10 Karmarkars Algorithm

- inequalities $A x \leq b ; m \times n$ matrix A with rows a_{i}^{T}
- $P=\{x \mid A x \leq b\} ; P^{\circ}:=\{x \mid A x<b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^{\circ}$ define

$$
s_{i}(x):=b_{i}-a_{i}^{T} x
$$

as the slack of the i-th constraint

logarithmic barrier function:

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(s_{i}(x)\right)
$$

Penalty for point x; points close to the boundary have a very large penalty.

Throughout this section a_{i} denotes the
1
i-th row as a column vector.

Penalty Function

Penalty Function

rald Räcke

Gradient and Hessian

Taylor approximation:

$$
\phi(x+\epsilon) \approx \phi(x)+\nabla \phi(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} \nabla^{2} \phi(x) \epsilon
$$

Gradient:

$$
\nabla \phi(x)=\sum_{i=1}^{m} \frac{1}{s_{i}(x)} \cdot a_{i}=A^{T} d_{x}
$$

where $d_{x}^{T}=\left(1 / s_{1}(x), \ldots, 1 / s_{m}(x)\right) .\left(d_{x}\right.$ vector of inverse slacks)

Hessian:

$$
H_{x}:=\nabla^{2} \phi(x)=\sum_{i=1}^{m} \frac{1}{s_{i}(x)^{2}} a_{i} a_{i}^{T}=A^{T} D_{x}^{2} A
$$

with $D_{x}=\operatorname{diag}\left(d_{x}\right)$.

Proof for Gradient

$$
\begin{aligned}
\frac{\partial \phi(x)}{\partial x_{i}} & =\frac{\partial}{\partial x_{i}}\left(-\sum_{r} \ln \left(s_{r}(x)\right)\right) \\
& =-\sum_{r} \frac{\partial}{\partial x_{i}}\left(\ln \left(s_{r}(x)\right)\right)=-\sum_{r} \frac{1}{s_{r}(x)} \frac{\partial}{\partial x_{i}}\left(s_{r}(x)\right) \\
& =-\sum_{r} \frac{1}{s_{r}(x)} \frac{\partial}{\partial x_{i}}\left(b_{r}-a_{r}^{T} x\right)=\sum_{r} \frac{1}{s_{r}(x)} \frac{\partial}{\partial x_{i}}\left(a_{r}^{T} x\right) \\
& =\sum_{r} \frac{1}{s_{r}(x)} A_{r i}
\end{aligned}
$$

The i-th entry of the gradient vector is $\sum_{r} 1 / s_{r}(x) \cdot A_{r i}$. This gives that the gradient is

$$
\nabla \phi(x)=\sum_{r} 1 / s_{r}(x) a_{r}=A^{T} d_{x}
$$

Properties of the Hessian

H_{x} is positive semi-definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=u^{T} A^{T} D_{x}^{2} A u=\left\|D_{x} A u\right\|_{2}^{2} \geq 0
$$

This gives that $\phi(x)$ is convex.

If $\operatorname{rank}(A)=n, H_{x}$ is positive definite for $x \in P^{\circ}$

$$
u^{T} H_{x} u=\left\|D_{x} A u\right\|_{2}^{2}>0 \text { for } u \neq 0
$$

This gives that $\phi(x)$ is strictly convex.
$\|u\|_{H_{x}}:=\sqrt{u^{T} H_{x} u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Proof for Hessian

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}}\left(\sum_{r} \frac{1}{s_{r}(x)} A_{r i}\right) & =\sum_{r} A_{r i}\left(-\frac{1}{s_{r}(x)^{2}}\right) \cdot \frac{\partial}{\partial x_{j}}\left(s_{r}(x)\right) \\
& =\sum_{r} A_{r i} \frac{1}{s_{r}(x)^{2}} A_{r j}
\end{aligned}
$$

Note that $\sum_{r} A_{r i} A_{r j}=\left(A^{T} A\right)_{i j}$. Adding the additional factors $1 / s_{r}(x)^{2}$ can be done with a diagonal matrix.

Hence the Hessian is

$$
H_{x}=A^{T} D^{2} A
$$

Dikin Ellipsoid

$$
E_{x}=\left\{y \mid(y-x)^{T} H_{x}(y-x) \leq 1\right\}=\left\{y \mid\|y-x\|_{H_{x}} \leq 1\right\}
$$

Points in E_{x} are feasible!!!

$$
\begin{aligned}
(y & -x)^{T} H_{x}(y-x)=(y-x)^{T} A^{T} D_{x}^{2} A(y-x) \\
& =\sum_{i=1}^{m} \frac{\left(a_{i}^{T}(y-x)\right)^{2}}{s_{i}(x)^{2}} \\
& =\sum_{i=1}^{m} \frac{(\text { change of distance to } i \text {-th constraint going from } x \text { to } y)^{2}}{(\text { distance of } x \text { to } i \text {-th constraint })^{2}} \\
& \leq 1
\end{aligned}
$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

Dikin Ellipsoids

Central Path

In the following we assume that the LP and its dual are strictly feasible and that $\operatorname{rank}(A)=n$.

Central Path:

Set of points $\left\{x^{*}(t) \mid t>0\right\}$ with

$$
x^{*}(t)=\operatorname{argmin}_{x}\left\{t c^{T} x+\phi(x)\right\}
$$

- $t=0$: analytic center
- $t=\infty$: optimum solution
$x^{*}(t)$ exists and is unique for all $t \geq 0$.

$$
x_{\mathrm{ac}}:=\arg \min _{x \in P^{\circ}} \phi(x)
$$

- x_{ac} is solution to

$$
\nabla \phi(x)=\sum_{i=1}^{m} \frac{1}{s_{i}(x)} a_{i}=0
$$

- depends on the description of the polytope
- $x_{\text {ac }}$ exists and is unique iff P° is nonempty and bounded

Different Central Paths

Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions

- Is this really true? How large a t do we need?
- How do we find corresponding point $x^{*}(t)$ on central path?

Force Field Interpretation

Point $x^{*}(t)$ on central path is solution to $t c+\nabla \phi(x)=0$

- We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
- In addition there is a force $t c$ pulling us towards the optimum solution.

The Dual

primal-dual pair:

```
min}\mp@subsup{c}{}{T}
s.t. }Ax\leq
```

$$
\begin{aligned}
\max & -b^{T} z \\
\text { s.t. } & A^{T} z+c=0 \\
& z \geq 0
\end{aligned}
$$

Assumptions

- primal and dual problems are strictly feasible;
- $\operatorname{rank}(A)=n$.

> Note that the right LP in standard form
> is equal to max $\left\{-b^{T} y \mid-A^{T} y=c, x \geq\right.$
> $0\}$. The dual of this is min $\left\{c^{T} x \mid-A x \geq\right.$
> $-b\}$ (variables x are unrestricted).

How large should t be?

Point $x^{*}(t)$ on central path is solution to $t c+\nabla \phi(x)=0$.
This means

$$
t c+\sum_{i=1}^{m} \frac{1}{s_{i}\left(x^{*}(t)\right)} a_{i}=0
$$

or

$$
c+\sum_{i=1}^{m} z_{i}^{*}(t) a_{i}=0 \text { with } z_{i}^{*}(t)=\frac{1}{t s_{i}\left(x^{*}(t)\right)}
$$

- $z^{*}(t)$ is strictly dual feasible: $\left(A^{T} z^{*}+c=0 ; z^{*}>0\right)$
- duality gap between $x:=x^{*}(t)$ and $z:=z^{*}(t)$ is

$$
c^{T} x+b^{T} z=(b-A x)^{T} z=\frac{m}{t}
$$

- if gap is less than $1 / 2^{\Omega(L)}$ we can snap to optimum point

How to find $x^{*}(t)$

First idea:

- start somewhere in the polytope
- use iterative method (Newtons method) to minimize $f_{t}(x):=t c^{T} x+\phi(x)$

Newton Method Observe that $H_{f_{t}}(x)=H(x)$, where $H(x)$ is the Hessian for the function $\phi(x)$ (adding a linear term like $t c^{T} x$ does not affect the Hessian). Also $\nabla f_{t}(x)=t c+\nabla \phi(x)$.

We want to move to a point where this gradient is $\overline{0} \overline{0}$
Newton Step at $x \in P^{\circ}$

$$
\begin{aligned}
\Delta x_{\mathrm{nt}} & =-H_{f_{t}}^{-1}(x) \nabla f_{t}(x) \\
& =-H_{f_{t}}^{-1}(x)(t c+\nabla \phi(x)) \\
& =-\left(A^{T} D_{x}^{2} A\right)^{-1}\left(t c+A^{T} d_{x}\right)
\end{aligned}
$$

Newton Iteration:

$$
x:=x+\Delta x_{\mathrm{nt}}
$$

Newton Method

Quadratic approximation of f_{t}

$$
f_{t}(x+\epsilon) \approx f_{t}(x)+\nabla f_{t}(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} H_{f_{t}}(x) \epsilon
$$

Suppose this were exact:

$$
f_{t}(x+\epsilon)=f_{t}(x)+\nabla f_{t}(x)^{T} \epsilon+\frac{1}{2} \epsilon^{T} H_{f_{t}}(x) \epsilon
$$

Then gradient is given by:

$$
\nabla f_{t}(x+\epsilon)=\nabla f_{t}(x)+H_{f_{t}}(x) \cdot \epsilon
$$

Note that for the one-dimensional case $g(\epsilon)=f(x)+f^{\prime}(x) \epsilon+\frac{1}{2} f^{\prime \prime}(x) \epsilon^{2}$, then $g^{\prime}(\epsilon)=f^{\prime}(x)+f^{\prime \prime}(x) \epsilon$.

Harald Räcke

Measuring Progress of Newton Step

Newton decrement:

$$
\begin{aligned}
\lambda_{t}(x) & =\left\|D_{x} A \Delta x_{\mathrm{nt}}\right\| \\
& =\left\|\Delta x_{\mathrm{nt}}\right\|_{H_{x}}
\end{aligned}
$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$
-\lambda_{t}(x)^{2}=\nabla f_{t}(x)^{T} \Delta x_{\mathrm{nt}}
$$

- $\lambda_{t}(x)=0$ iff $x=x^{*}(t)$
- $\lambda_{t}(x)$ is measure of proximity of x to $x^{*}(t)$

Convergence of Newtons Method

Theorem 2

If $\lambda_{t}(x)<1$ then

- $x_{+}:=x+\Delta x_{n t} \in P^{\circ}$ (new point feasible)
- $\lambda_{t}\left(x_{+}\right) \leq \lambda_{t}(x)^{2}$

This means we have quadratic convergence. Very fast.

Convergence of Newtons Method

feasibility:

- $\lambda_{t}(x)=\left\|\Delta x_{\mathrm{nt}}\right\|_{H_{x}}<1$; hence x_{+}lies in the Dikin ellipsoid around x.

Convergence of Newtons Method

bound on $\lambda_{t}\left(x^{+}\right)$:

we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2}
\end{aligned}
$$

To see the last equality we use Pythagoras

$$
\|a\|^{2}+\|a+b\|^{2}=\|b\|^{2}
$$

if $a^{T}(a+b)=0$.

Convergence of Newtons Method

$$
\begin{aligned}
D A \Delta x_{\mathrm{nt}} & =D A\left(x^{+}-x\right) \\
& =D\left(b-A x-\left(b-A x^{+}\right)\right) \\
& =D\left(D^{-1} \overrightarrow{1}-D_{+}^{-1} \overrightarrow{1}\right) \\
& =\left(I-D_{+}^{-1} D\right) \overrightarrow{1}
\end{aligned}
$$

$$
\begin{aligned}
a^{T}(a & +b) \\
& =\Delta x_{\mathrm{nt}}^{+T} A^{T} D_{+}\left(D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(A^{T} D_{+}^{2} A \Delta x_{\mathrm{nt}}^{+}-A^{T} D^{2} A \Delta x_{\mathrm{nt}}+A^{T} D_{+} D A \Delta x_{\mathrm{nt}}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(H_{+} \Delta x_{\mathrm{nt}}^{+}-H \Delta x_{\mathrm{nt}}+A^{T} D_{+} \overrightarrow{1}-A^{T} D \overrightarrow{1}\right) \\
& =\Delta x_{\mathrm{nt}}^{+T}\left(-\nabla f_{t}\left(x^{+}\right)+\nabla f_{t}(x)+\nabla \phi\left(x^{+}\right)-\nabla \phi(x)\right) \\
& =0
\end{aligned}
$$

Convergence of Newtons Method

bound on $\boldsymbol{\lambda}_{t}\left(\boldsymbol{x}^{+}\right)$:

we use $D:=D_{x}=\operatorname{diag}\left(d_{x}\right)$ and $D_{+}:=D_{x^{+}}=\operatorname{diag}\left(d_{x^{+}}\right)$

$$
\begin{aligned}
\lambda_{t}\left(x^{+}\right)^{2} & =\left\|D_{+} A \Delta x_{\mathrm{n}}^{+}\right\|^{2} \\
& \leq\left\|D_{+} A \Delta x_{\mathrm{n}}^{+}\right\|^{2}+\left\|D_{+} A \Delta x_{\mathrm{nt}}^{+}+\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right) D A \Delta x_{\mathrm{nt}}\right\|^{2} \\
& =\left\|\left(I-D_{+}^{-1} D\right)^{2} \overrightarrow{1}\right\|^{2} \\
& \leq\left\|\left(I-D_{+}^{-1} D\right) \overrightarrow{1}\right\|^{4} \\
& =\left\|D A \Delta x_{\mathrm{nt}}\right\|^{4} \\
& =\lambda_{t}(x)^{4}
\end{aligned}
$$

The second inequality follows from $\sum_{i} y_{i}^{4} \leq\left(\sum_{i} y_{i}^{2}\right)^{2}$

Path-following Methods

Try to slowly travel along the central path.

```
Algorithm 1 PathFollowing
    start at analytic center
    while solution not good enough do
        make step to improve objective function
        recenter to return to central path
```

If $\lambda_{t}(x)$ is large we do not have a guarantee

Try to avoid this case!!!

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^{*}\left(t_{0}\right)$ is given
- $x^{*}(t)$ is computed exactly in each iteration
ϵ is approximation we are aiming for
start at $t=t_{0}$, repeat until $m / t \leq \epsilon$
- compute $x^{*}(\mu t)$ using Newton starting from $x^{*}(t)$
- $t:=\mu t$
where $\mu=1+1 /(2 \sqrt{m})$

Short Step Barrier Method

gradient of $f_{t^{+}}$at $\left(x=x^{*}(t)\right)$

$$
\begin{aligned}
\nabla f_{t^{+}}(x) & =\nabla f_{t}(x)+(\mu-1) t c \\
& =-(\mu-1) A^{T} D_{x} \overrightarrow{1}
\end{aligned}
$$

This holds because $0=\nabla f_{t}(x)=t c+A^{T} D_{x} \overrightarrow{1}$.
The Newton decrement is

$$
\begin{aligned}
\lambda_{t^{+}}(x)^{2} & =\nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\
& =(\mu-1)^{2} \overrightarrow{1}^{T} B\left(B^{T} B\right)^{-1} B^{T} \overrightarrow{1} \quad B=D_{x}^{T} A \\
& \leq(\mu-1)^{2} m \\
& =1 / 4
\end{aligned}
$$

This means we are in the range of quadratic convergence!!!

Number of Iterations

the number of Newton iterations per outer iteration is very small; in practise only 1 or 2

Number of outer iterations:

We need $t_{k}=\mu^{k} t_{0} \geq m / \epsilon$. This holds when

$$
k \geq \frac{\log \left(m /\left(\epsilon t_{0}\right)\right)}{\log (\mu)}
$$

We get a bound of

$$
\mathcal{O}\left(\sqrt{m} \log \frac{m}{\epsilon t_{0}}\right)
$$

We show how to get a starting point with $t_{0}=1 / 2^{L}$. Together with $\epsilon \approx 2^{-L}$ we get $\mathcal{O}(L \sqrt{m})$ iterations.

$$
\max _{v} \frac{v^{T} P v}{v^{T} v}
$$

gives the largest Eigenvalue for P. Hence, $\overrightarrow{1}^{T} P \overrightarrow{1} \leq \overrightarrow{1}^{T} \overrightarrow{1}=m$

Damped Newton Method

$=\left(t c^{T}+\sum_{i} a_{i}^{T} / s_{i}(x)\right) \alpha v$ $=t c^{T} \alpha v+\sum_{i} \alpha w_{i}$

Define $w_{i}=a_{i}^{T} v / s_{i}(x)$ and $\sigma=\max _{i} w_{i}$. Then
Note that $\|\bar{w}\|=\|v\|_{H_{X}}$.

$$
\begin{aligned}
f_{t}(x+\alpha v) & -f_{t}(x)-\nabla f_{t}(x)^{T} \alpha v \\
& =-\sum_{i}\left(\alpha w_{i}+\log \left(1-\alpha w_{i}\right)\right) \\
& \leq-\sum_{w_{i}>0}\left(\alpha w_{i}+\log \left(1-\alpha w_{i}\right)\right)+\sum_{w_{i} \leq 0} \frac{\alpha^{2} w_{i}^{2}}{2} \\
& \leq-\sum_{w_{i}>0} \frac{w_{i}^{2}}{\sigma^{2}}(\alpha \sigma+\log (1-\alpha \sigma))+\frac{(\alpha \sigma)^{2}}{2} \sum_{w_{i} \leq 0} \frac{w_{i}^{2}}{\sigma^{2}}
\end{aligned}
$$

```
For }|x|<1,x\leq0
x+\operatorname{log}(1-x)=--\frac{\mp@subsup{x}{}{2}}{2}-\frac{\mp@subsup{x}{}{3}}{3}-\frac{\mp@subsup{x}{}{4}}{4}-\cdots\geq-\frac{\mp@subsup{x}{}{2}}{2}=-\frac{\mp@subsup{y}{}{2}}{2}\frac{\mp@subsup{x}{}{2}}{\mp@subsup{y}{}{2}}
```



```
For }|x|<1,0<x\leqy
x+log(1-x) = - \frac{\mp@subsup{x}{}{2}}{2}}-\frac{\mp@subsup{x}{}{3}}{3}-\frac{\mp@subsup{x}{}{4}}{4}-\cdots=\frac{\mp@subsup{x}{}{2}}{\mp@subsup{y}{}{2}}(-\frac{\mp@subsup{y}{}{2}}{2}-\frac{\mp@subsup{y}{}{2}x}{3}-\frac{\mp@subsup{y}{}{2}\mp@subsup{x}{}{2}}{4}-\ldots
    \geq\frac{\mp@subsup{x}{}{2}}{\mp@subsup{y}{}{2}}(-\frac{\mp@subsup{y}{}{2}}{2}-\frac{\mp@subsup{y}{}{3}}{3}-\frac{\mp@subsup{y}{}{4}}{4}-\ldots)=\frac{\mp@subsup{x}{}{2}}{\mp@subsup{y}{}{2}}(y+\operatorname{log}(1-y))
```


Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

$$
\lambda_{t}(x)-\log \left(1+\lambda_{t}(x)\right)
$$

Proof: The decrease in cost is

$$
-\alpha \nabla f_{t}(x)^{T} v+\frac{1}{\sigma^{2}}\|v\|_{H_{x}}(\alpha \sigma+\log (1-\alpha \sigma))
$$

Choosing $\alpha=\frac{1}{1+\sigma}$ and $v=\Delta x_{\mathrm{nt}}$ gives

$$
\begin{aligned}
\frac{1}{1+\sigma} \lambda_{t}(x)^{2} & +\frac{\lambda_{t}(x)^{2}}{\sigma^{2}}\left(\frac{\sigma}{1+\sigma}+\log \left(1-\frac{\sigma}{1+\sigma}\right)\right) \\
& =\frac{\lambda_{t}(x)^{2}}{\sigma^{2}}(\sigma-\log (1+\sigma))
\end{aligned}
$$

With $v=\Delta x_{\text {nt }}$ we have $\|w\|_{2}=\|v\|_{H_{x}}=\lambda_{t}(x)$; further
recall that $\sigma=\|w\|_{\infty}$; hence $\sigma \leq \lambda_{t}(x)$

Damped Newton Method
For $\begin{aligned} & \text { For } \\ & x^{2} \geq 0 \\ & x^{2}\end{aligned}$ $\frac{x^{2}}{2} \leq \frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots=-(x+\log (1-x))$

$$
\begin{aligned}
& \leq-\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}}(\alpha \sigma+\log (1-\alpha \sigma)) \\
& =-\frac{1}{\sigma^{2}}\|v\|_{H_{x}}^{2}(\alpha \sigma+\log (1-\alpha \sigma))
\end{aligned}
$$

Damped Newton Iteration:

In a damped Newton step we choose

$$
x_{+}=x+\frac{1}{1+\sigma_{x}\left(\Delta x_{\mathrm{nt}}\right)} \Delta x_{\mathrm{nt}}
$$

This means that in the above expressions we choose $\alpha=\frac{1}{1+\sigma}$ and $v=\Delta x_{\mathrm{nt}}$. Note that
it wouldn't make sense to choose α larger than 1 as this would mean that our real target $1\left(x+\Delta x_{n t}\right)$ is inside the polytope but we overshoot and go further than this target.

10 Karmarkars Algorithm

Damped Newton Method

The first inequality follows since the ' function $\frac{1}{x^{2}}(x-\log (1+x))$ is monotonically decreasing

$$
\begin{aligned}
& \geq \lambda_{t}(x)-\log \left(1+\lambda_{t}(x)\right) \\
& \geq 0.09
\end{aligned}
$$

for $\lambda_{t}(x) \geq 0.5$

Centering Algorithm:

Input: precision δ; starting point x

1. compute Δx_{nt} and $\lambda_{t}(x)$
2. if $\lambda_{t}(x) \leq \delta$ return x
3. set $x:=x+\alpha \Delta x_{n t}$ with

$$
\alpha=\left\{\begin{array}{cl}
\frac{1}{1+\sigma_{x}\left(\Delta x_{\mathrm{nt}}\right)} & \lambda_{t} \geq 1 / 2 \\
1 & \text { otw. }
\end{array}\right.
$$

Centering

Lemma 3
The centering algorithm starting at x_{0} reaches a point with $\lambda_{t}(x) \leq \delta$ after

$$
\frac{f_{t}\left(x_{0}\right)-\min _{y} f_{t}(y)}{0.09}+\mathcal{O}(\log \log (1 / \delta))
$$

iterations.

This can be very, very slow...

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{i j}=\operatorname{det}(M)$.

For two basis solutions $x_{B}, x_{\bar{B}}$, the cost-difference $c^{T} x_{B}-c^{T} x_{\bar{B}}$ can be represented by a rational number that has denominator $z=\operatorname{det}\left(A_{B}\right) \cdot \operatorname{det}\left(A_{\bar{B}}\right) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1 / 2^{4 L}$ (i.e., $t \approx 2^{4 L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^{T} x$ is at most $n 2^{M} 2^{L}$, where $M \leq L$ is the encoding length of the largest entry in \bar{c}.

How to get close to analytic center?

Let $P=\{A x \leq b\}$ be our (feasible) polyhedron, and x_{0} a feasible point.

We change $b \rightarrow b+\frac{1}{\lambda} \cdot \overrightarrow{1}$, where $L=\langle A\rangle+\langle b\rangle+\langle c\rangle$ (encoding length) and $\lambda=2^{2 L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

How to get close to analytic center?

$x_{0}=x^{*}(1)$ is point on central path for \hat{c} and $t=1$.
You can travel the central path in both directions. Go towards 0 until $t \approx 1 / 2^{\Omega(L)}$. This requires $O(\sqrt{m} L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_{c} denote the point that minimizes

$$
t \cdot c^{T} x+\phi(x)
$$

(i.e., same value for t but different c, hence, different central path).

How to get close to analytic center?

Clearly,

$$
t \cdot \hat{c}^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) \leq t \cdot \hat{c}^{T} x_{c}+\phi\left(x_{c}\right)
$$

The different between $f_{t}\left(x_{\hat{c}}\right)$ and $f_{t}\left(x_{c}\right)$ is

$$
\begin{aligned}
t c^{T} x_{\hat{c}}+\phi\left(x_{\hat{c}}\right) & -t c^{T} x_{c}-\phi\left(x_{c}\right) \\
& \leq t\left(c^{T} x_{\hat{c}}+\hat{c}^{T} x_{c}-\hat{c}^{T} x_{\hat{c}}-c^{T} x_{c}\right) \\
& \leq 4 t n 2^{3 L}
\end{aligned}
$$

For $\left.t=1 / 2^{\Omega(L)}\right)$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_{c} quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m} L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}\left(m^{3}\right)$ time.

