10 Karmarkars Algorithm

- inequalities $Ax \leq b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^\circ$ define

 $s_i(x) := b_i - a_i^T x$

as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(s_i(x))$$

Throughout this section a_i denotes the

i-th row as a column vector.

Penalty for point x; points close to the boundary have a very large penalty.

Penalty Function 108 2 6 1 4 0 2 -10 -2-2 - 2 0 2 3 5 1 4 $^{-1}$ EADS II Harald Räcke 10 Karmarkars Algorithm 219

Gradient and Hessian Taylor approximation: $\phi(x + \epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$ **Gradient:** $\nabla \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)} \cdot a_i = A^T d_x$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_x := \nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)^2} a_i a_i^T = A^T D_x^2 A$$

with $D_x = \operatorname{diag}(d_x)$.

Proof for Gradient

$$\begin{aligned} \frac{\partial \phi(x)}{\partial x_i} &= \frac{\partial}{\partial x_i} \left(-\sum_r \ln(s_r(x)) \right) \\ &= -\sum_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right) = -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right) \\ &= -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right) = \sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right) \\ &= \sum_r \frac{1}{s_r(x)} A_{ri} \end{aligned}$$

The *i*-th entry of the gradient vector is $\sum_{r} 1/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} 1/s_r(x) a_r = A^T d_x$$

Properties of the Hessian

 H_{χ} is positive semi-definite for $\chi \in P^{\circ}$

 $u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^\circ$

$$u^{T}H_{x}u = ||D_{x}Au||_{2}^{2} > 0$$
 for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

10 Karmarkars Algorithm

224

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_{r} A_{ri}A_{rj} = (A^{T}A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

Hence the Hessian is

 $H_{\mathcal{X}} = A^T D^2 A$

Dikin Ellipsoid

$$E_{x} = \{ y \mid (y - x)^{T} H_{x}(y - x) \leq 1 \} = \{ y \mid ||y - x||_{H_{x}} \leq 1 \}$$

Points in E_x are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$$

- t = 0: analytic center
- $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

EADS II Harald Räcke

10 Karmarkars Algorithm

228

Analytic Center	
$x_{\mathrm{ac}} := \operatorname{argmin}_{x \in P^\circ} \phi(x)$	
• x_{ac} is solution to	
$\nabla \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)} a_i = 0$	
depends on the description of the polytope	
• $x_{\rm ac}$ exists and is unique iff P° is nonempty and bounded	
EADS II 10 Karmarkars Algorithm Harald Räcke	227

Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions:

- ► Is this really true? How large a *t* do we need?
- How do we find corresponding point $x^*(t)$ on central path?

50 00	EADS II Harald Räcke	
	Harald Räcke	

10 Karmarkars Algorithm

230

The Dual primal-dual pair: $\begin{array}{l} min \ c^T x \\ s.t. \ Ax \le b \end{array}$ $\begin{array}{l} max \ -b^T z \\ s.t. \ A^T z + c = 0 \\ z \ge 0 \end{array}$ Assumptions • primal and dual problems are strictly feasible; • rank(A) = n. Note that the right LP in standard form is equal to max{-b^T y | -A^T y = c, x \ge 0} \\ 0. The dual of this is min{c^T x | -Ax \ge -b} (variables x are unrestricted).

How to find $x^*(t)$

First idea:

- start somewhere in the polytope
- use iterative method (Newtons method) to minimize $f_t(x) := tc^T x + \phi(x)$

EADS II הח	10 Karmarkars Algorithm	
UUU Harald Räcke		234

Newton Method

Observe that $H_{f_t}(x) = H(x)$, where H(x) is the Hessian for the function $\phi(x)$ (adding a linear term like $tc^T x$ does not affect the Hessian).

Also $\nabla f_t(x) = tc + \nabla \phi(x)$. We want to move to a point where this gradient is $\overline{0}$:

Newton Step at $x \in P^{\circ}$

$$\begin{aligned} \Delta x_{\mathsf{nt}} &= -H_{f_t}^{-1}(x) \nabla f_t(x) \\ &= -H_{f_t}^{-1}(x) (tc + \nabla \phi(x)) \\ &= -(A^T D_x^2 A)^{-1} (tc + A^T d_x) \end{aligned}$$

Newton Iteration:

$$x := x + \Delta x_{nt}$$

Newton Method

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x + \epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$$

Note that for the one-dimensional case $g(\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2$, then $g'(\epsilon) = f'(x) + f''(x)\epsilon$.

235

```
EADS II
Harald Räcke
```

10 Karmarkars Algorithm

Measuring Progress of Newton Step Newton decrement: $\lambda_t(x) = \|D_x A \Delta x_{nt}\|$ $= \|\Delta x_{nt}\|_{H_x}$ Square of Newton decrement is linear estimate of reduction if we do a Newton step: $-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{nt}$

- $\lambda_t(x) = 0$ iff $x = x^*(t)$
- $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Recall that Δx_{nt} fulfills $-H(x)\Delta x_{nt} = \nabla f_t()$.

Convergence of Newtons Method

Theorem 2

If $\lambda_t(x) < 1$ then

- $x_+ := x + \Delta x_{nt} \in P^\circ$ (new point feasible)
- $\lambda_t(x_+) \le \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

Convergence of Newtons Method

feasibility:

► $\lambda_t(x) = \|\Delta x_{nt}\|_{H_x} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

Convergence of Newtons Method

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

 $\lambda_t (x^+)^2 = \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2$ $\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$ $= \|(I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||^2$$

if $a^T(a+b) = 0$.

Convergence of Newtons Method

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$
= $(I - D_{+}^{-1}D)\vec{1}$

$$a^{T}(a+b)$$

$$= \Delta x_{nt}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{nt}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{nt}^{+} - A^{T} D^{2} A \Delta x_{nt} + A^{T} D_{+} D A \Delta x_{nt} \right)$$

$$= \Delta x_{nt}^{+T} \left(H_{+} \Delta x_{nt}^{+} - H \Delta x_{nt} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{nt}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

```
bound on \lambda_t(x^+):
we use D := D_x = \text{diag}(d_x) and D_+ := D_{x^+} = \text{diag}(d_{x^+})
```

```
\begin{split} \lambda_t (x^+)^2 &= \|D_+ A \Delta x_{nt}^+\|^2 \\ &\leq \|D_+ A \Delta x_{nt}^+\|^2 + \|D_+ A \Delta x_{nt}^+ + (I - D_+^{-1} D) D A \Delta x_{nt}\|^2 \\ &= \|(I - D_+^{-1} D) D A \Delta x_{nt}\|^2 \\ &= \|(I - D_+^{-1} D)^2 \vec{1}\|^2 \\ &\leq \|(I - D_+^{-1} D) \vec{1}\|^4 \\ &= \|D A \Delta x_{nt}\|^4 \\ &= \lambda_t (x)^4 \end{split}
```

```
The second inequality follows from \sum_i y_i^4 \le (\sum_i y_i^2)^2
```

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

1: start at analytic center

- 2: while solution not good enough do
- 3: make step to improve objective function
- 4: recenter to return to central path

If $\lambda_t(x)$ is large we d	o not have a guarantee.	
Try to avoid this ca		
EADS II Harald Räcke	10 Karmarkars Algorithm	243

Short Step Barrier Method

gradient of f_{t^+} at ($x = x^*(t)$)

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)ta$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\begin{split} \lambda_{t^{+}}(x)^{2} &= \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\ &= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A \\ &\leq (\mu - 1)^{2} m \\ &= 1/4 \end{split}$$

This means we are in the range of quadratic convergence!!!

Explanation for previous slide **Number of Iterations** $P = B(B^T B)^{-1} B^T$ is a symmetric real-valued matrix; it has nlinearly independent Eigenvecthe number of Newton iterations per outer tors. Since it is a projection maiteration is very small; in practise only 1 or 2^{1} trix ($P^{2} = P$) it can only have Eigenvalues 0 and 1 (because the Eigenvalues of P^2 are λ_i^2 , Number of outer iterations: where λ_i is Eigenvalue of *P*). We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when The expression $\max_{v} \frac{v^T P v}{v^T v}$ $k \ge \frac{\log(m/(\epsilon t_0))}{\log(\mu)}$ gives the largest Eigenvalue for \vec{P} . Hence, $\vec{1}^T \vec{P} \vec{1} \leq \vec{1}^T \vec{1} = m$ We get a bound of $\mathcal{O}\left(\sqrt{m}\log\frac{m}{\epsilon t_0}\right)$ We show how to get a starting point with $t_0 = 1/2^L$. Together with $\epsilon \approx 2^{-L}$ we get $\mathcal{O}(L\sqrt{m})$ iterations. EADS II Harald Räcke 10 Karmarkars Algorithm 247

Damped Newton Method

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

 $f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$

$$\phi(x + \alpha v) - \phi(x) = -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x))$$
$$= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x))$$
$$= -\sum_{i} \log(1 - a_i^T \alpha v/s_i(x))$$

 $s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

EADS II Harald Räcke 10 Karmarkars Algorithm

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

 $\lambda_t(x) - \log(1 + \lambda_t(x))$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x} (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$ gives

$$\frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \left(\frac{\sigma}{1+\sigma} + \log\left(1-\frac{\sigma}{1+\sigma}\right)\right)$$
$$= \frac{\lambda_t(x)^2}{\sigma^2} \left(\sigma - \log(1+\sigma)\right)$$
With $v = \Delta x_{\text{nt}}$ we have $\|w\|_2 = \|v\|_{H_x} = \lambda_t(x)$; further recall that $\sigma = \|w\|_{\infty}$; hence $\sigma \le \lambda_t(x)$.

Damped Newton Method
$$\begin{bmatrix} \operatorname{For} x \ge 0 \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{2} + \frac{x^3}{2} + \frac{x^4}{2} + \frac{x^4}{2} + \frac{x^3}{2} + \frac{x^3}{2} + \frac{x^3}{2} + \frac{x^4}{2} + \frac{x^4}{2} + \frac{x^4}{2} + \frac{x^3}{2} + \frac{x^3}{2} + \frac{x^3}{2} + \frac{x^4}{2} + \frac{x^4}{2} + \frac{x^4}{2} + \frac{x^3}{2} + \frac{x^3}{2} + \frac{x^3}{2} + \frac{x^4}{2} + \frac{x^4}{$$

Centering

Lemma 3

The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \le \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log \log(1/\delta))$$

iterations.

This can be very, very slow...

EADS II Harald Räcke 10 Karmarkars Algorithm

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

EADS II Harald Räcke

10 Karmarkars Algorithm

256

254

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \rightarrow b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

EADS II Harald Räcke

10 Karmarkars Algorithm

How to get close to analytic center?			
Start at x_0 .	Note that an entry in \hat{c} fulfills $ \hat{c}_i \le 2^{2L}$. This holds since the slack in every constraint at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient is the vector of inverse slacks.		
Choose $\hat{c} := -\nabla \phi(x)$.	is the vector of inverse slacks.		
$x_0 = x^*(1)$ is point on central path for \hat{c} and $t = 1$.			

255

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

(i.e., same value for t but different c, hence, different central path).

How to get close to analytic center?

Clearly,

 $t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\boldsymbol{c}})$

The different between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}\boldsymbol{x}_{\hat{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\hat{c}}) - tc^{T}\boldsymbol{x}_{c} - \boldsymbol{\phi}(\boldsymbol{x}_{c})$$

$$\leq t(c^{T}\boldsymbol{x}_{\hat{c}} + \hat{c}^{T}\boldsymbol{x}_{c} - \hat{c}^{T}\boldsymbol{x}_{\hat{c}} - c^{T}\boldsymbol{x}_{c})$$

$$\leq 4tn2^{3L}$$

For $t = 1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $ilde{\mathcal{O}}(m^3)$ time.

