
Lemma 2 (Chernoff Bounds)

Let X1, . . . , Xn be n independent 0-1 random variables, not

necessarily identically distributed. Then for X =∑ni=1Xi and

µ = E[X], L ≤ µ ≤ U , and δ > 0

Pr[X ≥ (1+ δ)U] <
(

eδ

(1+ δ)1+δ
)U

,

and

Pr[X ≤ (1− δ)L] <
(

e−δ

(1− δ)1−δ
)L

,
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Lemma 3

For 0 ≤ δ ≤ 1 we have that(
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

and (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2
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Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.

Then

Pr[X ≥ a] ≤ E[X]/a

Trivial!
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Proof of Chernoff Bounds

Hence:

Pr[X ≥ (1+ δ)U] ≤ E[X]
(1+ δ)U ≈

1
1+ δ

That’s awfully weak :(
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Proof of Chernoff Bounds

Set pi = Pr[Xi = 1]. Assume pi > 0 for all i.

Cool Trick:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

Now, we apply Markov:

Pr[etX ≥ et(1+δ)U] ≤ E[etX]
et(1+δ)U

.

This may be a lot better (!?)
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Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U
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Now, we apply Markov:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

≤ E[etX]
et(1+δ)U

≤ e
(et−1)U

et(1+δ)U
≤
(

eδ

(1+ δ)1+δ
)U

We choose t = ln(1+ δ).
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Lemma 4

For 0 ≤ δ ≤ 1 we have that(
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

and (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2
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Show: (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ2/3

True for δ = 0. Divide by U and take derivatives:

− ln(1+ δ) ≤ −2δ/3

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.
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f(δ) := − ln(1+ δ)+ 2δ/3 ≤ 0

A convex function (f ′′(δ) ≥ 0) on an interval takes maximum at

the boundaries.

f ′(δ) = − 1
1+ δ + 2/3 f ′′(δ) = 1

(1+ δ)2

f(0) = 0 and f(1) = − ln(2)+ 2/3 < 0
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For δ ≥ 1 we show (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ/3

True for δ = 0. Divide by U and take derivatives:

− ln(1+ δ) ≤ −1/3 ⇐⇒ ln(1+ δ) ≥ 1/3 (true)

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.
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Show: (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2

Take logarithms:

L(−δ− (1− δ) ln(1− δ)) ≤ −Lδ2/2

True for δ = 0. Divide by L and take derivatives:

ln(1− δ) ≤ −δ

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.
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ln(1− δ) ≤ −δ

True for δ = 0. Take derivatives:

− 1
1− δ ≤ −1

This holds for 0 ≤ δ < 1.
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Integer Multicommodity Flows

ñ Given si-ti pairs in a graph.

ñ Connect each pair by a path such that not too many path

use any given edge.

min W
s.t. ∀i ∑

p∈Pi xp = 1∑
p:e∈p xp ≤ W

xp ∈ {0,1}
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Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set Pi at random according

to the probability distribution given by the Linear Programming

solution.
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Theorem 5

If W∗ ≥ c lnn for some constant c, then with probability at least

n−c/3 the total number of paths using any edge is at most

W∗ +√cW∗ lnn.

Theorem 6

With probability at least n−c/3 the total number of paths using

any edge is at most W∗ + c lnn.
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Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

EADS II 17.2 Integer Multicommodity Flows

Harald Räcke 410



Integer Multicommodity Flows

Choose δ = √(c lnn)/W∗.

Then

Pr[Ye ≥ (1+ δ)W∗] < e−W∗δ2/3 = 1
nc/3
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17.3 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.
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17.3 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.
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MAXSAT: Flipping Coins

Set each xi independently to true with probability 1
2 (and, hence,

to false with probability 1
2 , as well).
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Define random variable Xj with

Xj =
{

1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑
j
wjXj
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E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj
(
1−

(1
2

)`j)
≥ 1

2

∑
j
wj

≥ 1
2

OPT
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MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨
j∈Pj

xi ∨
∨
j∈Nj

x̄i

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1
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MAXSAT: Randomized Rounding

Set each xi independently to true with probability yi (and,

hence, to false with probability (1−yi)).
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Lemma 7 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a1, . . . , ak k∏
i=1

ai

1/k

≤ 1
k

k∑
i=1

ai
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Definition 8

A function f on an interval I is concave if for any two points s
and r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 9

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].
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Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤
 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi



`j

=
1− 1

`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)


`j

≤
(

1− zj
`j

)`j
.
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The function f(z) = 1− (1− z
` )
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1− zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.
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E[W] =
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j
≥
(

1− 1
e

)
OPT .

EADS II 17.3 MAXSAT

Harald Räcke 423



MAXSAT: The better of two

Theorem 10

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a 3
4 -approximation.

EADS II 17.3 MAXSAT

Harald Räcke 424



Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj

(
1−

(
1
2

)`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1−

(
1
2

)`j)
︸ ︷︷ ︸

≥ 3
4 for all integers



≥ 3
4

OPT
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MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).
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MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 11

Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.

EADS II 17.3 MAXSAT

Harald Räcke 428



0 0.5 1

0.5

1

4x−1

1− 4−x

EADS II 17.3 MAXSAT

Harald Räcke 429



Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

f(yi)

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(∑i∈Pj yi+∑i∈Nj (1−yi))

≤ 4−zj
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The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT
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Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.



Lemma 13

Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3
4 .

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

Consider: (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x1 ∨ x̄2)∧ (x̄1 ∨ x̄2)

ñ any solution can satisfy at most 3 clauses

ñ we can set y1 = y2 = 1/2 in the LP; this allows to set

z1 = z2 = z3 = z4 = 1

ñ hence, the LP has value 4.
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MaxCut

MaxCut

Given a weighted graph G = (V , E,w), w(v) ≥ 0, partition the

vertices into two parts. Maximize the weight of edges between

the parts.

Trivial 2-approximation
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Semidefinite Programming

max /min
∑
i,j cijxij

s.t. ∀k ∑
i,j,k aijkxij = bk

∀i, j xij = xji
X = (xij) is psd.

ñ linear objective, linear contraints

ñ we can constrain a square matrix of variables to be

symmetric positive definite

Note that wlog. we can assume that all variables appear in this matrix. Suppose
we have a non-negative scalar z and want to express something like∑

ij aijkxij + z = bk
where xij are variables of the positive semidefinite matrix. We can add z as a
diagonal entry x``, and additionally introduce constraints x`r = 0 and xr` = 0.



Vector Programming

max /min
∑
i,j cij(vtivj)

s.t. ∀k ∑
i,j,k aijk(vtivj) = bk

∀i, j xij = xji
vi ∈ Rn

ñ variables are vectors in n-dimensional space

ñ objective functions and contraints are linear in inner

products of the vectors

This is equivalent!
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Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial

time...

EADS II 17.4 MAXCUT

Harald Räcke 437



Quadratic Programs

Quadratic Program for MaxCut:

max 1
2

∑
i,jwij(1−yiyj)

∀i yi ∈ {−1,1}

This is exactly MaxCut!
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Semidefinite Relaxation

max 1
2

∑
i,jwij(1− vtivj)

∀i vtivi = 1

∀i vi ∈ Rn

ñ this is clearly a relaxation

ñ the solution will be vectors on the unit sphere
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Rounding the SDP-Solution

ñ Choose a random vector r such that r/‖r‖ is uniformly

distributed on the unit sphere.

ñ If r tvi > 0 set yi = 1 else set yi = −1
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Rounding the SDP-Solution

Choose the i-th coordinate ri as a Gaussian with mean 0 and

variance 1, i.e., ri ∼N (0,1).

Density function:

ϕ(x) = 1√
2π
ex

2/2

Then

Pr[r = (x1, . . . , xn)]

= 1(√
2π

)n ex2
1/2 · ex2

2/2 · . . . · ex2
n/2 dx1 · . . . · dxn

= 1(√
2π

)n e 1
2 (x

2
1+...+x2

n) dx1 · . . . · dxn

Hence the probability for a point only depends on its distance to

the origin.



Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e1 and e2 are

independent and are normally distributed with mean 0 and

variance 1 iff e1 and e2 are orthogonal.

Note that this is clear if e1 and e2 are standard basis vectors.
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Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection

(r ′/‖r ′‖) is uniformly distributed on the unit circle within the

hyperplane.
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Rounding the SDP-Solution

vivj

r ′/‖r ′‖
θ

θ

θ

ñ if the normalized projection falls into the shaded region, vi
and vj are rounded to different values

ñ this happens with probability θ/π
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Rounding the SDP-Solution

ñ contribution of edge (i, j) to the SDP-relaxation:

1
2
wij

(
1− vtivj

)

ñ (expected) contribution of edge (i, j) to the rounded

instance wij arccos(vtivj)/π
ñ ratio is at most

min
x∈[−1,1]

2 arccos(x)
π(1− x) ≥ 0.878
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Rounding the SDP-Solution
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Rounding the SDP-Solution

−1 −0.5 0 0.5 1
00
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Rounding the SDP-Solution

Theorem 14

Given the unique games conjecture, there is no α-approximation

for the maximum cut problem with constant

α > min
x∈[−1,1]

2 arccos(x)
π(1− x)

unless P = NP.
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