
Flows

Definition 2

An (s, t)-flow in a (complete) directed graph G = (V , V × V, c) is

a function f : V × V , R+0 that satisfies

1. For each edge (x,y)

0 ≤ fxy ≤ cxy .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
x
fvx =

∑
x
fxv .

(flow conservation constraints)
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Flows

Definition 3

The value of an (s, t)-flow f is defined as

val(f ) =
∑
x
fsx −

∑
x
fxs .

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max
∑
z fsz −

∑
z fzs

s.t. ∀(z,w) ∈ V × V fzw ≤ czw `zw
∀w ≠ s, t

∑
z fzw −

∑
z fwz = 0 pw
fzw ≥ 0

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy +1py ≥ 1

fxs (x ≠ s, t) : 1`xs−1px ≥ −1

fty (y ≠ s, t) : 1`ty +1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px ≥ 0

fst : 1`st ≥ 1

fts : 1`ts ≥ −1

`xy ≥ 0

EADS II 5.5 Computing Duals

Harald Räcke 112/575



LP-Formulation of Maxflow

max
∑
z fsz −

∑
z fzs

s.t. ∀(z,w) ∈ V × V fzw ≤ czw `zw
∀w ≠ s, t

∑
z fzw −

∑
z fwz = 0 pw
fzw ≥ 0

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy +1py ≥ 1

fxs (x ≠ s, t) : 1`xs−1px ≥ −1

fty (y ≠ s, t) : 1`ty +1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px ≥ 0

fst : 1`st ≥ 1

fts : 1`ts ≥ −1

`xy ≥ 0

EADS II 5.5 Computing Duals

Harald Räcke 112/575



LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− 1+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ 1 ≥ 0

fty (y ≠ s, t) : 1`ty− 0+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ 0 ≥ 0

fst : 1`st− 1+ 0 ≥ 0

fts : 1`ts− 0+ 1 ≥ 0

`xy ≥ 0
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LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− ps+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ ps ≥ 0

fty (y ≠ s, t) : 1`ty− pt+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ pt ≥ 0

fst : 1`st− ps+ pt ≥ 0

fts : 1`ts− pt+ ps ≥ 0

`xy ≥ 0

with pt = 0 and ps = 1.
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LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

EADS II 5.5 Computing Duals

Harald Räcke 115/575



LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

EADS II 5.5 Computing Duals

Harald Räcke 115/575



LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

EADS II 5.5 Computing Duals

Harald Räcke 115/575



LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

EADS II 5.5 Computing Duals

Harald Räcke 115/575



One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a

cut in the graph with vertices having value 1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.
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