5.3 Strong Duality

 $P = \max\{c^T x \mid Ax \le b, x \ge 0\}$ n_A : number of variables, m_A : number of constraints

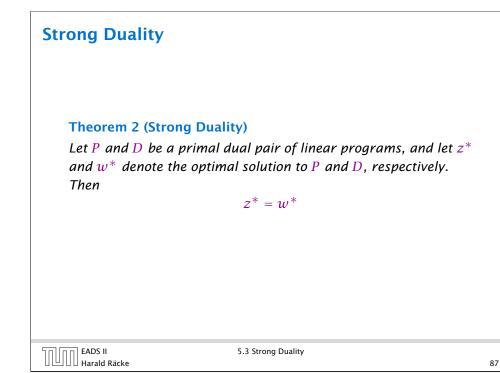
We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P} = \max\{c^T x \mid \bar{A}x \leq \bar{b}\}$

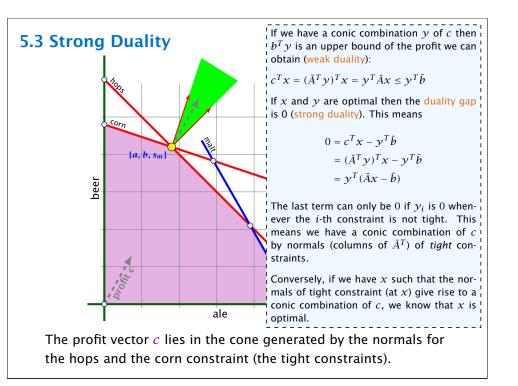
 $n_{\tilde{A}}=n_A$, $m_{\tilde{A}}=m_A+n_A$

```
Dual D = \min\{\bar{b}^T \gamma \mid \bar{A}^T \gamma = c, \gamma \ge 0\}.
```

EADS II Harald Räcke

85



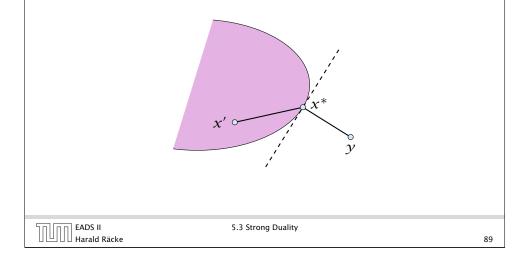


Let *X* be a compact set and let f(x) be a continuous function on *X*. Then $\min\{f(x) : x \in X\}$ exists.

(without proof)

Lemma 4 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.



Proof of the Projection Lemma (continued)

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{split} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{split}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

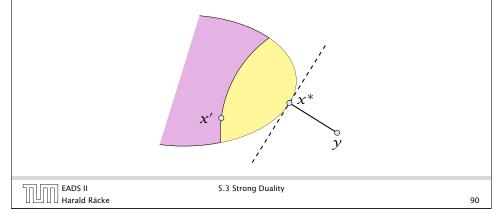
Letting $\epsilon \rightarrow 0$ gives the result.

הח הר	EADS II Harald Räcke
	Harald Räcke

5.3 Strong Duality

Proof of the Projection Lemma

- Define f(x) = ||y x||.
- We want to apply Weierstrass but *X* may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



Theorem 5 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha;$ $a^T x \ge \alpha$ for all $x \in X$)

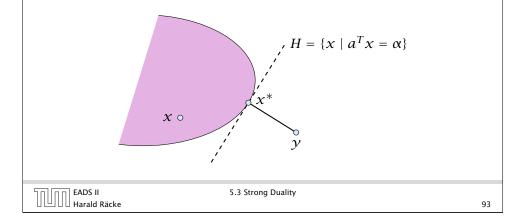
EADS II Harald Räcke

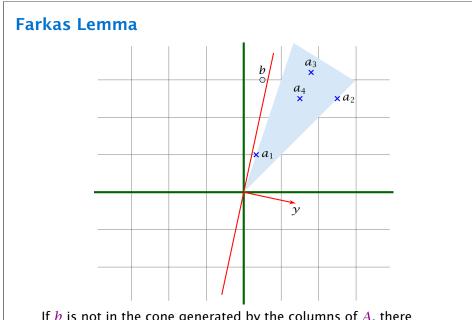
91

5.3 Strong Duality

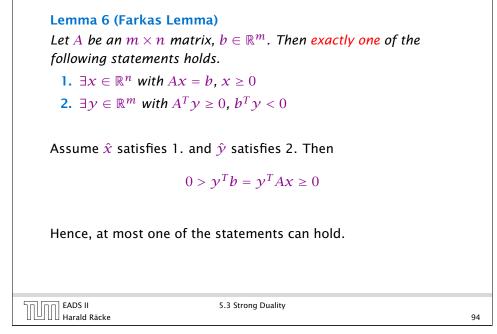
Proof of the Hyperplane Lemma

- Let $x^* \in X$ be closest point to y in X.
- By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$





If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.



Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Lemma 7 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

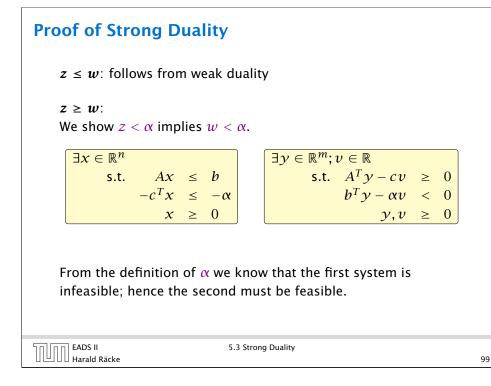
Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n$$
 with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

5.3 Strong Duality

50) (00)	EADS II Harald Räcke
	Harald Räcke

97



Proof of Strong Duality

 $P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

 $D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

	z = w .	
Salaa EADS II	5.3 Strong Duality	
Harald Räcke	Sis Strong Edanty	98

Proof of Strong Duality					
	$ \exists y \in \mathbb{R}^m ; v \in \mathbb{R} \\ \text{s.t.} A^T y - cv \geq 0 \\ b^T y - \alpha v < 0 \\ y, v \geq 0 \\ \end{cases} $				
If the solution y, v has $v = 0$ we have that					
	$ \exists y \in \mathbb{R}^m \\ \text{s.t.} A^T y \geq 0 \\ b^T y < 0 $				

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

 $\gamma \geq 0$

EADS II Harald Räcke

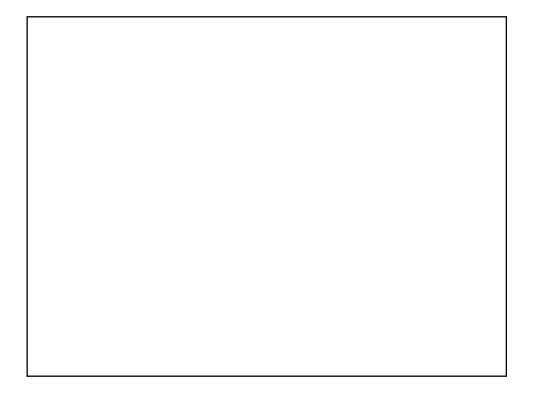
Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

EADS II	5.3 Strong Duality	
UUUU Harald Räcke		101



Fundamental Questions

Definition 9 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- Is LP in co-NP? yes!
- ► Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.

102

EADS II Harald Räcke

5.3 Strong Duality

