
4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find

the optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective

function.

Two BFSs are called adjacent if the bases just differ in one

variable.

EADS II

Harald Räcke 53/575

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find

the optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective

function.

Two BFSs are called adjacent if the bases just differ in one

variable.

EADS II 4 Simplex Algorithm

Harald Räcke 53/575

4 Simplex Algorithm

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
A = B = 0
Z = 0

sc = 480
sh = 160
sm= 1190

EADS II 4 Simplex Algorithm

Harald Räcke 54/575

4 Simplex Algorithm

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
A = B = 0
Z = 0

sc = 480
sh = 160
sm= 1190

EADS II 4 Simplex Algorithm

Harald Räcke 54/575

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable

can be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable

can be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable

can be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable

can be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable

can be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable

can be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

sc

b

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

sc

b

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

Substitute b = 1
15(480− 5a− sc).

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

Substitute b = 1
15(480− 5a− sc).

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

Substitute b = 1
15(480− 5a− sc).

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).

max Z
− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

EADS II 4 Simplex Algorithm

Harald Räcke 59/575

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

EADS II 4 Simplex Algorithm

Harald Räcke 59/575

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

EADS II 4 Simplex Algorithm

Harald Räcke 59/575

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

EADS II 4 Simplex Algorithm

Harald Räcke 59/575

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

EADS II 4 Simplex Algorithm

Harald Räcke 59/575

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

EADS II 4 Simplex Algorithm

Harald Räcke 59/575

Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

EADS II 4 Simplex Algorithm

Harald Räcke 60/575

Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

EADS II 4 Simplex Algorithm

Harald Räcke 60/575

Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

EADS II 4 Simplex Algorithm

Harald Räcke 60/575

Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

EADS II 4 Simplex Algorithm

Harald Räcke 60/575

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r
{b, sh, sm}

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r
{b, sh, sm}

{a, b, sm}

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{a, sc , sh}
{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{a, sc , sh}
{sc , sh, sm}

{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{a, sc , sh}

{a, b, sm}

{sc , sh, sm}

{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

EADS II 4 Simplex Algorithm

Harald Räcke 62/575

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

EADS II 4 Simplex Algorithm

Harald Räcke 62/575

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

EADS II 4 Simplex Algorithm

Harald Räcke 62/575

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

EADS II 4 Simplex Algorithm

Harald Räcke 62/575

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

EADS II 4 Simplex Algorithm

Harald Räcke 62/575

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

EADS II 4 Simplex Algorithm

Harald Räcke 62/575

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

EADS II 4 Simplex Algorithm

Harald Räcke 62/575

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

EADS II 4 Simplex Algorithm

Harald Räcke 62/575

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

EADS II 4 Simplex Algorithm

Harald Räcke 62/575

Algebraic Definition of Pivoting

Definition 2 (j-th basis direction)

Let B be a basis, and let j ∉ B. The vector d with dj = 1 and

d` = 0, ` ∉ B, ` ≠ j and dB = −A−1
B A∗j is called the j-th basis

direction for B.

Going from x∗ to x∗ + θ · d the objective function changes by

θ · cTd = θ(cj − cTBA−1
B A∗j)

EADS II 4 Simplex Algorithm

Harald Räcke 63/575

Algebraic Definition of Pivoting

Definition 2 (j-th basis direction)

Let B be a basis, and let j ∉ B. The vector d with dj = 1 and

d` = 0, ` ∉ B, ` ≠ j and dB = −A−1
B A∗j is called the j-th basis

direction for B.

Going from x∗ to x∗ + θ · d the objective function changes by

θ · cTd = θ(cj − cTBA−1
B A∗j)

EADS II 4 Simplex Algorithm

Harald Räcke 63/575

Algebraic Definition of Pivoting

Definition 3 (Reduced Cost)

For a basis B the value

c̃j = cj − cTBA−1
B A∗j

is called the reduced cost for variable xj.

Note that this is defined for every j. If j ∈ B then the above term

is 0.

EADS II 4 Simplex Algorithm

Harald Räcke 64/575

Algebraic Definition of Pivoting
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

EADS II 4 Simplex Algorithm

Harald Räcke 65/575

Algebraic Definition of Pivoting
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

EADS II 4 Simplex Algorithm

Harald Räcke 65/575

Algebraic Definition of Pivoting
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

EADS II 4 Simplex Algorithm

Harald Räcke 65/575

Algebraic Definition of Pivoting
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

EADS II 4 Simplex Algorithm

Harald Räcke 65/575

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

EADS II 4 Simplex Algorithm

Harald Räcke 66/575

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

EADS II 4 Simplex Algorithm

Harald Räcke 66/575

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

EADS II 4 Simplex Algorithm

Harald Räcke 66/575

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

EADS II 4 Simplex Algorithm

Harald Räcke 66/575

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

EADS II 4 Simplex Algorithm

Harald Räcke 66/575

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

EADS II 4 Simplex Algorithm

Harald Räcke 68/575

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

EADS II 4 Simplex Algorithm

Harald Räcke 68/575

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

EADS II 4 Simplex Algorithm

Harald Räcke 68/575

Termination

The objective function may not increase!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is

degenerate).

Definition 4 (Degeneracy)

A BFS x∗ is called degenerate if the set J = {j | x∗j > 0} fulfills

|J| <m.

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

EADS II 4 Simplex Algorithm

Harald Räcke 69/575

Termination

The objective function may not increase!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is

degenerate).

Definition 4 (Degeneracy)

A BFS x∗ is called degenerate if the set J = {j | x∗j > 0} fulfills

|J| <m.

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

EADS II 4 Simplex Algorithm

Harald Räcke 69/575

Termination

The objective function may not increase!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is

degenerate).

Definition 4 (Degeneracy)

A BFS x∗ is called degenerate if the set J = {j | x∗j > 0} fulfills

|J| <m.

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

EADS II 4 Simplex Algorithm

Harald Räcke 69/575

Termination

The objective function may not increase!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is

degenerate).

Definition 4 (Degeneracy)

A BFS x∗ is called degenerate if the set J = {j | x∗j > 0} fulfills

|J| <m.

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

EADS II 4 Simplex Algorithm

Harald Räcke 69/575

Non Degenerate Example

hops

m
alt

corn

ale

b
ee

r

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r
p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec.

p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec.

p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}

{a, b, sm}

{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}

{a, b, sm}

{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is

minimal among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 4 Simplex Algorithm

Harald Räcke 72/575

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is

minimal among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 4 Simplex Algorithm

Harald Räcke 72/575

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is

minimal among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 4 Simplex Algorithm

Harald Räcke 72/575

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is

minimal among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 4 Simplex Algorithm

Harald Räcke 72/575

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is

minimal among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 4 Simplex Algorithm

Harald Räcke 72/575

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is

minimal among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 4 Simplex Algorithm

Harald Räcke 72/575

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the

LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails

and we can conclude that the LP is unbounded, or we terminate

because the vector of reduced cost is non-positive. In the latter

case we have an optimum solution.

EADS II 4 Simplex Algorithm

Harald Räcke 73/575

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 4 Simplex Algorithm

Harald Räcke 74/575

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 4 Simplex Algorithm

Harald Räcke 74/575

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 4 Simplex Algorithm

Harald Räcke 74/575

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 4 Simplex Algorithm

Harald Räcke 74/575

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 4 Simplex Algorithm

Harald Räcke 74/575

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 4 Simplex Algorithm

Harald Räcke 75/575

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 4 Simplex Algorithm

Harald Räcke 75/575

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 4 Simplex Algorithm

Harald Räcke 75/575

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 4 Simplex Algorithm

Harald Räcke 75/575

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 4 Simplex Algorithm

Harald Räcke 75/575

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 4 Simplex Algorithm

Harald Räcke 75/575

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 4 Simplex Algorithm

Harald Räcke 75/575

Optimality

Lemma 5

Let B be a basis and x∗ a BFS corresponding to basis B. c̃ ≤ 0

implies that x∗ is an optimum solution to the LP.

EADS II 4 Simplex Algorithm

Harald Räcke 76/575

	Simplex Algorithm

