How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

EADS II Harald Räcke

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

77/575

How do we get an upper bound to a maximization LP?

```
\max 13a + 23b
s.t. 5a + 15b \le 480
4a + 4b \le 160
35a + 20b \le 1190
a, b \ge 0
```

```
Note that a lower bound is easy to derive. Every choice of a, b \ge 0 gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).
```

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

77/575

Definition 2

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program *P* (called the primal linear program).

The linear program D defined by

 $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

is called the dual problem.

Duality

How do we get an upper bound to a maximization LP?

max	13a	+	23 <i>b</i>	
s.t.	5 <i>a</i>	+	15 b	≤ 480
	4 <i>a</i>	+	4 <i>b</i>	≤ 160
	35a	+	20 <i>b</i>	≤ 1190
			a,b	≥ 0

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

5.1 Weak Duality

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

The dual problem is

Definition 2

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program *P* (called the primal linear program).

The linear program D defined by

 $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $\flat \ w = -\max\{-b^T \gamma \mid -A^T \gamma \leq -c, \gamma \geq 0\}$

The dual problem is

Definition 2

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program *P* (called the primal linear program).

The linear program D defined by

 $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$

The dual problem is

Definition 2

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program *P* (called the primal linear program).

The linear program D defined by

 $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$

The dual problem is

• $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$ • $z = \max[c^T x \mid Ax \le b, x \ge 0]$

Definition 2

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program *P* (called the primal linear program).

The linear program D defined by

 $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ • $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

- ► $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
- $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Definition 2

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program *P* (called the primal linear program).

The linear program D defined by

 $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

 γ is dual feasible, iff $\gamma \in \{\gamma \mid A^T \gamma \ge c, \gamma \ge 0\}.$

Theorem 4 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y}$.

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

• $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ • $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

- $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
- $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

 γ is dual feasible, iff $\gamma \in \{\gamma \mid A^T \gamma \ge c, \gamma \ge 0\}.$

Theorem 4 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y} \ .$

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

• $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ • $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

- $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
- $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

 $A^T \hat{\mathcal{Y}} \ge \boldsymbol{c} \Rightarrow \hat{\boldsymbol{x}}^T A^T \hat{\boldsymbol{y}} \ge \hat{\boldsymbol{x}}^T \boldsymbol{c} \; (\hat{\boldsymbol{x}} \ge \boldsymbol{0})$

 $A\hat{x} \le b \Rightarrow y^T A \hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

 $c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$.

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y} \ .$

5.1 Weak Duality

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A \hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

 $c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$.

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A \hat{x} \le \hat{y}^T b \; (\hat{y} \ge 0)$

This gives

 $c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{\boldsymbol{x}} \leq \boldsymbol{b} \Rightarrow \boldsymbol{y}^T A \hat{\boldsymbol{x}} \leq \hat{\boldsymbol{y}}^T \boldsymbol{b} \; (\hat{\boldsymbol{y}} \geq \boldsymbol{0})$

This gives

 $c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0)$

This gives

 $c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$.

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \; (\hat{y} \geq 0)$

This gives

 $c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$.

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

 $c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

 $c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

f P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

 $c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

