Flows

Definition 2
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
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Flows

Definition 2
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .
P X
(flow conservation constraints)
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Flows

Definition 3
The value of an (s, t)-flow f is defined as

Val(f) = Zfsx - fos .
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Flows

Definition 3
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max 2z fsz =22 fos
s.t. Vizzw)eVxV Szw
Yw +s,t szzw_zszz

Sfzw

IA

m EADS I 5.5 Computing Duals
Harald Racke



LP-Formulation of Maxflow

max 2z foz =22 fzs
st. V(z,w)eVxV o 2 Cow Yaw
Vw #s,t X fow—2zfwz = 0 Pw
fzw = O
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Sfsy (y #5s,t): 145, +1py = 1
Sxs (x #5,t): 1xs—1px > -1
Sty (¥ #=5,t): 181y +1lpy =2 O
St (x #5,1): 10y —1py > 0
fot: 104 > 1
[ 8 10 > -1
Lscy > 0

T
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LP-Formulation of Maxflow
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LP-Formulation of Maxflow

with p; =0 and p; = 1.
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LP-Formulation of Maxflow
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LP-Formulation of Maxflow

min Z(xy) Cxylxy

st fry: xy—lpx+lpy, = 0
Oxy =2 0
pPs = 1
pt = O

We can interpret the £, value as assigning a length to every edge.
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Oy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) = d(x,t) < #Xy +d(y,t)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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