10 Karmarkars Algorithm

- inequalities $Ax \leq b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^\circ$ define

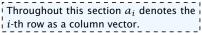
$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

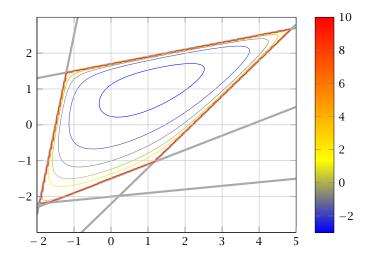
logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^m \log(s_i(x))$$

Penalty for point *x*; points close to the boundary have a very large penalty.

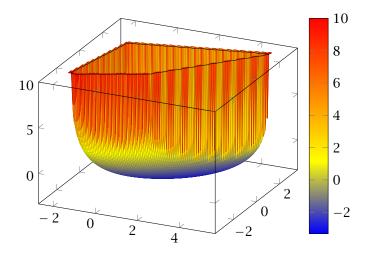


Penalty Function



10 Karmarkars Algorithm

Penalty Function



Gradient and Hessian

Taylor approximation:

$$\phi(x+\epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_{x} := \nabla^{2} \phi(x) = \sum_{i=1}^{m} \frac{1}{s_{i}(x)^{2}} a_{i} a_{i}^{T} = A^{T} D_{x}^{2} A$$

with $D_x = \text{diag}(d_x)$.

Proof for Gradient

$$\begin{split} \frac{\partial \phi(x)}{\partial x_i} &= \frac{\partial}{\partial x_i} \left(-\sum_r \ln(s_r(x)) \right) \\ &= -\sum_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right) = -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right) \\ &= -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right) = \sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right) \\ &= \sum_r \frac{1}{s_r(x)} A_{ri} \end{split}$$

The *i*-th entry of the gradient vector is $\sum_{r} 1/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} 1/s_{r}(x)a_{r} = A^{T}d_{x}$$

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_{r} A_{ri}A_{rj} = (A^{T}A)_{ij}$. Adding the additional factors $1/s_{r}(x)^{2}$ can be done with a diagonal matrix.

Hence the Hessian is

$$H_X = A^T D^2 A$$

Properties of the Hessian

 H_X is positive semi-definite for $x \in P^\circ$

 $u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_X is positive definite for $x \in P^\circ$

$$u^{T}H_{x}u = \|D_{x}Au\|_{2}^{2} > 0$$
 for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Dikin Ellipsoid

$$E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_{x}} \le 1 \}$$

Points in E_x are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$

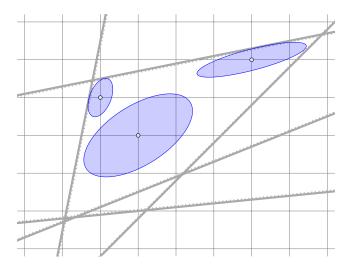
$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

Dikin Ellipsoids



Analytic Center

 $x_{\mathrm{ac}} := \operatorname{arg\,min}_{x \in P^{\circ}} \phi(x)$

• x_{ac} is solution to

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$$

- depends on the description of the polytope
- x_{ac} exists and is unique iff P° is nonempty and bounded

Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

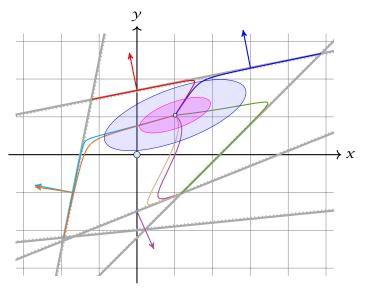
Set of points $\{x^*(t) \mid t > 0\}$ with

 $x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$

- t = 0: analytic center
- $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

Different Central Paths



10 Karmarkars Algorithm

Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions:

- Is this really true? How large a t do we need?
- How do we find corresponding point $x^*(t)$ on central path?

The Dual

primal-dual pair:

Assumptions

primal and dual problems are strictly feasible;

• $\operatorname{rank}(A) = n$.

Note that the right LP in standard form is equal to $\max\{-b^T y \mid -A^T y = c, x \ge 0\}$. The dual of this is $\min\{c^T x \mid -Ax \ge -b\}$ (variables x are unrestricted).

Force Field Interpretation

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$

- We can view each constraint as generating a repelling force. The combination of these forces is represented by ∇φ(x).
- In addition there is a force tc pulling us towards the optimum solution.

How large should *t* be?

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

- $z^*(t)$ is strictly dual feasible: $(A^T z^* + c = 0; z^* > 0)$
- duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

How to find $x^*(t)$

First idea:

- start somewhere in the polytope
- use iterative method (Newtons method) to minimize $f_t(x) := tc^T x + \phi(x)$

Newton Method

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x + \epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$$

Note that for the one-dimensional case $g(\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2$, then $g'(\epsilon) = f'(x) + f''(x)\epsilon$.

10 Karmarkars Algorithm

Newton Method

Observe that $H_{f_t}(x) = H(x)$, where H(x) is the Hessian for the function $\phi(x)$ (adding a linear term like $tc^T x$ does not affect the Hessian). Also $\nabla f_t(x) = tc + \nabla \phi(x)$.

We want to move to a point where this gradient is 0:

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H_{f_t}^{-1}(x)\nabla f_t(x) = -H_{f_t}^{-1}(x)(tc + \nabla \phi(x)) = -(A^T D_x^2 A)^{-1}(tc + A^T d_x)$$

Newton Iteration:

 $x := x + \Delta x_{nt}$

Measuring Progress of Newton Step

Newton decrement:

 $\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\| \\ = \|\Delta x_{\mathsf{nt}}\|_{H_x}$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

 $-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$

• $\lambda_t(x) = 0$ iff $x = x^*(t)$

• $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Recall that Δx_{nt} fulfills $-H(x)\Delta x_{nt} = \nabla f_t()$.

Theorem 2 If $\lambda_t(x) < 1$ then

- $x_+ := x + \Delta x_{nt} \in P^\circ$ (new point feasible)
- $\lambda_t(x_+) \leq \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

feasibility:

► $\lambda_t(x) = \|\Delta x_{nt}\|_{H_x} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

$$\lambda_t (x^+)^2 = \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2$$

$$\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$$

$$= \|(I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$$

To see the last equality we use Pythagoras

 $||a||^2 + ||a + b||^2 = ||b||^2$

if $a^T(a+b) = 0$.

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

bound on $\lambda_t(x^+)$: we use $D := D_x = \operatorname{diag}(d_x)$ and $D_+ := D_{x^+} = \operatorname{diag}(d_{x^+})$

$$\begin{split} \lambda_t (x^+)^2 &= \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 \\ &\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D)^2 \vec{1}\|^2 \\ &\leq \|(I - D_+^{-1} D) \vec{1}\|^4 \\ &= \|D A \Delta x_{\mathsf{nt}}\|^4 \\ &= \lambda_t (x)^4 \end{split}$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

If $\lambda_t(x)$ is large we do not have a guarantee.

Try to avoid this case!!!

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

- 1: start at analytic center
- 2: while solution not good enough do
- 3: make step to improve objective function
- 4: recenter to return to central path

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly in each iteration

ϵ is approximation we are aiming for

start at $t = t_0$, repeat until $m/t \le \epsilon$

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- ► *t* := *µt*

where $\mu = 1 + 1/(2\sqrt{m})$

Short Step Barrier Method

gradient of f_{t^+} at ($x = x^*(t)$)

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_X \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\begin{split} \lambda_{t^{+}}(x)^{2} &= \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x) \\ &= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A \\ &\leq (\mu - 1)^{2} m \\ &= 1/4 \end{split}$$

This means we are in the range of quadratic convergence!!!

Number of Iterations

the number of Newton iterations per outer tors. Since it is a projection maiteration is very small; in practise only 1 or $2^{1} \frac{\text{trix}}{1000} (P^{2} = P)$ it can only have

Number of outer iterations:

We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when

$$k \geq \frac{\log(m/(\epsilon t_0))}{\log(\mu)}$$

We get a bound of

$$\mathcal{O}\left(\sqrt{m}\log\frac{m}{\epsilon t_0}\right)$$

We show how to get a starting point with $t_0 = 1/2^L$. Together with $\epsilon \approx 2^{-L}$ we get $\mathcal{O}(L\sqrt{m})$ iterations.

Explanation for previous slide $P = B(B^TB)^{-1}B^T$ is a symmetric real-valued matrix; it has *n* linearly independent Eigenvectors. Since it is a projection matrix ($P^2 = P$) it can only have Eigenvalues 0 and 1 (because the Eigenvalues of P^2 are λ_i^2 , where λ_i is Eigenvalue of *P*). The expression

$$\max_{v} \frac{v^T P v}{v^T v}$$

gives the largest Eigenvalue for P. Hence, $\vec{1}^T P \vec{1} \le \vec{1}^T \vec{1} = m$

We assume that the polytope (not just the LP) is bounded. Then $Av \leq 0$ is not possible.

For
$$x \in P^\circ$$
 and direction $v \neq 0$ define

$$\sigma_{X}(v) := \max_{i} \frac{a_{i}^{T} v}{s_{i}(x)}$$

 $a_i^T v$ is the change on the left hand side of the *i*-th constraint when moving in direction of v. If $\sigma_x(v) > 1$ then for one coor-

dinate this change is larger than the slack in the constraint at position x.

By downscaling v we can ensure to stay in the polytope.

Observation:

 $x + \alpha v \in P$ for $\alpha \in \{0, 1/\sigma_x(v)\}$

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\begin{split} \phi(x + \alpha v) - \phi(x) &= -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x)) \\ &= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x)) \\ &= -\sum_{i} \log(1 - a_i^T \alpha v/s_i(x)) \end{split}$$

 $s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

$\nabla f_t(x)^T \alpha v$ **Damped Newton Method** $= (tc^T + \sum_i a_i^T / s_i(x)) \alpha v$ $= tc^T \alpha v + \sum_i \alpha w_i$ Note that $||w|| = ||v||_{H_{\chi}}$. Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then $f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$ $= -\sum_{i} (\alpha w_i + \log(1 - \alpha w_i))$ $\leq -\sum_{w>0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w>0} \frac{\alpha^2 w_i^2}{2}$ $w_i > 0$ $\leq -\sum_{w>0} \frac{w_i^2}{\sigma^2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right) + \frac{(\alpha \sigma)^2}{2} \sum_{w<0} \frac{w_i^2}{\sigma^2}$

For
$$|x| < 1$$
, $x \le 0$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \ge -\frac{x^2}{2} = -\frac{y^2}{2} \frac{x^2}{y^2}$
For $|x| < 1$, $0 < x \le y$:
 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^2x}{3} - \frac{y^2x^2}{4} - \dots \right)$
 $\ge \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^3}{3} - \frac{y^4}{4} - \dots \right) = \frac{x^2}{y^2} (y + \log(1 - y))$

For
$$x \ge 0$$

 $\frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x))$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{x}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{\mathsf{nt}})} \Delta x_{\mathsf{nt}}$$

This means that in the above expressions we choose $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$. Note that it wouldn't make sense to choose α larger than 1 as this would mean that our real target $(x + \Delta x_{nt})$ is inside the polytope but we overshoot and go further than this target.

Theorem:

In a damped Newton step the cost decreases by at least

 $\lambda_t(x) - \log(1 + \lambda_t(x))$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x} (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\sigma}$ and $v = \Delta x_{nt}$ gives

 $\begin{aligned} \frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \left(\frac{\sigma}{1+\sigma} + \log\left(1-\frac{\sigma}{1+\sigma}\right)\right) \\ &= \frac{\lambda_t(x)^2}{\sigma^2} \left(\sigma - \log(1+\sigma)\right) \end{aligned}$ With $v = \Delta x_{\rm nt}$ we have $\|w\|_2 = \|v\|_{H_x} = \lambda_t(x)$; further recall that $\sigma = \|w\|_{\infty}$; hence $\sigma \le \lambda_t(x)$.

The first inequality follows since the function $\frac{1}{x^2}(x - \log(1+x))$ is monotonically decreasing.

 $\geq \lambda_t(x) - \log(1 + \lambda_t(x))$ ≥ 0.09

for $\lambda_t(x) \ge 0.5$

Centering Algorithm:

Input: precision δ ; starting point x

- **1.** compute Δx_{nt} and $\lambda_t(x)$
- **2.** if $\lambda_t(x) \leq \delta$ return x
- **3.** set $x := x + \alpha \Delta x_{nt}$ with

$$\alpha = \begin{cases} \frac{1}{1 + \sigma_x(\Delta x_{\mathsf{nt}})} & \lambda_t \ge 1/2 \\ 1 & \mathsf{otw.} \end{cases}$$

Centering

Lemma 3

The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \le \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log \log(1/\delta))$$

iterations.

This can be very, very slow...

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \rightarrow b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}}) \cdot \lambda$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

How to get close to analytic center?

Start at x_0 .	Note that an entry in \hat{c} fulfills $ \hat{c}_i \le 2^{2L}$. This holds since the slack in every constraint
	at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient
Choose $\hat{c} := -\nabla \phi(x)$.	is the vector of inverse slacks.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

(i.e., same value for t but different c, hence, different central path).

How to get close to analytic center?

Clearly,

$$t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\boldsymbol{c}})$$

The different between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4tn2^{3L}$$

For $t = 1/2^{\Omega(L)}$) the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.