $\quad 5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	$a, b \geq 0$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear (in)equalities

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$\max 13 a$	$+23 b$
s.t. $5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	$a, b \leq 0$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear (in)equalities

\max	$\sum_{j=1}^{n} c_{j} x_{j}$
s.t.	$\sum_{j=1}^{n} a_{i j} x_{j}$
	$=b_{i} 1 \leq i \leq m$
	$x_{j} \geq 0 \quad 1 \leq j \leq n$

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$\max 13 a$	$+23 b$
s.t. $\quad 5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	$a, b \geq 0$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear (in)equalities

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$\max 13 a$	$+23 b$
s.t. $\quad 5 a$	$+15 b \leq 480$
$4 a$	$+4 b \leq 160$
$35 a$	$+20 b \leq 1190$
	$a, b \geq 0$

$$
x_{j} \geq 0 \quad 1 \leq j \leq n
$$

Standard Form LPs

Original LP

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear (in)equalities

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} 1 \leq i \leq m \\
& x_{j} \geq 0 \quad 1 \leq j \leq n
\end{aligned}
$$

$$
\begin{array}{rr}
\max & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

Standard Form LPs

Original LP

$$
\begin{aligned}
\max 13 a+23 b & \\
\text { s.t. } 5 a+15 b & \leq 480 \\
4 a+4 b & \leq 160 \\
35 a+20 b & \leq 1190 \\
a, b & \geq 0
\end{aligned}
$$

Standard Form

Add a slack variable to every constraint.

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear (in)equalities

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} 1 \leq i \leq m \\
& x_{j} \geq 0 \quad 1 \leq j \leq n
\end{aligned}
$$

$$
\begin{array}{rr}
\max & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

Standard Form LPs

There are different standard forms

$$
\begin{aligned}
& \text { standard form } \\
& \begin{array}{|rr}
\hline \max & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
\end{aligned}
$$

Standard Form LPs

Original LP

$$
\begin{aligned}
\max 13 a+23 b & \\
\text { s.t. } 5 a+15 b & \leq 480 \\
4 a+4 b & \leq 160 \\
35 a+20 b & \leq 1190 \\
a, b & \geq 0
\end{aligned}
$$

Standard Form

Add a slack variable to every constraint.

Standard Form LPs

There are different standard forms:
standard form

\max	$c^{T} x$	
s.t.	$A x$	$=b$
	x	≥ 0

\min	$c^{T} x$	
s.t.	$A x$	$=b$
	x	≥ 0

Standard Form LPs

Original LP

max	$13 a$	+	$23 b$	
s.t.	$5 a$	+	$15 b$	≤ 480
	$4 a$	+	$4 b$	≤ 160
	$35 a$	+	$20 b$	≤ 1190
			a, b	≥ 0

Standard Form

Add a slack variable to every constraint.

Standard Form LPs

There are different standard forms:
standard form

\max	$c^{T} x$	
s.t.	$A x$	$=b$
	x	≥ 0

$$
\begin{array}{rr}
\min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

standard maximization form
$\max c^{T} x$
s.t. $A x \leq b$
$x \geq 0$

Standard Form LPs

Original LP

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Standard Form

Add a slack variable to every constraint.

Standard Form LPs

There are different standard forms:
standard form

| \max | $c^{T} x$ | |
| ---: | ---: | ---: | ---: |
| s.t. | $A x$ | $=b$ |
| | x | ≥ 0 |

standard maximization form

$$
\begin{array}{rr}
\max & c^{T} x \\
\text { s.t. } & A x \\
& x \geq b \\
& \geq 0
\end{array}
$$

standard minimization form
$\min c^{T} x$
s.t. $A x \geq b$

Standard Form LPs

Original LP

max	$13 a$	$+$	$23 b$	
s.t.	$5 a$	$+$	$15 b$	≤ 480
	$4 a$	$+$	$4 b$	≤ 160
	$35 a$	$+$	$20 b$	≤ 1190
			a, b	≥ 0

Standard Form

Add a slack variable to every constraint.

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

Standard Form LPs

There are different standard forms:
standard form

| max $c^{T} x$ | | |
| :---: | :---: | :---: | :---: |
| s.t. | $A x$ | $=b$ |
| | $x \geq$ | |
| standard | | |
| maximization form | | |
| max | $c^{T} x$ | |
| s.t. | $A x$ | $\leq b$ |
| | x | ≥ 0 |

\min	$c^{T} x$		
s.t.	$A x$	$=$	b
	x	\geq	0

standard
minimization form

min	$c^{T} x$		
s.t.	$A x$	\geq	b
	x	\geq	0

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

Standard Form LPs

There are different standard forms:

\[

\]

Standard Form LPs

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
a-3 b+5 c \leq 12 \Rightarrow \begin{aligned}
a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

There are different standard forms:

standard form	
$\begin{array}{rrl} \max & c^{T} x \\ \text { s.t. } & A x & =b \\ & x & \geq 0 \end{array}$	$\begin{aligned} \text { min } & c^{T} x \\ \text { s.t. } & \\ & A x\end{aligned}$
standard maximization form	standard minimization form
$\begin{aligned} \max & c^{T} x \\ \text { s.t. } & A x \end{aligned} \quad b b$	$\begin{array}{rrl} \min & c^{T} x & \\ \text { s.t. } & A x & \geq b \\ & x & \geq 0 \end{array}$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
a-3 b+5 c \leq 12 \Longrightarrow \begin{aligned}
a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

Standard Form LPs

There are different standard forms:
standard form

\max	$c^{T} x$	
s.t.	$A x$	$=b$
	x	≥ 0

standard maximization form
$\max c^{T} x$
s.t. $A x \leq b$
$x \geq 0$

$$
\begin{array}{rrl}
\min & c^{T} x & \\
\text { s.t. } & A x & =b \\
& x & \geq 0
\end{array}
$$

standard minimization form
$\min c^{T} x$
s.t. $A x \geq b$
$x \geq 0$

Standard Form LPs

Standard Form LPs

There are different standard forms:
standard form

\max	$c^{T} x$	
s.t.	$A x$	$=b$
	x	≥ 0

standard maximization form

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x \\
& x \geq b \\
& \geq 0
\end{aligned}
$$

\min	$c^{T} x$
s.t.	$A x$
	$x \geq b$
	x

standard minimization form
$\min c^{T} x$
s.t. $A x \geq b$
$x \geq 0$

Standard Form LPs

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s=12, \begin{aligned}
a-12
\end{aligned}
$$

- greater or equal to equality:

$$
a-3 b+5 c \geq 12 \Rightarrow \begin{aligned}
a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max:

There are different standard forms:
standard

$$
\begin{aligned}
\text { s.t. } \quad A x & =b \\
x & \geq 0
\end{aligned}
$$

standard minimization form
$\min c^{T} x$
s.t. $A x \geq b$
$x \geq 0$

standard form	
$\begin{array}{rrl} \max & c^{T} x \\ \text { s.t. } & A x & =b \\ & x & \geq 0 \end{array}$	$\begin{aligned} \text { min } & c^{T} x \\ \text { s.t. } & A x\end{aligned} \begin{aligned} & \\ & x\end{aligned}$
standard maximization form	standard minimization form
$\begin{aligned} \max & c^{T} x \\ \text { s.t. } & A x \end{aligned} \quad=b$	$\begin{array}{rrl} \min & c^{T} x \\ \text { s.t. } & A x & \geq b \\ & x & \geq 0 \end{array}$

standard form	
$\begin{array}{rrl} \max & c^{T} x & \\ \text { s.t. } & A x & =b \\ & x & \geq 0 \end{array}$	$\begin{aligned} \min & c^{T} x \\ \text { s.t. } & A x\end{aligned} \begin{aligned} & \\ & x\end{aligned}$
standard maximization form	standard minimization form
$\begin{array}{rrl} \max & c^{T} x & \\ \text { s.t. } & A x & \leq b \\ & x & \geq 0 \end{array}$	$\begin{array}{rrl} \min & c^{T} x & \\ \text { s.t. } & A x & \geq b \\ & x & \geq 0 \end{array}$

Standard Form LPs

Standard Form LPs

There are different standard forms:
standard form

\max	$c^{T} x$	
s.t.	$A x$	$=b$
	x	≥ 0

standard

$$
\begin{aligned}
& \text { maximization form } \\
& \max c^{T} x \\
& \text { s.t. } A x \leq b \\
& x \geq 0
\end{aligned}
$$

\min	$c^{T} x$
s.t.	$A x$
	$x \geq b$
	$x \geq 0$

standard
minimization form

$$
\min c^{T} x
$$

$$
\text { s.t. } A x \geq b
$$

$x \geq 0$

$$
\min a-3 b+5 c \Longrightarrow \max -a+3 b-5 c
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12
\end{aligned} \quad \begin{aligned}
a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
a-3 b+5 c \geq 12 \Longrightarrow \begin{array}{r}
a-3 b+5 c-s=12 \\
s \geq 0
\end{array}
$$

- min to max:

$$
\min a-3 b+5 c \Rightarrow \max -a+3 b-5 c
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
a-3 b+5 c \geq 12 \Rightarrow \begin{aligned}
a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max:

$$
\min a-3 b+5 c \Rightarrow \max -a+3 b-5 c
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
a-3 b+5 c \leq 12 \Rightarrow \begin{aligned}
a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
a-3 b+5 c \geq 12 \Rightarrow \begin{aligned}
a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max:

$$
\min a-3 b+5 c \Rightarrow \max -a+3 b-5 c
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{aligned}
a-3 b+5 c & \geq 12 \\
-a+3 b-5 c & \geq-12
\end{aligned}
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
a-3 b+5 c \geq 12 \Rightarrow \begin{aligned}
a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max:

$$
\min a-3 b+5 c \Rightarrow \max -a+3 b-5 c
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{aligned}
a-3 b+5 c & \geq 12 \\
-a+3 b-5 c & \geq-12
\end{aligned}
$$

- unrestricted to nonnegative:

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
a-3 b+5 c \geq 12 \Rightarrow \begin{aligned}
a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max:

$$
\min a-3 b+5 c \Rightarrow \max -a+3 b-5 c
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{aligned}
a-3 b+5 c & \geq 12 \\
-a+3 b-5 c & \geq-12
\end{aligned}
$$

- unrestricted to nonnegative:

$$
x \text { unrestricted } \Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x^{-} \geq 0
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
a-3 b+5 c \geq 12 \Rightarrow \begin{aligned}
a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max:

$$
\min a-3 b+5 c \Rightarrow \max -a+3 b-5 c
$$

Standard Form LPs

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \geq 12 \\
-a+3 b-5 c \geq-12
\end{gathered}
$$

- unrestricted to nonnegative:

$$
x \text { unrestricted } \Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x^{-} \geq 0
$$

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \geq 12 \\
-a+3 b-5 c \geq-12
\end{gathered}
$$

- unrestricted to nonnegative:

$$
x \text { unrestricted } \Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x^{-} \geq 0
$$

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{aligned}
a-3 b+5 c & \geq 12 \\
-a+3 b-5 c & \geq-12
\end{aligned}
$$

- unrestricted to nonnegative:

$$
x \text { unrestricted } \Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x^{-} \geq 0
$$

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

beer $b \uparrow$
Regardless of the objective function an optimum solution occurs at a vertex (Ecke).

Geometry of Linear Programming

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

Geometry of Linear Programming

Regardless of the objective function an optimum solution occurs at a vertex (Ecke).

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.

Geometry of Linear Programming

beer b

Regardless of the objective function an optimum solution occurs at a vertex (Ecke).

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).

Geometry of Linear Programming

beer b

Regardless of the objective function an optimum solution occurs at a vertex (Ecke).

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar).

Geometry of Linear Programming

beer b

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).

Geometry of Linear Programming

beer b

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

Geometry of Linear Programming

Regardless of the objective function an optimum solution occurs at a vertex (Ecke).

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
- $c^{T} x<\infty$ for all $x \in P$ (for maximization problems)

Geometry of Linear Programming

Regardless of the objective function an optimum solution occurs at a vertex (Ecke).

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
- $c^{T} x<\infty$ for all $x \in P$ (for maximization problems)
- $c^{T} x>-\infty$ for all $x \in P$ (for minimization problems)

Geometry of Linear Programming

Regardless of the objective function an optimum solution occurs at a vertex (Ecke).

Definitions

Definition 2
Given vectors/points $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}, \sum \lambda_{i} x_{i}$ is called

- linear combination if $\lambda_{i} \in \mathbb{R}$.
- affine combination if $\lambda_{i} \in \mathbb{R}$ and $\sum_{i} \lambda_{i}=1$.
- convex combination if $\lambda_{i} \in \mathbb{R}$ and $\sum_{i} \lambda_{i}=1$ and $\lambda_{i} \geq 0$.
- conic combination if $\lambda_{i} \in \mathbb{R}$ and $\lambda_{i} \geq 0$.

Note that a combination involves only finitely many vectors.

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
- $c^{T} x<\infty$ for all $x \in P$ (for maximization problems)
- $c^{T} x>-\infty$ for all $x \in P$ (for minimization problems)

Definition 3

A set $X \subseteq \mathbb{R}^{n}$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space

Definition 2

Given vectors/points $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}, \sum \lambda_{i} x_{i}$ is called

- linear combination if $\lambda_{i} \in \mathbb{R}$.
- affine combination if $\lambda_{i} \in \mathbb{R}$ and $\sum_{i} \lambda_{i}=1$.
- convex combination if $\lambda_{i} \in \mathbb{R}$ and $\sum_{i} \lambda_{i}=1$ and $\lambda_{i} \geq 0$.
- conic combination if $\lambda_{i} \in \mathbb{R}$ and $\lambda_{i} \geq 0$.

Note that a combination involves only finitely many vectors.

Definition 4

Given a set $X \subseteq \mathbb{R}^{n}$.

- $\operatorname{span}(X)$ is the set of all linear combinations of X (linear hull, span)
- $\operatorname{aff}(X)$ is the set of all affine combinations of X (affine hull)
- $\operatorname{conv}(X)$ is the set of all convex combinations of X (convex hull)
- cone (X) is the set of all conic combinations of X (conic hull)

Definition 3

A set $X \subseteq \mathbb{R}^{n}$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space

Definition 5

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$ we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Definition 4

Given a set $X \subseteq \mathbb{R}^{n}$.

- $\operatorname{span}(X)$ is the set of all linear combinations of X (linear hull, span)
- $\operatorname{aff}(X)$ is the set of all affine combinations of X (affine hull)
- $\operatorname{conv}(X)$ is the set of all convex combinations of X (convex hull)
- cone (X) is the set of all conic combinations of X (conic hull)

Definition 5

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$ we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Lemma 6

If $P \subseteq \mathbb{R}^{n}$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex then also

$$
Q=\{x \in P \mid f(x) \leq t\}
$$

Definition 4

Given a set $X \subseteq \mathbb{R}^{n}$.

- $\operatorname{span}(X)$ is the set of all linear combinations of X (linear hull, span)
- $\operatorname{aff}(X)$ is the set of all affine combinations of X (affine hull)
- $\operatorname{conv}(X)$ is the set of all convex combinations of X (convex hull)
- cone (X) is the set of all conic combinations of X (conic hull)

Dimensions

Definition 7

The dimension $\operatorname{dim}(A)$ of an affine subspace $A \subseteq \mathbb{R}^{n}$ is the dimension of the vector space $\{x-a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\operatorname{dim}(X)$ of a convex set $X \subseteq \mathbb{R}^{n}$ is the dimension of its affine hull $\operatorname{aff}(X)$.

Definition 5

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$ we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Lemma 6

If $P \subseteq \mathbb{R}^{n}$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex then also

$$
Q=\{x \in P \mid f(x) \leq t\}
$$

Dimensions

Definition 9

A set $H \subseteq \mathbb{R}^{n}$ is a hyperplane if $H=\left\{x \mid a^{T} x=b\right\}$, for $a \neq 0$.

Definition 7

The dimension $\operatorname{dim}(A)$ of an affine subspace $A \subseteq \mathbb{R}^{n}$ is the dimension of the vector space $\{x-a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\operatorname{dim}(X)$ of a convex set $X \subseteq \mathbb{R}^{n}$ is the dimension of its affine hull aff (X).

Dimensions

Definition 9

A set $H \subseteq \mathbb{R}^{n}$ is a hyperplane if $H=\left\{x \mid a^{T} x=b\right\}$, for $a \neq 0$.

Definition 10
A set $H^{\prime} \subseteq \mathbb{R}^{n}$ is a (closed) halfspace if $H=\left\{x \mid a^{T} x \leq b\right\}$, for $a \neq 0$.

Definition 7

The dimension $\operatorname{dim}(A)$ of an affine subspace $A \subseteq \mathbb{R}^{n}$ is the dimension of the vector space $\{x-a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\operatorname{dim}(X)$ of a convex set $X \subseteq \mathbb{R}^{n}$ is the dimension of its affine hull aff (X).

Definitions

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^{n}$ that is the convex hull of a finite set of points, i.e., $P=\operatorname{conv}(X)$ where $|X|=c$.

Definition 9

A set $H \subseteq \mathbb{R}^{n}$ is a hyperplane if $H=\left\{x \mid a^{T} x=b\right\}$, for $a \neq 0$.

Definition 10
A set $H^{\prime} \subseteq \mathbb{R}^{n}$ is a (closed) halfspace if $H=\left\{x \mid a^{T} x \leq b\right\}$, for $a \neq 0$.

Definitions

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^{n}$ that can be represented as the intersection of finitely many half-spaces
$\left\{H\left(a_{1}, b_{1}\right), \ldots, H\left(a_{m}, b_{m}\right)\right\}$, where

$$
H\left(a_{i}, b_{i}\right)=\left\{x \in \mathbb{R}^{n} \mid a_{i} x \leq b_{i}\right\}
$$

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^{n}$ that is the convex hull of a finite set of points, i.e., $P=\operatorname{conv}(X)$ where $|X|=c$.

Definitions

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^{n}$ that can be represented as the intersection of finitely many half-spaces
$\left\{H\left(a_{1}, b_{1}\right), \ldots, H\left(a_{m}, b_{m}\right)\right\}$, where

$$
H\left(a_{i}, b_{i}\right)=\left\{x \in \mathbb{R}^{n} \mid a_{i} x \leq b_{i}\right\}
$$

Definition 13
A polyhedron P is bounded if there exists B s.t. $\|x\|_{2} \leq B$ for all $x \in P$.

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^{n}$ that is the convex hull of a finite set of points, i.e., $P=\operatorname{conv}(X)$ where $|X|=c$.

Definitions

Theorem 14
P is a bounded polyhedron iff P is a polytop.

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^{n}$ that can be represented as the intersection of finitely many half-spaces
$\left\{H\left(a_{1}, b_{1}\right), \ldots, H\left(a_{m}, b_{m}\right)\right\}$, where

$$
H\left(a_{i}, b_{i}\right)=\left\{x \in \mathbb{R}^{n} \mid a_{i} x \leq b_{i}\right\}
$$

Definition 13

A polyhedron P is bounded if there exists B s.t. $\|x\|_{2} \leq B$ for all $x \in P$.

Definition 15

Definitions

$$
H(a, b)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}
$$

is a supporting hyperplane of P if $\max \left\{a^{T} x \mid x \in P\right\}=b$.

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Definition 15

$$
H(a, b)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}
$$

is a supporting hyperplane of P if $\max \left\{a^{T} x \mid x \in P\right\}=b$.

Definition 16

Let $P \subseteq \mathbb{R}^{n}$. F is a face of P if $F=P$ or $F=P \cap H$ for some supporting hyperplane H.

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Definition 15

Let $P \subseteq \mathbb{R}^{n}, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. The hyperplane

$$
H(a, b)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}
$$

is a supporting hyperplane of P if $\max \left\{a^{T} x \mid x \in P\right\}=b$.

Definition 16

Let $P \subseteq \mathbb{R}^{n} . F$ is a face of P if $F=P$ or $F=P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^{n}$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face e is an edge of P if e is a face and $\operatorname{dim}(e)=1$.
- a face F is a facet of P if F is a face and $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Definition 15

Equivalent definition for vertex:

Definition 18
Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^{n}$ such that $c^{T} y<c^{T} x$, for all $y \in P, y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a+(1-\lambda) b=x$ for $\lambda \in[0,1]$.

Let $P \subseteq \mathbb{R}^{n}, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. The hyperplane

$$
H(a, b)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}
$$

is a supporting hyperplane of P if $\max \left\{a^{T} x \mid x \in P\right\}=b$.

Definition 16

Let $P \subseteq \mathbb{R}^{n} . F$ is a face of P if $F=P$ or $F=P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^{n}$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face e is an edge of P if e is a face and $\operatorname{dim}(e)=1$.
- a face F is a facet of P if F is a face and $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.

Definition 15

Equivalent definition for vertex:

Definition 18
Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^{n}$ such that $c^{T} y<c^{T} x$, for all $y \in P, y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a+(1-\lambda) b=x$ for $\lambda \in[0,1]$.

Lemma 20

A vertex is also an extreme point.

Let $P \subseteq \mathbb{R}^{n}, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. The hyperplane

$$
H(a, b)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}
$$

is a supporting hyperplane of P if $\max \left\{a^{T} x \mid x \in P\right\}=b$.

Definition 16

Let $P \subseteq \mathbb{R}^{n} . F$ is a face of P if $F=P$ or $F=P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^{n}$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face e is an edge of P if e is a face and $\operatorname{dim}(e)=1$.
- a face F is a facet of P if F is a face and $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.

Observation

The feasible region of an LP is a Polyhedron.

Equivalent definition for vertex:

Definition 18
Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^{n}$ such that $c^{T} y<c^{T} x$, for all $y \in P, y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a+(1-\lambda) b=x$ for $\lambda \in[0,1]$.

Lemma 20

A vertex is also an extreme point.

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

Observation

The feasible region of an LP is a Polyhedron.

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point

Observation

The feasible region of an LP is a Polyhedron.

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$

Observation

The feasible region of an LP is a Polyhedron.

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$

Observation

The feasible region of an LP is a Polyhedron.

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)

Observation

The feasible region of an LP is a Polyhedron.

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Observation

The feasible region of an LP is a Polyhedron.

Convex Sets

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Case 1. [\exists j s.t. $\left.d_{j}<0\right]$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P$)

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P$)
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P$)
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Case 2. [$d_{j} \geq 0$ for all j and $c^{T} d>0$]

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P$)
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Case 2. [$d_{j} \geq 0$ for all j and $c^{T} d>0$]

- $x+\lambda d$ is feasible for all $\lambda \geq 0$ since $A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P)$
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Case 2. [$d_{j} \geq 0$ for all j and $c^{T} d>0$]

- $x+\lambda d$ is feasible for all $\lambda \geq 0$ since $A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$
- as $\lambda \rightarrow \infty, c^{T}(x+\lambda d) \rightarrow \infty$ as $c^{T} d>0$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Algebraic View

Convex Sets

Case 1. [$\exists j$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component $\left(d_{k}=0\right.$ for $x_{k}=0$ as $x \pm d \in P)$
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Case 2. [$d_{j} \geq 0$ for all j and $c^{T} d>0$]

- $x+\lambda d$ is feasible for all $\lambda \geq 0$ since $A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$
- as $\lambda \rightarrow \infty, c^{T}(x+\lambda d) \rightarrow \infty$ as $c^{T} d>0$

Algebraic View

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Algebraic View

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (ϵ)

- assume x is not extreme point

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (ϵ)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (ϵ)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (ϵ)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (ϵ)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (ϵ)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m};

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

$$
A_{1} x=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i} x
$$

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

$$
A_{1} x=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i} x=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}
$$

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

$$
A_{1} x=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i} x=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i} \neq b_{1}
$$

Theorem 23
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

$$
A_{1} x=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i} x=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i} \neq b_{1}
$$

Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\} . x$ is extreme point iff there exists
$B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.
where $N=\{1, \ldots, n\} \backslash B$.

Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\} . x$ is extreme point iff there exists
$B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.
where $N=\{1, \ldots, n\} \backslash B$.

Proof

Take $B=\left\{j \mid x_{j}>0\right\}$ and augment with linearly independent columns until $|B|=m$; always possible since $\operatorname{rank}(A)=m$.

Basic Feasible Solutions

Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\}$. x is extreme point iff there exists
$B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$
where $N=\{1, \ldots, n\} \backslash B$.

Proof

Take $B=\left\{j \mid x_{j}>0\right\}$ and augment with linearly independent columns until $|B|=m$; always possible since $\operatorname{rank}(A)=m$.

Basic Feasible Solutions

```
x\in\mp@subsup{\mathbb{R}}{}{n}}\mathrm{ is called basic solution (Basislösung) if Ax=b and
rank}(\mp@subsup{A}{J}{})=|J|\mathrm{ where }J={j|\mp@subsup{x}{j}{}\not=0}
```


Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\}$. x is extreme point iff there exists
$B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$
where $N=\{1, \ldots, n\} \backslash B$.

Proof

Take $B=\left\{j \mid x_{j}>0\right\}$ and augment with linearly independent columns until $|B|=m$; always possible since $\operatorname{rank}(A)=m$.

Basic Feasible Solutions

$x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if $A x=b$ and $\operatorname{rank}\left(A_{J}\right)=|J|$ where $J=\left\{j \mid x_{j} \neq 0\right\}$;
x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\} . x$ is extreme point iff there exists
$B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$
where $N=\{1, \ldots, n\} \backslash B$.

Proof

Take $B=\left\{j \mid x_{j}>0\right\}$ and augment with linearly independent columns until $|B|=m$; always possible since $\operatorname{rank}(A)=m$.

Basic Feasible Solutions

$x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if $A x=b$ and $\operatorname{rank}\left(A_{J}\right)=|J|$ where $J=\left\{j \mid x_{j} \neq 0\right\}$;
x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

A basis (Basis) is an index set $B \subseteq\{1, \ldots, n\}$ with $\operatorname{rank}\left(A_{B}\right)=m$ and $|B|=m$.

Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\}$. x is extreme point iff there exists
$B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$
where $N=\{1, \ldots, n\} \backslash B$.

Proof

Take $B=\left\{j \mid x_{j}>0\right\}$ and augment with linearly independent columns until $|B|=m$; always possible since $\operatorname{rank}(A)=m$.

Basic Feasible Solutions

$x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if $A x=b$ and $\operatorname{rank}\left(A_{J}\right)=|J|$ where $J=\left\{j \mid x_{j} \neq 0\right\}$;
x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

A basis (Basis) is an index set $B \subseteq\{1, \ldots, n\}$ with $\operatorname{rank}\left(A_{B}\right)=m$ and $|B|=m$.
$x \in \mathbb{R}^{n}$ with $A_{B} x_{B}=b$ and $x_{j}=0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\}$. x is extreme point iff there exists
$B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$
where $N=\{1, \ldots, n\} \backslash B$.

Proof

Take $B=\left\{j \mid x_{j}>0\right\}$ and augment with linearly independent columns until $|B|=m$; always possible since $\operatorname{rank}(A)=m$.

Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least $n-m$ of the x_{i} 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:
In a BFS at least n constraints are fulfilled with equality.

Basic Feasible Solutions

```
x\in\mp@subsup{\mathbb{R}}{}{n}}\mathrm{ is called basic solution (Basislösung) if }Ax=b\mathrm{ and
rank}(\mp@subsup{A}{J}{})=|J|\mathrm{ where }J={j|\mp@subsup{x}{j}{}\not=0}
x is a basic feasible solution (gültige Basislösung) if in addition
x \geq0.
A basis (Basis) is an index set \(B \subseteq\{1, \ldots, n\}\) with \(\operatorname{rank}\left(A_{B}\right)=m\) and \(|B|=m\).
\(x \in \mathbb{R}^{n}\) with \(A_{B} x_{B}=b\) and \(x_{j}=0\) for all \(j \notin B\) is the basic
solution associated to basis B (die zu \(B\) assoziierte Basislösung)
\(x \in \mathbb{R}^{n}\) is called basic solution (Basislösung) if \(A x=b\) and rank \(\left(A_{J}\right)=|J|\) where \(J=\left\{j \mid x_{j} \neq 0\right\}\)
\(x\) is a basic feasible solution (gültige Basislösung) if in addition
\(x \geq 0\).
```


Basic Feasible Solutions

Definition 25
For a general LP (max $\left\{c^{T} x \mid A x \leq b\right\}$) with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Basic Feasible Solutions

A BFS fulfills the m equality constraints.
In addition, at least $n-m$ of the x_{i} 's are zero. The
corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.

Algebraic View

Basic Feasible Solutions

Definition 25

For a general LP (max $\left\{c^{T} x \mid A x \leq b\right\}$) with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha ?$

Algebraic View

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

- Given a basis B we can compute the associated basis solution by calculating $A_{B}^{-1} b$ in polynomial time; then we can also compute the profit.

Algebraic View

Fundamental Questions

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n, m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

- Given a basis B we can compute the associated basis solution by calculating $A_{B}^{-1} b$ in polynomial time; then we can also compute the profit.

