Traveling Salesman

Given a set of cities $(\{1, ..., n\})$ and a symmetric matrix $C = (c_{ij}), c_{ij} \ge 0$ that specifies for every pair $(i, j) \in [n] \times [n]$ the cost for travelling from city *i* to city *j*. Find a permutation π of the cities such that the round-trip cost

$$C_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} C_{\pi(i)\pi(i+1)}$$

is minimized.

Traveling Salesman

Theorem 2

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- ► If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than n2ⁿ.
- An $O(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.

Metric Traveling Salesman

In the metric version we assume for every triple $i, j, k \in \{1, \dots, n\}$

 $c_{ij} \leq c_{ij} + c_{jk}$.

It is convenient to view the input as a complete undirected graph G = (V, E), where c_{ij} for an edge (i, j) defines the distance between nodes i and j.

TSP: Lower Bound I

Lemma 3

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

Proof:

- ► Take the optimum TSP-tour.
- Delete one edge.
- This gives a spanning tree of cost at most $OPT_{TSP}(G)$.

- Start with a tour on a subset *S* containing a single node.
- Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- Repeat until all nodes have been processed.

The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

Lemma 4

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the *i*-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

$$c_{s_i,v_i} + c_{v_i,r_i} - c_{s_i,r_i} \le 2c_{s_i,v_i}$$

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$\sum_{i} c_{s_i, v_i} = \operatorname{OPT}_{\operatorname{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E' c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

 $\sum_{e\in E'}c'(e)$

- ▶ Find an Euler tour of *G*′.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.

TSP: A different approach

TSP: A different approach

Consider the following graph:

- Compute an MST of *G*.
- Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot OPT_{MST}(G)$.

Hence, short-cutting gives a tour of cost no more than $2 \cdot OPT_{MST}(G)$ which means we have a 2-approximation.

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most $OPT_{TSP}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $OPT_{TSP}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

This is the best that is known.

Christofides. Tight Example

- optimal tour: n edges.
- ▶ MST: *n* − 1 edges.
- weight of matching (n + 1)/2 1
- MST+matching $\approx 3/2 \cdot n$

Tree shortcutting. Tight Example

edges have Euclidean distance.

