Repetition: Primal Dual for Set Cover

Primal Relaxation:

min		$\sum_{i=1}^{k} w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	\geq	1
	$\forall i \in \{1, \dots, k\}$	x_i	\geq	0

Dual Formulation:

max		$\sum_{u\in U} \mathcal{Y}_u$		
s.t.	$\forall i \in \{1, \dots, k\}$	$\sum_{u:u\in S_i} \mathcal{Y}_u$	\leq	w_i
		Yu	\geq	0

EADS II Harald Räcke		

Repetition: Primal Dual for Set Cover

Analysis:

For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$
$$\leq f \cdot \sum_{e} y_{e} \leq f \cdot \text{OPT}$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $\gamma = 0$ (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_i set $x_i = 1$ (add this set to your solution).

EADS II	18.1 Primal Dual Revisited	
🛛 🕒 🛛 🖓 Harald Räcke		450

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

EADS II Harald Räcke

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

 $y_e > 0 \Rightarrow \sum_{j:e \in S_j} x_j = 1$

then the solution would be optimal!!!

EADS II ||||||| Harald Räcke 18.1 Primal Dual Revisited

We don't fulfill these constraint but we fulfill an approximate version:

 $y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$

This is sufficient to show that the solution is an f-approximation.

EADS II Harald Räcke	18.1 Primal Dual Revisited	453

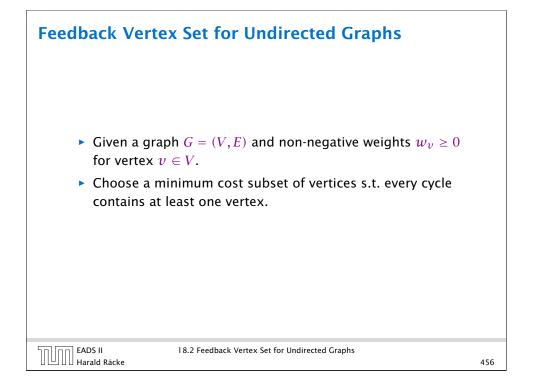
Then	right hand side of <i>j</i> -th dual constraint $\sum_{j} \underbrace{c_{j}}_{j} x_{j} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$ $primal cost = \alpha \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$ $\leq \alpha \beta \cdot \sum_{i} b_{i} y_{i}$ $full dual objective$	
EADS II Harald Räcke	18.1 Primal Dual Revisited	455

Suppose we have a primal/dual pair

min		$\sum_j c_j x_j$			max		$\sum_i b_i y_i$		
s.t.	∀i	$\sum_{j:} a_{ij} x_j$	\geq	b_i	s.t.	$\forall j$	$\sum_i a_{ij} y_i$	\leq	c_j
	$\forall j$	x_j	\geq	0		∀i	${\mathcal Y}i$	\geq	0

and solutions that fulfill approximate slackness conditions:

	$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$ $y_{i} > 0 \Rightarrow \sum_{j} a_{ij} x_{j} \le \beta b_{i}$		
EADS II Harald Räcke	18.1 Primal Dual Revisited	454	



We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The O(log n)-approximation for Set Cover does not help us to get a good solution.

EADS II	18.2 Feedback Vertex Set for Undirected Graphs	
UUU Harald Räcke		457

If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.
 - set $x_v = 1$.

Let $\mathbb C$ denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

min		$\sum_{v} w_{v} x_{v}$		
s.t.	$\forall C \in \mathfrak{C}$	$\sum_{v \in C} x_v$	\geq	1
	$\forall v$	x_v	\geq	0

Dual Formulation:

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
EADS II Harald Räcke	18.2 Feedback Vertex Set for Undirected Graphs	458

Then

EADS II Harald Räcke

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

18.2 Feedback Vertex Set for Undirected Graphs

Algorithm 1 FeedbackVertexSet1: $y \leftarrow 0$ 2: $x \leftarrow 0$ 3: while exists cycle C in G do4: increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$ 5: $x_v = 1$ 6: remove v from G7: repeatedly remove vertices of degree 1 from G

	18.2 Feedback Vertex Set for Undirected Graphs	
UUU Harald Räcke		461

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 2

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$y_C > 0 \Rightarrow |S \cap C| \le \mathcal{O}(\log n)$$
.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

EADS II Harald Räcke

EADS II Harald Räcke 18.2 Feedback Vertex Set for Undirected Graphs

462

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes $s, t \in V$ and edge-weights $c : E \to \mathbb{R}^+$ find a shortest path between s and tw.r.t. edge-weights c.

ſ	min		$\sum_{e} c(e) x_{e}$		
	s.t.	$\forall S \in S$	$\sum_{e:\delta(S)} x_e$	\geq	1
		$\forall e \in E$	x_e	\in	$\{0, 1\}$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

EADS II Harald Räcke

18.2 Feedback Vertex Set for Undirected Graphs

Primal Dual for Shortest Path

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}.$

EADS II	18.3 Primal Dual for Shortest Path	
🛛 🕒 🛛 🖓 Harald Räcke		465

Algo	rithm 1 PrimalDualShortestPath
1: Y	$r \leftarrow 0$
2: F	$\leftarrow \emptyset$
3: N	while there is no s - t path in (V, F) do
4:	Let C be the connected component of (V, F) con-
	taining s
5:	Increase $\mathcal{Y}_{\mathcal{C}}$ until there is an edge $e'\in\delta(\mathcal{C})$ such
	that $\sum_{S:e'\in\delta(S)} y_S = c(e')$.
6:	$F \leftarrow F \cup \{e'\}$
7: L	et P be an s-t path in (V, F)
8: r e	eturn P

Primal Dual for Shortest Path

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

EADS II Harald Räcke

18.3 Primal Dual for Shortest Path

Lemma 3

At each point in time the set F forms a tree.

Proof:

- ► In each iteration we take the current connected component from (V, F) that contains *s* (call this component *C*) and add some edge from $\delta(C)$ to *F*.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

18.3 Primal Dual for Shortest Path

467

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S .$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le \text{OPT}$$

by weak duality.

Hence, we find a shortest path.

	18.3 Primal Dual for Shortest Path	
🛛 🕒 🗋 Harald Räcke		469

Steiner Forest Problem:

EADS II

Harald Räcke

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

18.4 Steiner Forest

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

If *S* contains two edges from *P* then there must exist a subpath P' of *P* that starts and ends with a vertex from *S* (and all interior vertices are not in *S*).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

EADS II Harald Räcke 18.3 Primal Dual for Shortest Path

470

		$ \begin{array}{c} \sum S : \exists i \text{ s.t. } S \in S_i \ \mathcal{Y}S \\ \sum S : e \in \delta(S) \ \mathcal{Y}S \\ \mathcal{Y}S \end{array} $		
max		$\sum S: \exists i \text{ s.t. } S \in S_i \mathcal{Y}S$		
s.t.	$\forall e \in E$	$\sum_{S:e\in\delta(S)} \mathcal{Y}_S$	\leq	c(e)
		γ_{S}	\geq	0

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

Algorith	m 1 FirstTry
1: <i>Y</i> ← ()
2: <i>F</i> ← ∅	
3: while	e not all s_i - t_i pairs connected in F do
4: L	Let C be some connected component of (V, F)
S	such that $ C \cap \{s_i, t_i\} = 1$ for some <i>i</i> .
5: I	ncrease $y_{\mathcal{C}}$ until there is an edge $e'\in\delta(\mathcal{C})$ s.t.
2	$\sum_{S \in S_i: e' \in \delta(S)} \mathcal{Y}_S = C_{e'}$
	$F \leftarrow F \cup \{e'\}$
7: retur	$n \bigcup_i P_i$

EADS II Harald Räcke EADS II

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} \gamma_S = \sum_{S} |\delta(S) \cap F| \cdot \gamma_S .$$

If we show that $y_S > 0$ implies that $|\delta(S) \cap F| \le \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- The final set *F* contains all edges $\{v_0, v_i\}$, i = 1, ..., k.
- $y_{\{v_0\}} > 0$ but $|\delta(\{v_0\}) \cap F| = k$.

```
EADS II
Harald Räcke
```

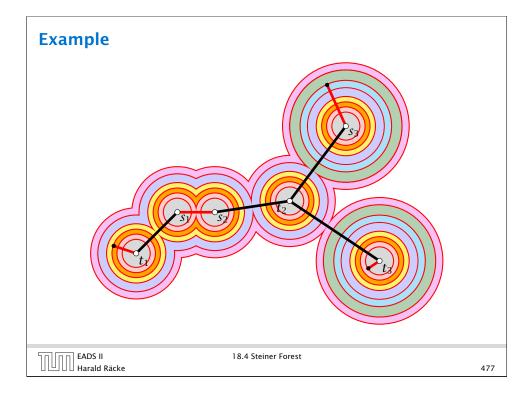
18.4 Steiner Forest

474

Algorithm 1 SecondTry1:
$$y \leftarrow 0$$
; $F \leftarrow \emptyset$; $\ell \leftarrow 0$ 2: while not all $s_i \cdot t_i$ pairs connected in F do3: $\ell \leftarrow \ell + 1$ 4: Let \mathbb{C} be set of all connected components C of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i .5: Increase y_C for all $C \in \mathbb{C}$ uniformly until for some edg $e_\ell \in \delta(C'), C' \in \mathbb{C}$ s.t. $\sum_{S:e_\ell \in \delta(S)} y_S = c_{e_\ell}$ 6: $F \leftarrow F \cup \{e_\ell\}$ 7: $F' \leftarrow F$ 8: for $k \leftarrow \ell$ downto 1 do // reverse deletion9: if $F' - e_k$ is feasible solution then10: remove e_k from F' 11: return F'

18.4 Steiner Forest

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.



$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

We want to show that

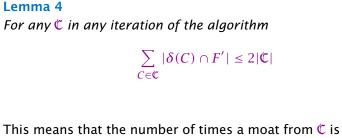
 $\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$

▶ In the *i*-th iteration the increase of the left-hand side is

 $\epsilon \sum_{C \in \mathfrak{C}} |F' \cap \delta(C)|$

and the increase of the right hand side is $2\epsilon |\mathfrak{C}|$.

• Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.



This means that the number of times a moat from C is crossed in the final solution is at most twice the number of moats.

Proof: later...

EADS II Harald Räcke

18.4 Steiner Forest

478

Lemma 5

For any set of connected components \mathbb{C} in any iteration of the algorithm

 $\sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$

Proof:

EADS II

Harald <u>Räcke</u>

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration *i*. Let F_i be the set of edges in *F* at the beginning of the iteration.
- Let $H = F' F_i$.
- ▶ All edges in *H* are necessary for the solution.

18.4 Steiner Forest

- Contract all edges in F_i into single vertices V'.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex v ∈ V' red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

 $\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathfrak{C}| = 2|R|$

EADS II Harald Räcke	18.4 Steiner Forest

- Suppose that no node in *B* has degree one.
- Then

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - ► Suppose not. The single edge connecting b ∈ B comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

EADS II Harald Räcke

481

18.4 Steiner Forest

482

