8 Seidels LP-algorithm

- Suppose we want to solve $\min \left\{c^{T} x \mid A x \geq b ; x \geq 0\right\}$, where $x \in \mathbb{R}^{d}$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}\left(m(m+d)\binom{m+d}{m}\right) \approx(m+d)^{m}$. (slightly better bounds on the running time exist, but will not be discussed here).
- If d is much smaller than m one can do a lot better.
- In the following we develop an algorithm with running time $\mathcal{O}(d!\cdot m)$, i.e., linear in m.

Ensuring Conditions

Given a standard minimization LP

| \min | $c^{T} x$ | |
| ---: | ---: | :--- | :--- |
| s.t. | $A x$ | $\geq b$ |
| | x | ≥ 0 |

how can we obtain an LP of the required form?

- Compute a lower bound on $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}$ for any basic feasible solution.

8 Seidels LP-algorithm

Setting:

- We assume an LP of the form

$$
\begin{array}{rrl}
\min & c^{T} x & \\
\text { s.t. } & A x & \geq b \\
& x & \geq 0 \\
& x
\end{array}
$$

- We assume that the LP is bounded.

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A}.
If B is an optimal basis then x_{B} with $\bar{A}_{B} x_{B}=\bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0).

$T \square \underbrace{\text { EADS II }}_{\text {Harald Räcke }}$	8 Seidels LP-algorithm	151

Theorem 2 (Cramers Rule)
Let M be a matrix with $\operatorname{det}(M) \neq 0$. Then the solution to the system $M x=b$ is given by

$$
x_{i}=\frac{\operatorname{det}\left(M_{j}\right)}{\operatorname{det}(M)}
$$

where M_{i} is the matrix obtained from M by replacing the i-th column by the vector b.

Bounding the Determinant

Let Z be the maximum absolute entry occuring in \bar{A}, \bar{b} or c. Let C denote the matrix obtained from \bar{A}_{B} by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$
\begin{aligned}
& |\operatorname{det}(C)|=\left|\sum_{\pi \in S_{m}} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq m} C_{i \pi(i)}\right| \\
& \leq \sum_{\pi \in S_{m}} \prod_{1 \leq i \leq m} \mid C_{t} \text { Here } \operatorname{sgn}(\pi) \text { denotes the sign of the } \\
& \leq m!\cdot Z^{m} \quad \begin{array}{l}
\text { permutation, which is } 1 \text { if the permuta- } \\
\text { tion can be generated by an even num- }
\end{array} \\
& \text { tion can be generated by an even num- } \\
& \text { elements), and }-1 \text { if the number of ! } \\
& \text { transpositions is odd. } \\
& \text { The first identity is known as Leibniz } \\
& \text { ' formula. }
\end{aligned}
$$

Proof:

- Define

$$
X_{i}=\left(\begin{array}{ccccc}
\mid & & \mid & \mid & \mid \\
e_{1} & \cdots & e_{i-1} & x & e_{i+1} \\
\mid & & \mid & \mid & \mid \\
\mid & & e_{n} \\
\mid
\end{array}\right)
$$

Note that expanding along the i-th column gives that $\operatorname{det}\left(X_{i}\right)=x_{i}$.

- Further, we have
- Hence,

$$
x_{i}=\operatorname{det}\left(X_{i}\right)=\frac{\operatorname{det}\left(M_{i}\right)}{\operatorname{det}(M)}
$$

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$
\begin{aligned}
|\operatorname{det}(C)| & \leq \prod_{i=1}^{m}\left\|C_{* i}\right\| \leq \prod_{i=1}^{m}(\sqrt{m} Z) \\
& \leq m^{m / 2} Z^{m}
\end{aligned}
$$

Hadamards Inequality

Hadamards inequality says that the volume of the red parallelepiped (Spat) is smaller than the volume in the black cube (if $\left\|e_{1}\right\|=\left\|a_{1}\right\|,\left\|e_{2}\right\|=\left\|a_{2}\right\|,\left\|e_{3}\right\|=\left\|a_{3}\right\|$).

8 Seidels LP-algorithm
Harald Räcke

Ensuring Conditions

Compute an optimum basis for the new LP.

- If the cost is $c^{T} x=-(m Z)\left(m!\cdot Z^{m}\right)-1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

Ensuring Conditions

Given a standard minimization LP

$$
\begin{array}{rrrr}
\hline \min & c^{T} x & \\
\mathrm{s.t.} & A x & \geq b \\
& x & \geq 0
\end{array}
$$

how can we obtain an LP of the required form?

- Compute a lower bound on $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}$ for any basic feasible solution. Add the constraint $c^{T} x \geq-m Z\left(m!\cdot Z^{m}\right)-1$. Note that this constraint is superfluous unless the LP is unbounded.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^{T} x \geq-m Z\left(m!\cdot Z^{m}\right)-1$.

We give a routine SeidelLP (\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^{T} x$ over all feasible points.

In addition it obeys the implicit constraint $c^{T} x \geq-(m Z)\left(m!\cdot Z^{m}\right)-1$.

```
Algorithm 1 SeidelLP(\mathcal{H},d)
    if d=1 then solve 1-dimensional problem and return;
    if }\mathcal{H}=\emptyset\mathrm{ then return }x\mathrm{ on implicit constraint hyperplane
    choose random constraint h\in\mathcal{H}
    \hat{H}}\leftarrow\mathcal{H}\{h
    \mp@subsup{\hat{x}}{}{*}}\leftarrow\operatorname{SeidelLP(\hat{H}},d
    if \hat{x}
    if \hat{x}}\mp@subsup{}{*}{\mathrm{ fulfills }h\mathrm{ then return }\mp@subsup{\hat{x}}{}{*}
    // optimal solution fulfills }h\mathrm{ with equality, i.e., }\mp@subsup{a}{h}{T}x=\mp@subsup{b}{h}{
    solve }\mp@subsup{a}{h}{T}x=\mp@subsup{b}{h}{}\mathrm{ for some variable }\mp@subsup{x}{\ell}{}\mathrm{ ;
    eliminate }\mp@subsup{x}{\ell}{}\mathrm{ in constraints from }\hat{\mathcal{H}}\mathrm{ and in implicit constr.;
    \mp@subsup{x}{}{*}}\leftarrow\operatorname{SeideILP}(\hat{\mathcal{H}},d-1
    if \hat{x}
        return infeasible
    else
        add the value of }\mp@subsup{x}{\ell}{}\mathrm{ to }\mp@subsup{\hat{x}}{}{*}\mathrm{ and return the solution
```


8 Seidels LP-algorithm

This gives the recurrence

$$
T(m, d)= \begin{cases}\mathcal{O}(\max \{1, m\}) & \text { if } d=1 \\ \mathcal{O}(d) & \text { if } d>1 \text { and } m=0 \\ \mathcal{O}(d)+T(m-1, d)+ & \\ \frac{d}{m}(\mathcal{O}(d m)+T(m-1, d-1)) & \text { otw. }\end{cases}
$$

Note that $T(m, d)$ denotes the expected running time.

8 Seidels LP-algorithm

Note that for the case $d=1$, the asymptotic bound $\mathcal{O}(\max \{m, 1\})$ is valid also for the case $m=0$

- If $d=1$ we can solve the 1 -dimensional problem in time $\mathcal{O}(\max \{m, 1\})$.
- If $d>1$ and $m=0$ we take time $\mathcal{O}(d)$ to return d-dimensional vector x.
- The first recursive call takes time $T(m-1, d)$ for the call plus $\mathcal{O}(d)$ for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^{*} does not fulfill h we need time $\mathcal{O}(d(m+1))=\mathcal{O}(d m)$ to eliminate x_{ℓ}. Then we make a recursive call that takes time $T(m-1, d-1)$.
- The probability of being unlucky is at most d / m as there are at most d constraints whose removal will decrease the objective function

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.

$$
T(m, d)= \begin{cases}C \max \{1, m\} & \text { if } d=1 \\ C d & \text { if } d>1 \text { and } m=0 \\ C d+T(m-1, d)+ & \\ \frac{d}{m}(C d m+T(m-1, d-1)) & \text { otw. }\end{cases}
$$

Note that $T(m, d)$ denotes the expected running time.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O}-notations.
We show $T(m, d) \leq C f(d) \max \{1, m\}$.
$d=1:$
$T(m, 1) \leq C \max \{1, m\} \leq C f(1) \max \{1, m\}$ for $f(1) \geq 1$
$d>1 ; m=0:$
$T(0, d) \leq \mathcal{O}(d) \leq C d \leq C f(d) \max \{1, m\}$ for $f(d) \geq d$
$d>1 ; m=1:$

$$
\begin{aligned}
T(1, d) & =\mathcal{O}(d)+T(0, d)+d(\mathcal{O}(d)+T(0, d-1)) \\
& \leq C d+C d+C d^{2}+d C f(d-1) \\
& \leq C f(d) \max \{1, m\} \text { for } f(d) \geq 3 d^{2}+d f(d-1)
\end{aligned}
$$

8 Seidels LP-algorithm

$d>1 ; m>1$:

(by induction hypothesis statm. true for $d^{\prime}<d, m^{\prime} \geq 0$; and for $d^{\prime}=d, m^{\prime}<m$)

$$
\begin{aligned}
& T(m, d)=\mathcal{O}(d)+T(m-1, d)+\frac{d}{m}(\mathcal{O}(d m)+T(m-1, d-1)) \\
& \leq C d+C f(d)(m-1)+C d^{2}+\frac{d}{m} C f(d-1)(m-1) \\
& \leq 2 C d^{2}+C f(d)(m-1)+d C f(d-1) \\
& \leq C f(d) m \\
& \text { if } f(d) \geq d f(d-1)+2 d^{2}
\end{aligned}
$$

8 Seidels LP-algorithm

- Define $f(1)=3 \cdot 1^{2}$ and $f(d)=d f(d-1)+3 d^{2}$ for $d>1$.

Then

$$
\begin{aligned}
f(d)= & 3 d^{2}+d f(d-1) \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1) f(d-2)\right] \\
= & 3 d^{2}+d\left[3(d-1)^{2}+(d-1)\left[3(d-2)^{2}+(d-2) f(d-3)\right]\right] \\
= & 3 d^{2}+3 d(d-1)^{2}+3 d(d-1)(d-2)^{2}+\ldots \\
& +3 d(d-1)(d-2) \cdot \ldots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2} \\
= & 3 d!\left(\frac{d^{2}}{d!}+\frac{(d-1)^{2}}{(d-1)!}+\frac{(d-2)^{2}}{(d-2)!}+\ldots\right) \\
= & \mathcal{O}(d!)
\end{aligned}
$$

since $\sum_{i \geq 1} \frac{i^{2}}{i!}$ is a constant.

$$
\sum_{i \geq 1} \frac{i^{2}}{i!}=\sum_{i \geq 0} \frac{i+1}{i!}=e+\sum_{i \geq 1} \frac{i}{i!}=2 e
$$

