Traveling Salesman

Given a set of cities ($\{1, \ldots, n\}$) and a symmetric matrix $C=\left(c_{i j}\right), c_{i j} \geq 0$ that specifies for every pair $(i, j) \in[n] \times[n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$
c_{\pi(1) \pi(n)}+\sum_{i=1}^{n-1} c_{\pi(i) \pi(i+1)}
$$

is minimized.

Traveling Salesman

Theorem 2

There does not exist an $O\left(2^{n}\right)$-approximation algorithm for TSP.
Hamiltonian Cycle:
For a given undirected graph $G=(V, E)$ decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- If $(i, j) \notin E$ then set $c_{i j}$ to $n 2^{n}$ otw. set $c_{i j}$ to 1 . This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than $n 2^{n}$.
- An $\mathcal{O}\left(2^{n}\right)$-approximation algorithm could decide btw. these cases. Hence, cannot exist unless $P=N P$.

Metric Traveling Salesman

In the metric version we assume for every triple
$i, j, k \in\{1, \ldots, n\}$

$$
c_{i j} \leq c_{i j}+c_{j k}
$$

It is convenient to view the input as a complete undirected graph $G=(V, E)$, where $c_{i j}$ for an edge (i, j) defines the distance between nodes i and j.

TSP: Lower Bound I

Lemma 3

The cost $\mathrm{OPT}_{T S P}(G)$ of an optimum traveling salesman tour is at least as large as the weight $\mathrm{OPT}_{\text {MST }}(G)$ of a minimum spanning tree in G.

Proof:

- Take the optimum TSP-tour.
- Delete one edge.
- This gives a spanning tree of cost at most $\mathrm{OPT}_{\mathrm{TSP}}(G)$.

TSP: Greedy Algorithm

- Start with a tour on a subset S containing a single node.
- Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- Repeat until all nodes have been processed.

TSP: Greedy Algorithm

The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

TSP: Greedy Algorithm

Lemma 4

The Greedy algorithm is a 2-approximation algorithm.
Let S_{i} be the set at the start of the i-th iteration, and let v_{i} denote the node added during the iteration.

Further let $s_{i} \in S_{i}$ be the node closest to $v_{i} \in S_{i}$.
Let r_{i} denote the successor of s_{i} in the tour before inserting v_{i}.
We replace the edge (s_{i}, r_{i}) in the tour by the two edges (s_{i}, v_{i}) and $\left(v_{i}, r_{i}\right)$.

This increases the cost by

$$
c_{s_{i}, v_{i}}+c_{v_{i}, r_{i}}-c_{s_{i}, r_{i}} \leq 2 c_{s_{i}, v_{i}}
$$

TSP: Greedy Algorithm

The edges $\left(s_{i}, v_{i}\right)$ considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$
\sum_{i} c_{s_{i}, v_{i}}=\mathrm{OPT}_{\mathrm{MST}}(G)
$$

which with the previous lower bound gives a 2-approximation.

TSP: A different approach

Suppose that we are given an Eulerian graph $G^{\prime}=\left(V, E^{\prime}, c^{\prime}\right)$ of $G=(V, E, c)$ such that for any edge $(i, j) \in E^{\prime} c^{\prime}(i, j) \geq c(i, j)$.

Then we can find a TSP-tour of cost at most

$$
\sum_{e \in E^{\prime}} c^{\prime}(e)
$$

- Find an Euler tour of G^{\prime}.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.

TSP: A different approach

15 TSP

TSP: A different approach

Consider the following graph:

- Compute an MST of G.
- Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \operatorname{OPT}_{\mathrm{MST}}(G)$.

Hence, short-cutting gives a tour of cost no more than $2 \cdot \operatorname{OPT}_{\mathrm{MST}}(G)$ which means we have a 2 -approximation.

TSP: Can we do better?

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.
For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most $\operatorname{OPT}_{\text {TSP }}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $\mathrm{OPT}_{\mathrm{TSP}}(G) / 2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$
\mathrm{OPT}_{\mathrm{MST}}(G)+\mathrm{OPT}_{\mathrm{TSP}}(G) / 2 \leq \frac{3}{2} \mathrm{OPT}_{\mathrm{TSP}}(G)
$$

Short cutting gives a $\frac{3}{2}$-approximation for metric TSP.
This is the best that is known.

Christofides. Tight Example

- optimal tour: n edges.
- MST: $n-1$ edges.
- weight of matching $(n+1) / 2-1$
- MST+matching $\approx 3 / 2 \cdot n$

Tree shortcutting. Tight Example

- edges have Euclidean distance.

