5.3 Strong Duality

$$P = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

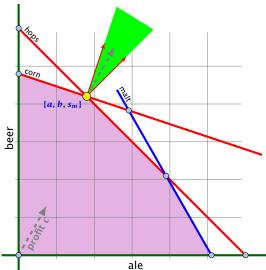
 n_A : number of variables, m_A : number of constraints

We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P} = \max\{c^T x \mid \bar{A}x \leq \bar{b}\}$

$$n_{\bar{A}} = n_A, m_{\bar{A}} = m_A + n_A$$

Dual $D = \min\{\bar{b}^T y \mid \bar{A}^T y = c, y \ge 0\}.$

5.3 Strong Duality



The profit vector c lies in the cone generated by the normals for the hops and the corn constraint (the tight constraints).

5.3 Strong Duality

$$P = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

 n_A : number of variables, m_A : number of constraints

We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P} = \max\{c^Tx \mid \bar{A}x \leq \bar{b}\}$

$$n_{\bar{A}}=n_A$$
, $m_{\bar{A}}=m_A+n_A$

Dual
$$D = \min\{\bar{b}^T y \mid \bar{A}^T y = c, y \ge 0\}.$$

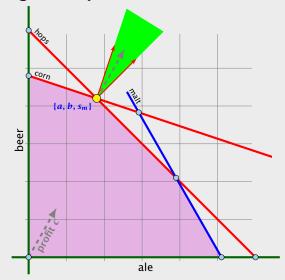
Strong Duality

Theorem 2 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

$$z^* = w^*$$

5.3 Strong Duality



The profit vector c lies in the cone generated by the normals for the hops and the corn constraint (the tight constraints).

Strong Duality

Lemma 3 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on *X*. Then $\min\{f(x): x \in X\}$ exists.

(without proof)

Theorem 2 (Strong Duality)

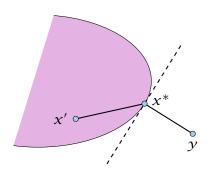
Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

EADS II 5.3 Strong Duality Harald Räcke

Lemma 4 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

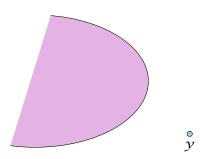


Lemma 3 (Weierstrass)

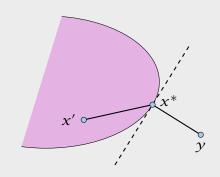
Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x):x\in X\}$ exists.

(without proof)

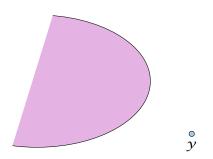
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded
- Applying Weierstrass gives the existence



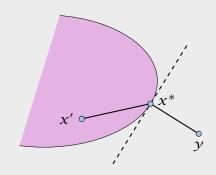
Lemma 4 (Projection Lemma)



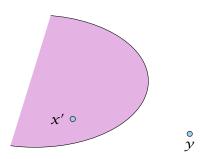
- ▶ Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- $\triangleright X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded
- Applying Weierstrass gives the existence.



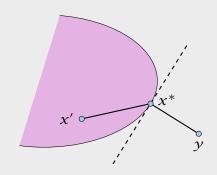
Lemma 4 (Projection Lemma)



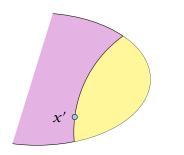
- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded
- Applying Weierstrass gives the existence



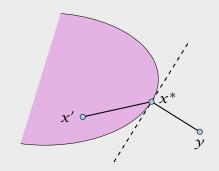
Lemma 4 (Projection Lemma)



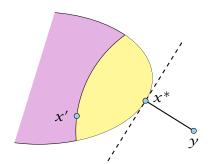
- ▶ Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence



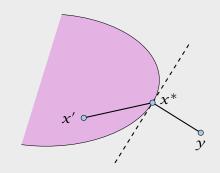
Lemma 4 (Projection Lemma)



- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



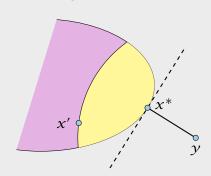
Lemma 4 (Projection Lemma)



5.3 Strong Duality

Proof of the Projection Lemma

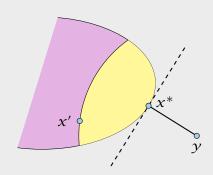
- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ► $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.

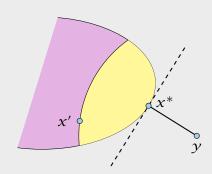


 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\|y - x^*\|^2$$

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



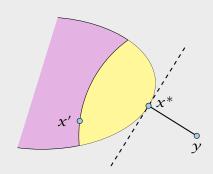
 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\|y - x^*\|^2 \le \|y - x^* - \epsilon(x - x^*)\|^2$$

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

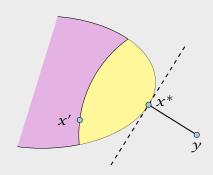
By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



$$x^*$$
 is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

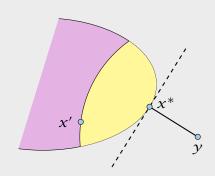
$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Hence,
$$(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$$
.

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ► $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



$$x^*$$
 is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

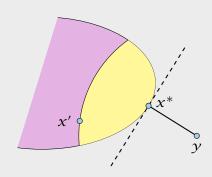
$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Hence,
$$(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$$
.

Letting $\epsilon \to 0$ gives the result.

Proof of the Projection Lemma

- ► Define f(x) = ||y x||.
- ► We want to apply Weierstrass but *X* may not be bounded.
- ► $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



5.3 Strong Duality

Theorem 5 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates γ from X. ($a^T \gamma < \alpha$) $a^T x \ge \alpha$ for all $x \in X$)

5.3 Strong Duality

Proof of the Projection Lemma (continued)

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

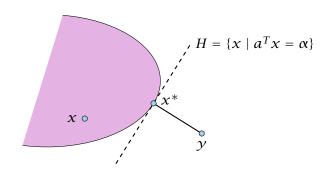
$$\|y - x^*\|^2 \le \|y - x^* - \epsilon(x - x^*)\|^2$$

$$= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \to 0$ gives the result.

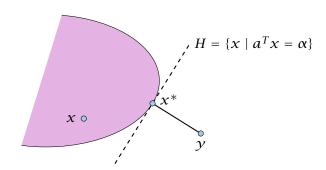
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^T x^*$
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Theorem 5 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^Tx = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^Ty < \alpha; a^Tx \ge \alpha \text{ for all } x \in X)$

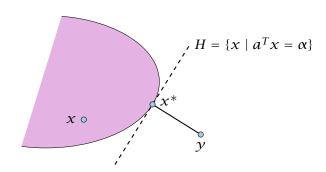
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^T x^*$
- For $x \in X$: $a^T(x x^*) > 0$, and, hence, $a^Tx > \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Theorem 5 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^Tx = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^Ty < \alpha; a^Tx \ge \alpha \text{ for all } x \in X)$

- Let $x^* \in X$ be closest point to γ in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

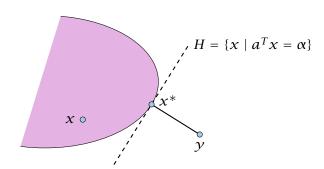


Theorem 5 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha; a^T x \ge \alpha \text{ for all } x \in X)$

- Let $x^* \in X$ be closest point to γ in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.

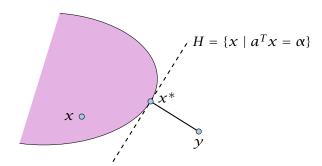
► Also, $a^T y = a^T (x^* - a) = \alpha - ||a||^2 < \alpha$



Theorem 5 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha; a^T x \ge \alpha \text{ for all } x \in X)$

- Let $x^* \in X$ be closest point to γ in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Theorem 5 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha; a^T x \ge \alpha \text{ for all } x \in X)$

Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \geq 0$, $b^T \gamma < 0$

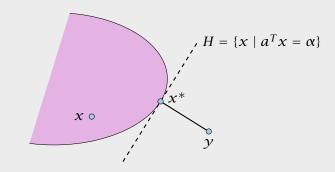
Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^T b = y^T A x \ge 0$$

Hence, at most one of the statements can hold.

Proof of the Hyperplane Lemma

- ▶ Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b. $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

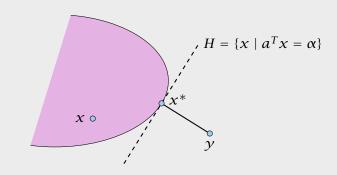
Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > v^T b = v^T A x \ge 0$$

Hence, at most one of the statements can hold.

Proof of the Hyperplane Lemma

- ▶ Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



5.3 Strong Duality

Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b. $x \ge 0$
- **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \geq 0$, $b^T \gamma < 0$

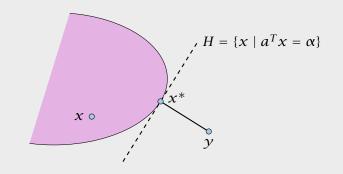
Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > v^T b = v^T A x \ge 0$$

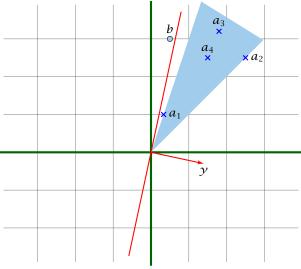
Hence, at most one of the statements can hold.

Proof of the Hyperplane Lemma

- ▶ Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



Farkas Lemma



If b is not in the cone generated by the columns of A, there exists a hyperplane γ that separates b from the cone.

Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^T b = y^T A x \ge 0$$

Hence, at most one of the statements can hold.

Now, assume that 1. does not hold

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$

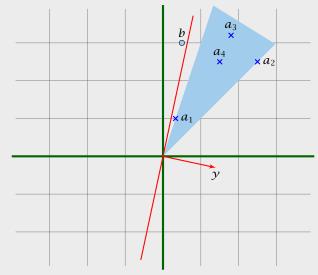
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < o$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$

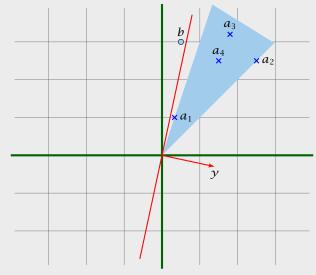
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < o$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

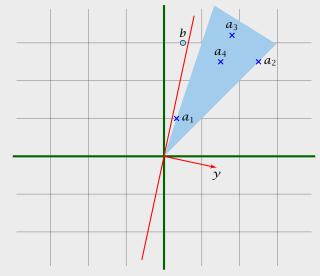
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < c$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \leq 0 \Rightarrow \gamma^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

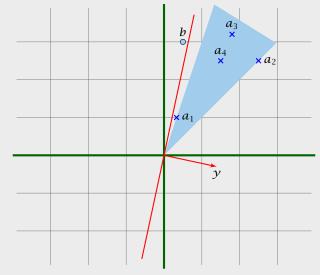
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < c$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

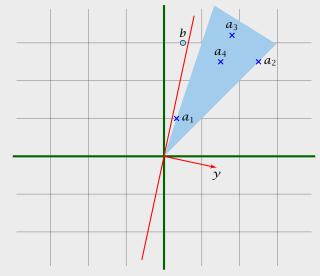
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

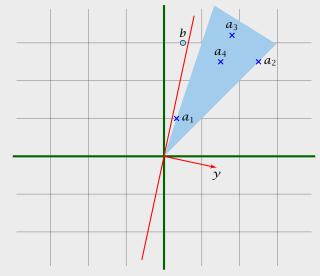
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

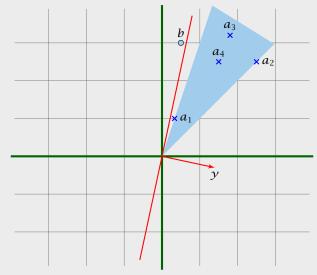
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

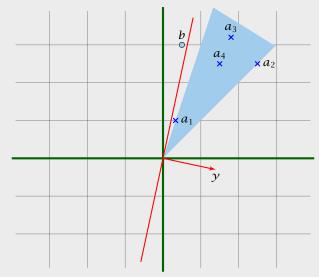
We want to show that there is y with $A^Ty \ge 0$, $b^Ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^Tb < \alpha$ and $y^Ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

 $y^TAx \ge \alpha$ for all $x \ge 0$. Hence, $y^TA \ge 0$ as we can choose x arbitrarily large.

Farkas Lemma



Lemma 7 (Farkas Lemma; different version)

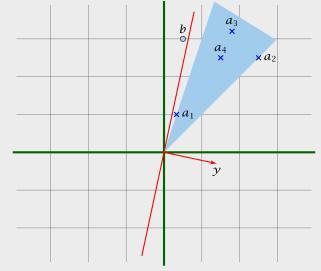
Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions

- 1. $\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, \ x \ge 0, \ s \ge 0$
- 2. $\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

Farkas Lemma



If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.

Lemma 7 (Farkas Lemma; different version)

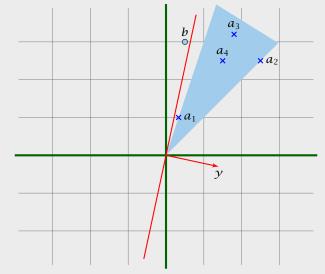
Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with $Ax \leq b$, $x \geq 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

- 1. $\exists x \in \mathbb{R}^n \text{ with } [A \ I] \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
- **2.** $\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

Farkas Lemma



If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

Lemma 7 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \geq 0$, $b^T \gamma < 0$, $\gamma \geq 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$$

2.
$$\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

D:
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

5.3 Strong Duality

 $z \le w$: follows from weak duality

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

5.3 Strong Duality

 $z \le w$: follows from weak duality

 $z \geq w$:

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.

5.3 Strong Duality

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.

 $z \le w$: follows from weak duality

$z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.

5.3 Strong Duality

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

5.3 Strong Duality

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D \colon w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

5.3 Strong Duality

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \ge 0$

$$b^{T}y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible.

Proof of Strong Duality

P:
$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

D: $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Proof of Strong Duality

P:
$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

D: $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

Hence, there exists a solution v, v with v > 0.

We can rescale this solution (scaling both γ and v) s.t. v=1.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that

Proof of Strong Duality

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution γ , ν has $\nu = 0$ we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and v) s.t. v=1.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that

Proof of Strong Duality

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution γ , ν has $\nu = 0$ we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and ν) s.t. $\nu = 1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that

Proof of Strong Duality

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution γ , ν has $\nu = 0$ we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both γ and ν) s.t. $\nu=1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that $w < \alpha$.

5.3 Strong Duality

Proof of Strong Duality

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^{m}$$
s.t. $A^{T}y \geq 0$

$$b^{T}y < 0$$

$$y \geq 0$$

is feasible. By Farkas lemma this gives that LP ${\it P}$ is infeasible. Contradiction to the assumption of the lemma.

Definition 9 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Ouestions:

- ► Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is I P in P?

Dunne

Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both γ and ν) s.t. $\nu = 1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that $w < \alpha$.

Definition 9 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Ouestions:

- ► Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is I P in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \text{opt}(P)$.
- ▶ We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills
 all dual constraints and that it has dual cost < α

Proof of Strong Duality

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and ν) s.t. $\nu=1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that $w < \alpha$.

Definition 9 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Ouestions:

- ► Is LP in NP?
- ► Is LP in co-NP? ves!
- ► Is I P in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \text{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- ► A verifier can check that the associated dual solution fulfills

Proof of Strong Duality

Hence, there exists a solution γ , ν with $\nu > 0$.

We can rescale this solution (scaling both γ and ν) s.t. $\nu = 1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that $w < \alpha$.

Definition 9 (Linear Programming Problem (LP))

Let $A \in \mathbb{O}^{m \times n}$, $b \in \mathbb{O}^m$, $c \in \mathbb{O}^n$, $\alpha \in \mathbb{O}$. Does there exist $x \in \mathbb{O}^n$ s.t. Ax = b. $x \ge 0$. $c^T x \ge \alpha$?

Ouestions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is I P in P?

Proof:

- Given a primal maximization problem P and a parameter α .
- Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual. A verifier can check that the associated dual solution fulfills

all dual constraints and that it has dual cost $< \alpha$.

Proof of Strong Duality

Hence, there exists a solution v, v with v > 0.

We can rescale this solution (scaling both ν and ν) s.t. $\nu = 1$.

Then γ is feasible for the dual but $b^T \gamma < \alpha$. This means that $w < \alpha$.