Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
- only brew beer: 32 barrels of beer
- ▶ 7.5 barrels ale, 29.5 barrels beer
- ▶ 12 barrels ale, 28 barrels beer

- ⇒ 442€
- ⇒ /3b €
- \Rightarrow 776 \in
- \Rightarrow 800 \in

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale

⇒ 442€

only brew beer: 32 barrels of beer

▶ 7.5 barrels ale, 29.5 barrels beer

→ 776 €

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

⇒ 442€

How can brewer maximize profits?

only brew ale: 34 barrels of ale

▶ only brew beer: 32 barrels of beer ⇒ 736

▶ 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

▶ 7.5 barrels ale, 29.5 barrels beer

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

► 7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 barrels ale, 28 barrels beer

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

7.5 barrels ale, 29.5 barrels beer ⇒ 776€

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

7.5 barrels ale, 29.5 barrels beer ⇒ 776€

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

- Introduce variables *a* and *b* that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

- Introduce variables *a* and *b* that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

- Introduce variables *a* and *b* that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

- Introduce variables *a* and *b* that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

- input: numbers a_{ij} , c_j , b_i
- ightharpoonup output: numbers x_1
- ightharpoonup n = #decision variables, m =
- maximize linear objective function subject to linear (in)equalities

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- ightharpoonup n = #decision variables, m =
- maximize linear objective function subject to linear (in)equalities

EADS II
Harald Räcke

LP in standard form:

• input: numbers a_{ij} , c_j , b_i

• output: numbers x_j

ightharpoonup n = #decision variables, m = #constraints

 maximize linear objective function subject to linear (in)equalities

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{\substack{j=1\\n\\j=1}}^n c_j x_j$$
 s.t.
$$\sum_{j=1}^n a_{ij} x_j = b_i \ 1 \le i \le m$$

$$x_j \ge 0 \ 1 \le j \le n$$

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{j=1}^{\infty} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$

$$x_j \ge 0 \quad 1 \le j \le n$$

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$

$$x_j \ge 0 \quad 1 \le j \le n$$

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Standard Form

Add a slack variable to every constraint

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Standard Form

Add a slack variable to every constraint.

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax & = & b \\
& x & \ge & 0
\end{array}$$

standard maximization for

$$\max c^T x$$
s.t. $Ax \le b$

$$x \ge 0$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization forn

$$\begin{array}{ccc}
\min & c^T x \\
\text{s.t.} & Ax \ge b \\
& x \ge 0
\end{array}$$

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax & = & b \\
& x & \ge & 0
\end{array}$$

standard

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax & \leq b \\
& x \geq 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization for

$$\begin{array}{ccc}
\min & c^T x \\
\text{s.t.} & Ax \ge b \\
& x \ge 0
\end{array}$$

There are different standard forms:

standard form

$$\max c^T x$$
s.t.
$$Ax = b$$

$$x \ge 0$$

standard maximization form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^T x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a-3b+5c \le 12 \implies a-3b+5c+s = 125$$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

greater or equal to equality:

min to max

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

min to max

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

greater or equal to equality:

$$a-3b+5c \ge 12 \implies a-3b+5c-s=12$$

 $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a-3b+5c \le 12 \implies a-3b+5c+s=12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies \frac{a - 3b + 5c \ge 12}{-a + 3b - 5c \ge -12}$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- Is LP in NP?
- le I D in ea ND7
- le I P in P?

Input size

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

Input size

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ▶ Is I P in NP?
- Is LP in co-NP?
- ▶ Is I P in P?

Input size

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP?
- ▶ Is I P in P?

Input size

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is I P in NP?
- ► Is LP in co-NP?
- Is I P in P?

Input size

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP?
- Is I P in P?

Input size:

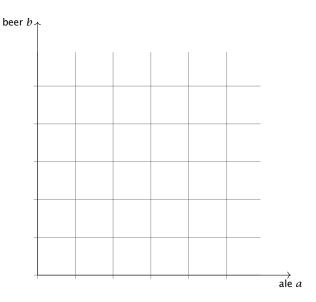
Definition 1 (Linear Programming Problem (LP))

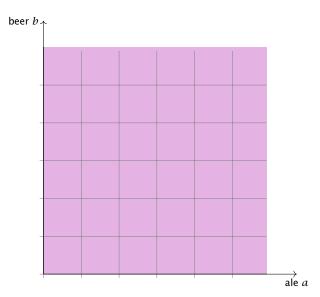
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

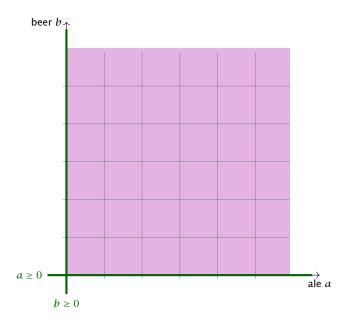
Questions:

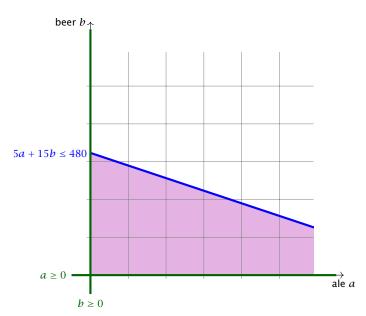
- ▶ Is I P in NP?
- ► Is I P in co-NP?
- ▶ Is I P in P?

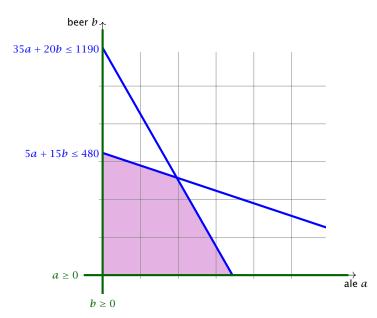
Input size:

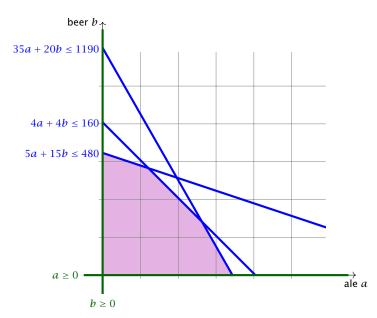


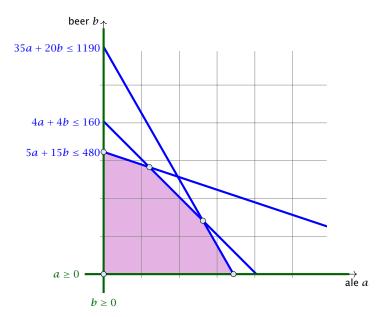


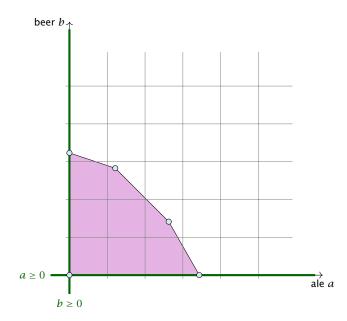


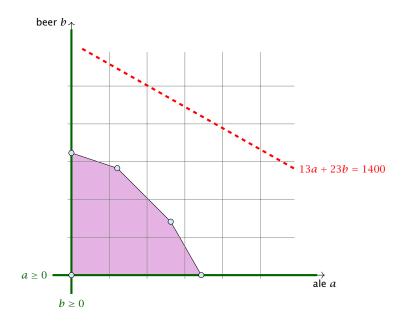


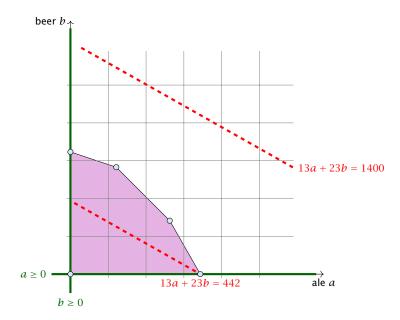


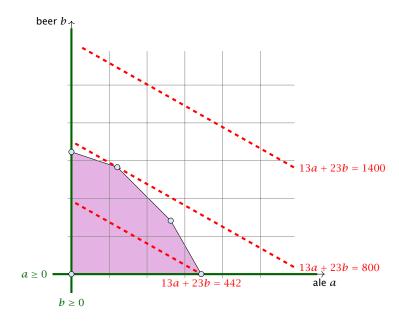


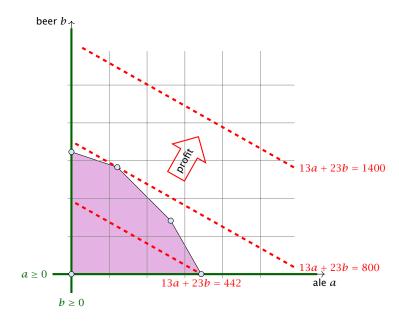


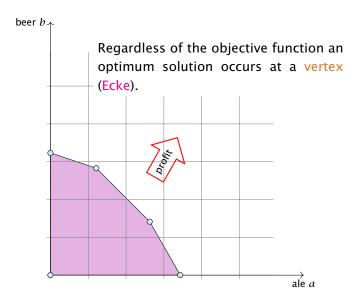












$$P = \{x \mid Ax = b, x \ge 0\}.$$

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise
- An LP is bounded (beschränkt) if it is feasible and

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

► $c^T x < \infty$ for all $x \in P$ (for maximization problems) ► $c^T x > -\infty$ for all $x \in P$ (for minimization problems

Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - ▶ $c^{\perp}x > -\infty$ for all $x \in P$ (for minimization problems)

Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- ▶ linear combination if $\lambda_i \in \mathbb{R}$.
- ▶ affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \geq 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \geq 0$.

Note that a combination involves only finitely many vectors.

A set $X \subseteq \mathbb{R}^n$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

Given a set $X \subseteq \mathbb{R}^n$.

- ▶ span(X) is the set of all linear combinations of X (linear hull, span)
- ▶ aff(X) is the set of all affine combinations of X (affine hull)
- conv(X) is the set of all convex combinations of X
 (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Lemma 6

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

$$Q = \{x \in P \mid f(x) \le t\}$$

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Lemma 6

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

$$Q = \{x \in P \mid f(x) \le t\}$$

Dimensions

Definition 7

The dimension $\dim(A)$ of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull $\operatorname{aff}(X)$.

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \le b\}$, for $a \ne 0$.

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^Tx \leq b\}$, for $a \neq 0$.

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where |X| = c.

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces

$$\{H(a_1,b_1),...,H(a_m,b_m)\}$$
, where

$$H(a_i,b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$$

Definition 13

A polyhedron P is bounded if there exists B s.t. $||x||_2 \le B$ for all $x \in P$.

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces

$$\{H(a_1, b_1), \dots, H(a_m, b_m)\}$$
, where

$$H(a_i,b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$$

Definition 13

A polyhedron P is bounded if there exists B s.t. $||x||_2 \le B$ for all $x \in P$.

Theorem 14

P is a bounded polyhedron iff P is a polytop.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P\subseteq \mathbb{R}^n.$ F is a face of P if F=P or $F=P\cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- ▶ a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and dim(F) = dim(P) 1.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 17 Let $P \subseteq \mathbb{R}^n$.

- \blacktriangleright a face v is a vertex of P if $\{v\}$ is a face of P.
- ightharpoonup a face e is an edge of P if e is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and dim(F) = dim(P) 1.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- ▶ a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and dim(F) = dim(P) - 1.

Equivalent definition for vertex:

Definition 18

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Equivalent definition for vertex:

Definition 18

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Observation

The feasible region of an LP is a Polyhedron.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

- suppose x is optimal solution that is not extreme point
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Case 1.
$$[\exists j \text{ s.t. } d_i < 0]$$

increase to a until first component of a sea hits 0 and a sea hits of and a sea hits one more zero component (a).

Case 2.
$$[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$$

and is feasible for all A = 0 since A = A and

25 1 - 1 - 1 - 1 - 1 - 1 - 25

Case 1.
$$[\exists j \text{ s.t. } d_j < 0]$$

Case 2.
$$[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$$

case 2. $[u_j \ge 0.101 \text{ and } j \text{ and } 0.101 \text{ and } j \text{ and } 0.101 \text{ and$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $\blacktriangleright x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ▶ $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

is leasible for all and since all and and

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ▶ $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

is feasible for all $\lambda=0$ since $\lambda(\lambda+\lambda d)=0$ and

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

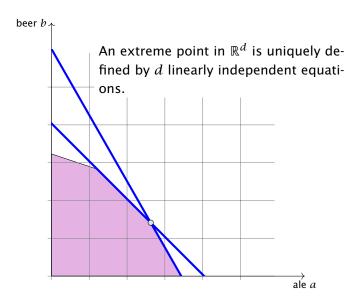
- ► $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- ▶ as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

- ► $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Algebraic View



Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$.

Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇐)

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{j \mid d_j \neq 0\}$
- $ightharpoonup A_{B'}$ has linearly dependent columns as Ad=0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{j \mid d_j \neq 0\}$
- $ightharpoonup A_{B'}$ has linearly dependent columns as Ad=0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{j \mid d_j \neq 0\}$
- $ightharpoonup A_{B'}$ has linearly dependent columns as Ad=0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $ightharpoonup A_{B'}$ has linearly dependent columns as Ad=0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- ▶ $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- ▶ $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_R d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- \blacktriangleright hence, x is not extreme point

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

▶ define
$$c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$$

- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

- ▶ define $c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

- ▶ define $c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

- $\bullet \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

- $\bullet \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

- $\bullet \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- \blacktriangleright hence, x is a vertex of P

- $\bullet \ \, \mathsf{define} \,\, c_j = \left\{ \begin{array}{ll} 0 & j \in B \\ -1 & j \notin B \end{array} \right.$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- ▶ hence, *x* is a vertex of *P*

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog, that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all with $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ we also note that $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all with $b_2 = \sum_{i=2}^m \lambda_i \cdot b_i$ we also note that $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all with $b_2 = \sum_{i=2}^m \lambda_i \cdot b_i$ and $b_3 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all $b_3 = \sum_{i=2}^m \lambda_i \cdot b_i$ we also note that $b_3 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all $b_3 = \sum_{i=2}^m \lambda_i \cdot b_i$ and $b_4 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all $b_4 = \sum_{i=2}^m \lambda_i \cdot b_i$ and b_4
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all a with $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all a with $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 \mathbf{x} = \sum_{i=2}^m \lambda_i \cdot A_i \mathbf{x} = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1x = \sum_{i=2}^m \lambda_i \cdot A_ix = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1x = \sum_{i=2}^m \lambda_i \cdot A_ix = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $x_B = A_B^{-1}b \ge 0$
- $\mathbf{x}_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $\mathbf{x}_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since $\operatorname{rank}(A) = m$.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\mathrm{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

A BFS fulfills the m equality constraints.

In addition, at least n-m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

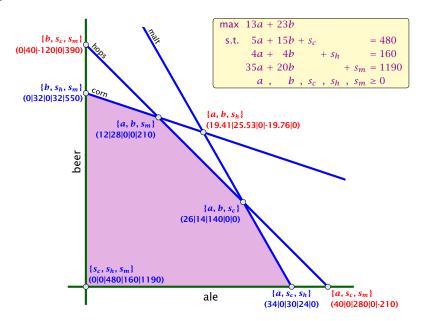
Fact:

In a BFS at least n constraints are fulfilled with equality.

Definition 25

For a general LP $(\max\{c^Tx \mid Ax \leq b\})$ with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Algebraic View



Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions

- ▶ Is LP in NP? yes!
- ► Is LP in co-NP?
- ▶ Is I P in P?

Proof

▶ Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ▶ Is LP in NP? yes!
- ► Is LP in co-NP?
- ▶ Is LP in P?

Proof:

▶ Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m}\cdot\operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?