- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

Brewery Problem

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale

Brewery Problem

- ► Production limited by supply of corn, hops and barley malt
- ▶ Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer

▶ 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 barrels ale. 28 barrels beer ⇒ 800 €

Brewery Problem

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

▶ only brew beer: 32 barrels of beer ⇒ 736 €

7.5 barrels ale. 29.5 barrels beer == 776.6

▶ 12 barrels ale. 28 barrels beer → 800 €

Brewery Problem

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

▶ only brew ale: 34 barrels of ale ⇒ 442€

only brew beer: 32 barrels of beer

⇒ 736€

Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- ► Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale ⇒ 442€

only brew beer: 32 barrels of beer

⇒ 736€

▶ 7.5 barrels ale, 29.5 barrels beer

Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- ► Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 harrels ale 28 harrels heer

Brewery Problem

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 barrels ale, 28 barrels beer ⇒ 800 €

Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

•	only brew ale:	34 barrels of ale	⇒ 442€
	Ulliy biew ale.	JT Dallels Of ale	→ + +2 €

only brew beer: 32 barrels of beer ⇒ 736 €

► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 barrels ale, 28 barrels beer ⇒ 800€

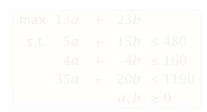
Brewery Problem

Brewery brews ale and beer.

- ► Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Linear Program



Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
 ⇒ 442 €
- ▶ only brew beer: 32 barrels of beer ⇒ 736 €
- ► 7.5 barrels ale, 29.5 barrels beer \Rightarrow 776 €
- ► 12 barrels ale, 28 barrels beer ⇒ 800 €

Linear Program

- ▶ Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max 13a + 23bs.t. $5a + 15b \le 480$ $4a + 4b \le 160$ $35a + 20b \le 1190$ $a, b \ge 0$

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
 ⇒ 442 €
- only brew beer: 32 barrels of beer ⇒ 736 €
- ► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €
- ► 12 barrels ale, 28 barrels beer ⇒ 800€

Linear Program

- ▶ Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)	
ale (barrel)	5	4	35	13	
beer (barrel)	15	4	20	23	
supply	480	160	1190		

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
 ⇒ 442 €
- ▶ only brew beer: 32 barrels of beer ⇒ 736 €
- ► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €
- ► 12 barrels ale, 28 barrels beer ⇒ 800€

Linear Program

- ▶ Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)	
ale (barrel)	5	4	35	13	
beer (barrel)	15	4	20	23	
supply	480	160	1190		

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale
 ⇒ 442 €
- ▶ only brew beer: 32 barrels of beer ⇒ 736 €
- ► 7.5 barrels ale, 29.5 barrels beer ⇒ 776€
- ► 12 barrels ale, 28 barrels beer ⇒ 800€

Linear Program

- ▶ Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

3 Introduction to Linear Programming

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)	
ale (barrel)	5	4	35	13	
beer (barrel)	15	4	20	23	
supply	480	160	1190		

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale ⇒ 442€
- ▶ only brew beer: 32 barrels of beer ⇒ 736€
- ▶ 7.5 barrels ale. 29.5 barrels beer ⇒ 776€
- ▶ 12 barrels ale. 28 barrels beer ⇒ 800€

LP in standard form:

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

3 Introduction to Linear Programming

LP in standard form:

- ▶ input: numbers a_{ij} , c_j , b_i
- ▶ output: numbers *x*
- \triangleright n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- \triangleright output: numbers x_i
- \triangleright n = #decision variables. m = #constraint.
- (in)equalities

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- \triangleright output: numbers x_i
- n =#decision variables, m =#constraints
- (in)equalities

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

LP in standard form:

- ▶ input: numbers a_{ij} , c_j , b_i
- \triangleright output: numbers x_i
- n = # decision variables, m = # constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$

 $x c^T x$ x. Ax = b $x \ge 0$

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

EADS II

14

LP in standard form:

- ightharpoonup input: numbers a_{ij} , c_i , b_i
- \triangleright output: numbers x_i
- \triangleright n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

3 Introduction to Linear Programming

$$\max \sum_{\substack{j=1\\n}}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ 1 \le i \le m$$

$$x_j \ge 0 \ 1 \le j \le n$$

Brewery Problem

Linear Program

- ▶ Introduce variables a and b that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

LP in standard form:

- ▶ input: numbers a_{ij} , c_j , b_i
- \triangleright output: numbers x_i
- n = # decision variables, m = # constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{\substack{j=1\\ n}}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ 1 \le i \le m$$

$$x_i \ge 0 \ 1 \le j \le n$$

 $\max c^{T}x$ s.t. Ax = b $x \ge 0$

Brewery Problem

Linear Program

- ► Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

```
max 13a + 23b

s.t. 5a + 15b \le 480

4a + 4b \le 160

35a + 20b \le 1190

a, b \ge 0
```


Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Standard Form

Add a slack variable to every constraint

Standard Form LPs

LP in standard form:

- ► input: numbers a_{ij} , c_j , b_i
- \blacktriangleright output: numbers x_i
 - n = # decision variables, m = # constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$

$$x_j \ge 0 \quad 1 \le j \le n$$

 $\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Standard Form

Add a slack variable to every constraint.

Standard Form LPs

LP in standard form:

- \blacktriangleright input: numbers a_{ij} , c_i , b_i
- \blacktriangleright output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \quad 1 \le i \le m$$

$$x_{j} \ge 0 \quad 1 \le j \le n$$

s.t. Ax = b $x \ge 0$

max $c^T x$

There are different standard forms:

standard form

standard form
$$\max c^{T}x$$
s.t. $Ax = b$

$$x \ge 0$$

$$\max c^T x$$
s.t. $Ax \leq$

s.t.
$$Ax \ge b$$

Standard Form LPs

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Standard Form

Add a slack variable to every constraint.

There are different standard forms:

standard form

$$\begin{array}{ccc} \text{standard form} \\ \text{max} & c^T x \\ \text{s.t.} & Ax & = & b \\ & x & \geq & 0 \end{array}$$

$$\max c^T x$$

s.t. $Ax \le$

Ax =s.t. $\chi \geq$

 $\min c^T x$

$$Ax \ge b$$

Standard Form LPs

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Standard Form

Add a slack variable to every constraint.

There are different standard forms:

standard form

$$\begin{array}{rcl} \text{max} & c^T x \\ \text{s.t.} & Ax & = & b \\ & x & \geq & 0 \end{array}$$

standard maximization form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax & \leq b \\
& x \geq 0
\end{array}$$

Ax =s.t. $\chi \geq$

 $\min c^T x$

$$Ax \geq b$$

Standard Form LPs

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Standard Form

Add a slack variable to every constraint.

There are different standard forms:

standard form

standard form
$$\max c^{T}x$$
s.t. $Ax = b$

$$x \ge 0$$

standard maximization form

$$\begin{array}{ccc} \text{maximization form} \\ \text{max} & c^T x \\ \text{s.t.} & Ax \leq b \\ & x \geq 0 \end{array}$$

$\chi \geq$

 $\min c^T x$

s.t.

standard minimization form

Ax =

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

Standard Form LPs

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Standard Form

Add a slack variable to every constraint.

It is easy to transform variants of LPs into (any) standard form:

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax & = & b \\
& x & \ge & 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 1$$
$$s \ge 0$$

greater or equal to equality

▶ min to may

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard

min $c^T x$

 $\begin{array}{|c|c|c|c|}\hline {\rm minimization\ form}\\\hline\hline {\rm min} & c^Tx\\ {\rm s.t.} & Ax & \geq & b\\ & x & \geq & 0\\ \hline \end{array}$

 \geq

standard maximization form

$$\begin{cases}
\max & c^T x \\
\text{s.t.} & Ax \leq b \\
& x \geq 0
\end{cases}$$

It is easy to transform variants of LPs into (any) standard form:

▶ less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

min to may

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& & x & \geq & 0
\end{array}$$

EADS II

Harald Räcke

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 1$$
$$s \ge 0$$

▶ min to max:

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

▶ min to max:

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

▶ less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

 $\min a - 3b + 5c \implies \max -a + 3b - 5c$

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

min $c^{T}x$ s.t. Ax = b $x \ge 0$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

EADS II

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c < -12$

• equality to greater or equal

unrestricted to nonnegative

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

► min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

• equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal:

unrestricted to nonnegative

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

► unrestricted to nonnegative

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

► unrestricted to nonnegative

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

• greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

$$s \ge 0$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

$$x \text{ unrestricted} \implies x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

► less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

► min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- ► for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal:

$$a-3b+5c = 12 \implies a-3b+5c \ge 12$$

 $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{O}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization I Ps we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

Is LP in co-NP?

Innut size

ightharpoonup n number of variables, m constraints, L number of bits to

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- ► transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is I P in NP?
- ► Is I P in co-NP?
- ▶ Is I P in P?

Input size

ightharpoonup n number of variables, m constraints, L number of bits to

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- ► for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is I P in NP?
- ► Is I P in co-NP?
- ▶ Is I P in P?

Input size

ightharpoonup n number of variables, m constraints, L number of bits to encode the input

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is I P in NP?
- ▶ Is LP in co-NP?
- ► Is LP in P?

Input size

ightharpoonup n number of variables, m constraints, L number of bits to

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is I P in NP?
- ▶ Is LP in co-NP?
- ► Is I P in P?

Input size:

ightharpoonup n number of variables, m constraints, L number of bits to encode the input

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ▶ Is I P in NP?
- ► Is I P in co-NP?
- ► Is I P in P?

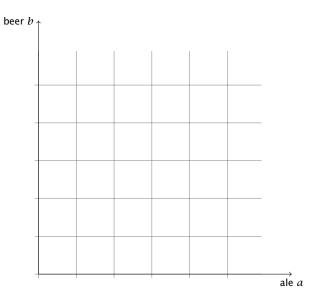
Input size:

ightharpoonup n number of variables, m constraints, L number of bits to encode the input

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

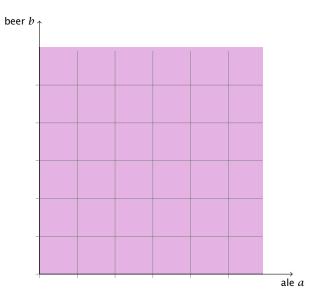
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

 \blacktriangleright *n* number of variables, *m* constraints, *L* number of bits to encode the input



Fundamental Questions

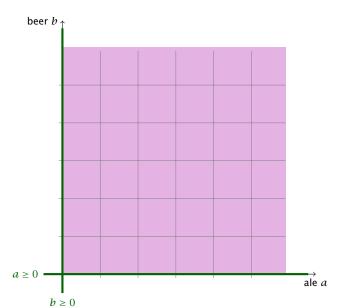
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

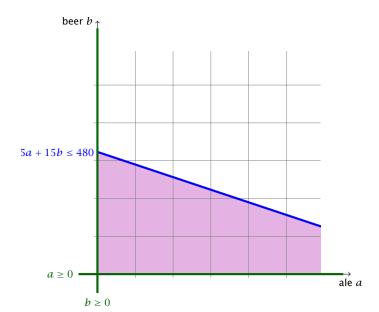
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

 \blacktriangleright *n* number of variables, *m* constraints, *L* number of bits to encode the input



Fundamental Questions

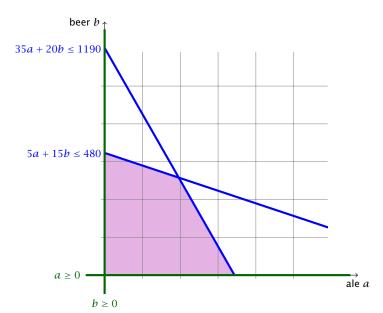
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

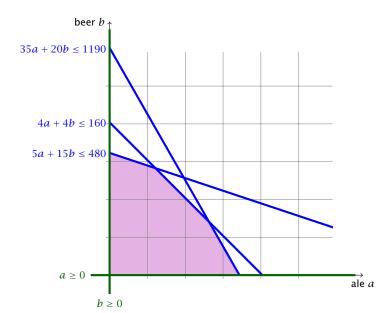
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

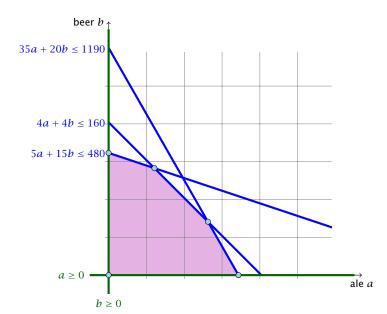
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

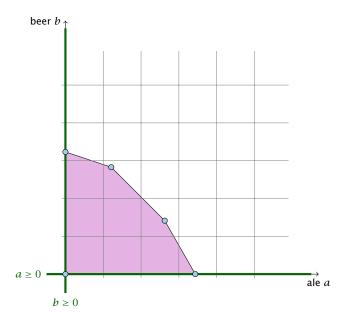
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

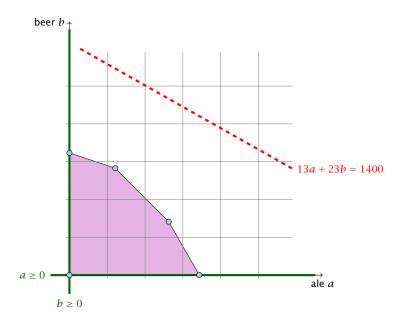
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

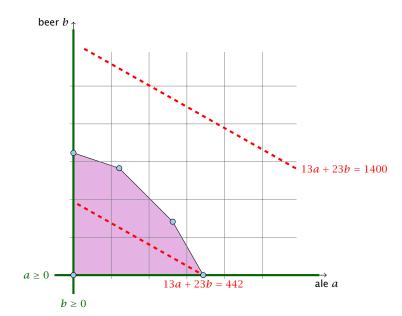
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

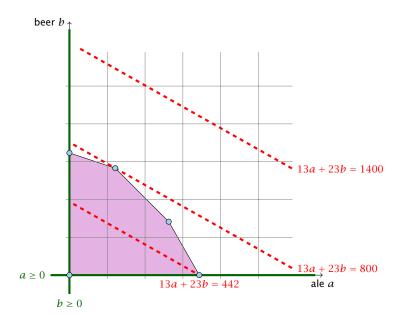
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

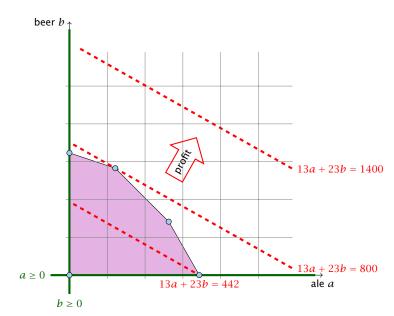
Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:



Fundamental Questions

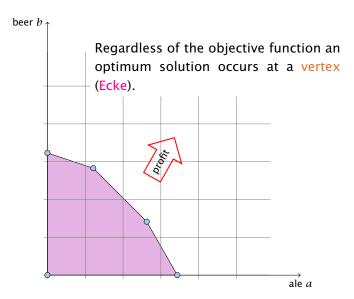
Definition 1 (Linear Programming Problem (LP))

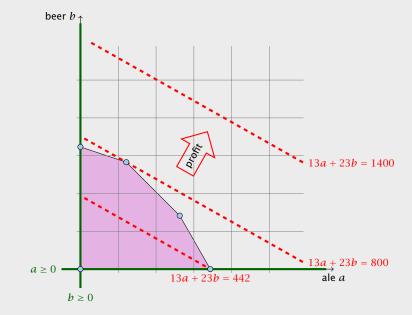
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

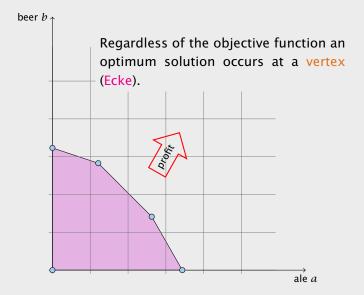
- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:





Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

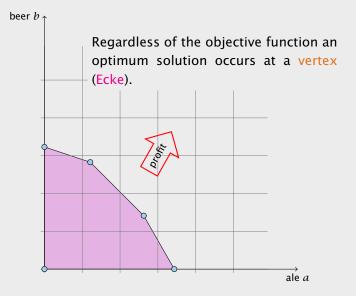


Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung)
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar)
- ▶ An LP is bounded (beschränkt) if it is feasible and

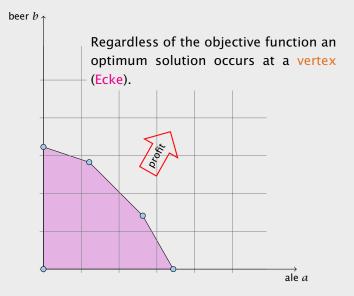
of or all seed (for minimization problems)



Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar)
- ► An LP is bounded (beschränkt) if it is feasible and

for all (for minimization problems)



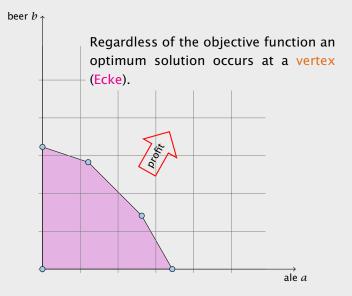
Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

.

(for maximization problems)

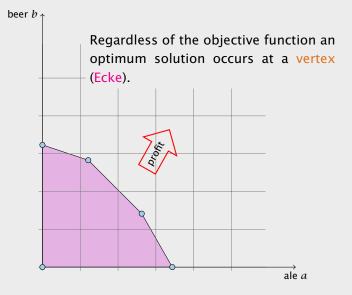
for all x = 22 (for minimization problems)



Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

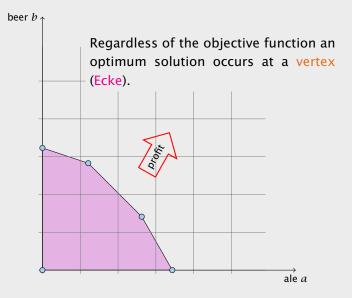
- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- ► An LP is bounded (beschränkt) if it is feasible and



Let for a Linear Program in standard form

- $P = \{x \mid Ax = b, x \ge 0\}.$
 - ▶ P is called the feasible region (Lösungsraum) of the LP.
 - ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
 - ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
 - An LP is bounded (beschränkt) if it is feasible and

▶ $c^T x < \infty$ for all $x \in P$ (for maximization problems) ▶ $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

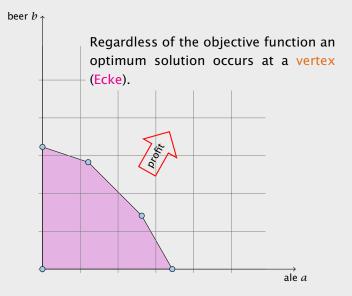


Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)

 $ightharpoonup c^T x > -\infty$ for all $x \in P$ (for minimization problems)

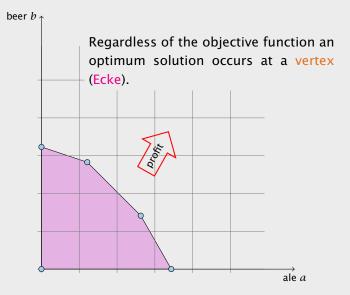
Geometry of Linear Programming



Let for a Linear Program in standard form $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

Geometry of Linear Programming



Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- ▶ linear combination if $\lambda_i \in \mathbb{R}$.
- ▶ affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \geq 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \geq 0$.

Note that a combination involves only finitely many vectors.

Definitions

Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ P is called the feasible region (Lösungsraum) of the LP.
- ightharpoonup A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfullbar). Otherwise. it is called infeasible (unerfüllbar).
- ► An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

A set $X \subseteq \mathbb{R}^n$ is called

- ▶ a linear subspace if it is closed under linear combinations.
- ▶ an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

Definition 2

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- ▶ linear combination if $\lambda_i \in \mathbb{R}$.
- ▶ affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \geq 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \geq 0$.

Note that a combination involves only finitely many vectors.

Given a set $X \subseteq \mathbb{R}^n$.

- ▶ span(X) is the set of all linear combinations of X (linear hull, span)
- ▶ aff(X) is the set of all affine combinations of X (affine hull)
- conv(X) is the set of all convex combinations of X (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

Definition 3

A set $X \subseteq \mathbb{R}^n$ is called

- ► a linear subspace if it is closed under linear combinations.
- ► an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Lemma 6

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

$$Q = \{ x \in P \mid f(x) \le t \}$$

Definition 4

Given a set $X \subseteq \mathbb{R}^n$.

- ► span(X) is the set of all linear combinations of X (linear hull, span)
- ▶ aff(X) is the set of all affine combinations of X (affine hull)
- ► conv(X) is the set of all convex combinations of X (convex hull)
- ► cone(X) is the set of all conic combinations of X (conic hull)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)\gamma) \le \lambda f(x) + (1 - \lambda)f(\gamma)$$

Lemma 6

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

$$Q = \{ x \in P \mid f(x) \le t \}$$

Definition 4

Given a set $X \subseteq \mathbb{R}^n$.

- ► span(X) is the set of all linear combinations of X (linear hull, span)
- ▶ aff(X) is the set of all affine combinations of X (affine hull)
- ► conv(X) is the set of all convex combinations of X (convex hull)
- ► cone(X) is the set of all conic combinations of X (conic hull)

Dimensions

Definition 7

The dimension $\dim(A)$ of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull $\operatorname{aff}(X)$.

Definition 5

A function $f:\mathbb{R}^n\to\mathbb{R}$ is convex if for $x,y\in\mathbb{R}^n$ and $\lambda\in[0,1]$ we have

$$f(\lambda x + (1 - \lambda)\gamma) \le \lambda f(x) + (1 - \lambda)f(\gamma)$$

Lemma 6

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

$$Q = \{ x \in P \mid f(x) \le t \}$$

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Dimensions

Definition 7

The dimension $\dim(A)$ of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

30/575

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull aff(X).

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^Tx \leq b\}$, for $a \neq 0$.

Dimensions

Definition 7

The dimension $\dim(A)$ of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull $\operatorname{aff}(X)$.

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., $P = \operatorname{conv}(X)$ where |X| = c.

Definition 9

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10

31/575

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^Tx \leq b\}$, for $a \neq 0$.

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces

$$\{H(a_1,b_1),...,H(a_m,b_m)\}$$
, where

$$H(a_i, b_i) = \{ x \in \mathbb{R}^n \mid a_i x \le b_i \} .$$

Definitions

32/575

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where |X| = c.

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces

$$\{H(a_1,b_1),\ldots,H(a_m,b_m)\}$$
, where

$$H(a_i, b_i) = \{ x \in \mathbb{R}^n \mid a_i x \le b_i \} .$$

Definition 13 A polyhedron P is bounded if there exists B s.t. $||x||_2 \le B$ for all

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where |X| = c.

 $x \in P$.

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1,b_1),...,H(a_m,b_m)\}\$, where

$$H(a_i,b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$$

Definition 13

A polyhedron P is bounded if there exists B s.t. $||x||_2 \le B$ for all $x \in P$.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{ x \in \mathbb{R}^n \mid a^T x = b \}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 17

- Let $P \subseteq \mathbb{R}^n$.
- \blacktriangleright a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1. a face F is a facet of P if F is a face and

 $\dim(F) = \dim(P) - 1$.

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

EADS II 3 Introduction to Linear Programming

Equivalent definition for vertex:

Definition 18

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x$, $a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Definition 15

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- \blacktriangleright a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and dim(F) = dim(P) 1.

Equivalent definition for vertex:

Definition 18

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x$, $a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Definition 15

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- \blacktriangleright a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and dim(F) = dim(P) 1.

Observation

The feasible region of an LP is a Polyhedron.

Equivalent definition for vertex:

Definition 18

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

36/575

A vertex is also an extreme point.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ightharpoonup suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- $\blacktriangleright Ad = 0$ because A(x + d) = b
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d
- ► Consider $x + \lambda d$, $\lambda > 0$

Observation

EADS II

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Observation

The feasible region of an LP is a Polyhedron.

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

Case 2. $[d_i > 0 \text{ for all } i \text{ and } c^T d > 0]$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ► suppose *x* is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Case 2 Id > 0 for all i and aTd > 0

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ► suppose *x* is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $\blacktriangleright x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x + d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ► suppose *x* is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- \triangleright suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $\rightarrow x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- \triangleright suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $\rightarrow x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d > c^T x$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- \triangleright suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- ► suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $\rightarrow x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d > c^T x$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- \triangleright suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $\rightarrow x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d > c^T x$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- \rightarrow as $\lambda \to \infty$. $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Convex Sets

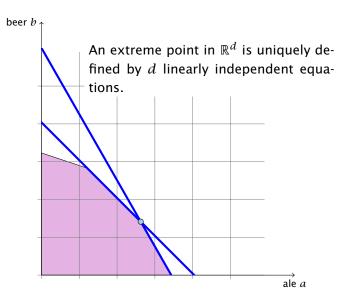
Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- \triangleright suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x + d \in P$
- \rightarrow Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Algebraic View



Case 1. $[\exists j \text{ s.t. } d_i < 0]$

 $x \pm d \in P$

 $x + \lambda d \ge x \ge 0$

• increase λ to λ' until first component of $x + \lambda d$ hits 0

 $ightharpoonup c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d > c^T x$

 \blacktriangleright as $\lambda \to \infty$. $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

 \blacktriangleright $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$

• $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and

3 Introduction to Linear Programming

 \rightarrow $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as

Convex Sets

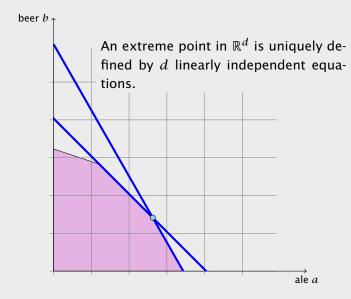
Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns

Algebraic View



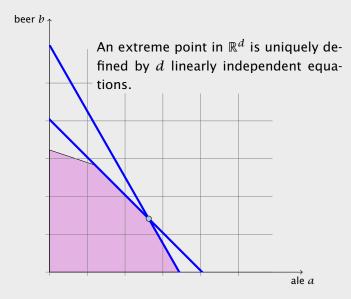
Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Algebraic View



Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇔)

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x + d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- \triangleright define $B' = \{j \mid d_i \neq 0\}$
- $ightharpoonup A_{R'}$ has linearly dependent columns as Ad=0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

41/575

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{i \mid d_i \neq 0\}$
- $ightharpoonup A_{R'}$ has linearly dependent columns as Ad=0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

41/575

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- \triangleright define $B' = \{i \mid d_i \neq 0\}$
- $ightharpoonup A_{R'}$ has linearly dependent columns as Ad=0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

41/575

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_i \neq 0 \}$
- $ightharpoonup A_{R'}$ has linearly dependent columns as Ad=0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence. $B' \subseteq B$. $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

41/575

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_j \neq 0 \}$
- $A_{R'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

41/575

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ► define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- ► $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_R d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ightharpoonup now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ► define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- \triangleright assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now. Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ► Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- ▶ now. Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ► Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ► Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- ► assume *x* is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ▶ hence, *x* is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- ▶ assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ► Ad = 0 because $A(x \pm d) = b$
- ► define $B' = \{j \mid d_i \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- $\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ightharpoonup then $c^T x = 0$ and $c^T y \leq 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin E$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- \blacktriangleright hence, x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- \blacktriangleright extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $i \notin B$
- $\blacktriangleright b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- \blacktriangleright hence, x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- $\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $\blacktriangleright b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- \triangleright hence, x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- $\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = A\gamma = A_B\gamma_B = Ax = A_Bx_B$ gives that $A_B(x_B \gamma_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- \blacktriangleright hence, x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- $\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence. x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- $\blacktriangleright \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- \blacktriangleright hence. x is a vertex of P

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

3 Introduction to Linear Programming

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, *x* is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = A\gamma = A_B\gamma_B = Ax = A_Bx_B$ gives that $A_B(x_B \gamma_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- ▶ hence, *x* is a vertex of *P*

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, x is not extreme point

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog, that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all with $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ we all have
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^{m} \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

Theorem 23

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- ► hence, *x* is a vertex of *P*

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- ▶ assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

Theorem 23

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence. x is a vertex of P

For an LP we can assume wlog, that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- \triangleright assume wlog, that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T \gamma = 0$; then $\gamma_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get v = x
- ▶ hence. x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- ▶ assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

Theorem 23

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence. x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- ightharpoonup assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1x = \sum_{i=2}^m \lambda_i \cdot A_ix = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- ightharpoonup assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 \mathbf{x} = \sum_{i=1}^m \lambda_i \cdot A_i \mathbf{x} = \sum_{i=1}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- ightharpoonup assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i = b_i$$

Theorem 23

▶ define
$$c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \dots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 23

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- ightharpoonup assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \dots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 23

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T \gamma = 0$; then $\gamma_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ► this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- ▶ assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_R$ is non-singular
- $x_B = A_R^{-1}b \ge 0$
- $\mathbf{x}_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_R$ is non-singular
- $x_B = A_R^{-1}b \ge 0$
- $x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_I) = |J|$ where $J = \{j \mid x_i \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_I) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition x > 0.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösun

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $x_B = A_B^{-1}b \ge 0$
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

47/575

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_I) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x\in\mathbb{R}^n$ with $A_Bx_B=b$ and $x_j=0$ for all $j\notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $rank(A_I) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B\subseteq\{1,\ldots,n\}$ with $\mathrm{rank}(A_B)=m$ and |B|=m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $rank(A_I) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\mathrm{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_j = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $\rightarrow x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

47/575

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

A BFS fulfills the m equality constraints.

In addition, at least n-m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact: In a BFS at least n constraints are fulfilled with equality.

Basic Feasible Solutions

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_I) = |J| \text{ where } J = \{j \mid x_i \neq 0\};$

x is a basic feasible solution (gultige Basislösung) if in addition $x \geq 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with rank $(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_i = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Definition 25

For a general LP $(\max\{c^Tx \mid Ax \leq b\})$ with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Basic Feasible Solutions

A BFS fulfills the m equality constraints.

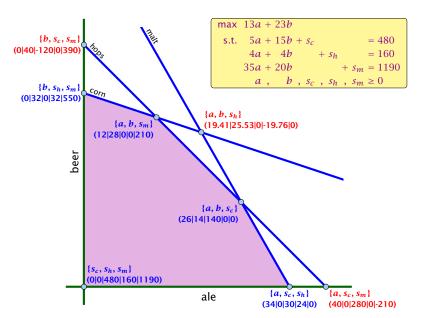
In addition, at least n-m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:

49/575

In a BFS at least n constraints are fulfilled with equality.

Algebraic View



Basic Feasible Solutions

Definition 25

For a general LP $(\max\{c^Tx \mid Ax \leq b\})$ with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

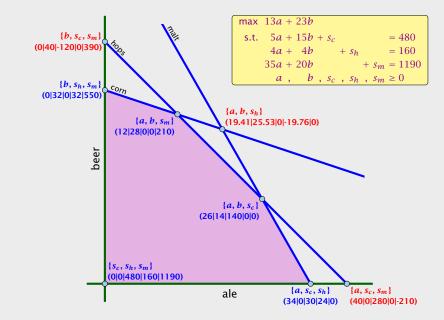
Questions

- ► Is LP in NP? yes
- ► Is LP in co-NP?
- ► Is LP in P?

Proof

▶ Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

Algebraic View



Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

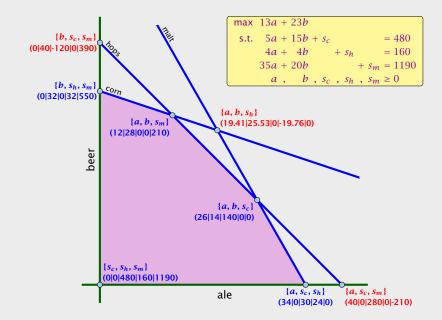
Questions:

- ► Is LP in NP? yes!
- ▶ Is LP in co-NP?
- ► Is LP in P?

Proof:

▶ Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

Algebraic View



Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m}\cdot\operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{O}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP? ves!
- ► Is I P in co-NP?
- ► Is I P in P?

Proof:

► Given a basis B we can compute the associated basis solution by calculating $A_R^{-1}b$ in polynomial time; then we can also compute the profit.