Part I

Organizational Matters
Part I

Organizational Matters

- Modul: IN2003
- Name: “Efficient Algorithms and Data Structures”
 “Effiziente Algorithmen und Datenstrukturen”
- ECTS: 8 Credit points
- Lectures:
 - 4 SWS
 Mon 10:00–12:00 (Room Interim2)
 Fri 10:00–12:00 (Room Interim2)
Part I

Organizational Matters

- Modul: IN2003
- Name: “Efficient Algorithms and Data Structures”
 “Effiziente Algorithmen und Datenstrukturen”
- ECTS: 8 Credit points
- Lectures:
 - 4 SWS
 Mon 10:00–12:00 (Room Interim2)
 Fri 10:00–12:00 (Room Interim2)
Part I

Organizational Matters

- Modul: IN2003
- Name: “Efficient Algorithms and Data Structures”
 “Effiziente Algorithmen und Datenstrukturen”
- ECTS: 8 Credit points
- Lectures:
 - 4 SWS
 Mon 10:00–12:00 (Room Interim2)
 Fri 10:00–12:00 (Room Interim2)
Part I

Organizational Matters

- Modul: IN2003
- Name: “Efficient Algorithms and Data Structures”
 “Effiziente Algorithmen und Datenstrukturen”
- ECTS: 8 Credit points
- Lectures:
 - 4 SWS
 Mon 10:00–12:00 (Room Interim2)
 Fri 10:00–12:00 (Room Interim2)
Part I

Organizational Matters

- Modul: IN2003
- Name: “Efficient Algorithms and Data Structures”
 “Effiziente Algorithmen und Datenstrukturen”
- ECTS: 8 Credit points
- Lectures:
 - 4 SWS
 Mon 10:00–12:00 (Room Interim2)
 Fri 10:00–12:00 (Room Interim2)
Required knowledge:

- IN0001, IN0003
 “Introduction to Informatics 1/2”
 “Einführung in die Informatik 1/2”

- IN0007
 “Fundamentals of Algorithms and Data Structures”
 “Grundlagen: Algorithmen und Datenstrukturen” (GAD)

- IN0011
 “Basic Theoretic Informatics”
 “Einführung in die Theoretische Informatik” (THEO)

- IN0015
 “Discrete Structures”
 “Diskrete Strukturen” (DS)

- IN0018
 “Discrete Probability Theory”
 “Diskrete Wahrscheinlichkeitstheorie” (DWT)
- Required knowledge:
 - IN0001, IN0003
 - *Introduction to Informatics 1/2”*
 - “Einführung in die Informatik 1/2”
 - IN0007
 - “Fundamentals of Algorithms and Data Structures”
 - “Grundlagen: Algorithmen und Datenstrukturen” (GAD)
 - IN0011
 - “Basic Theoretic Informatics”
 - “Einführung in die Theoretische Informatik” (THEO)
 - IN0015
 - “Discrete Structures”
 - “Diskrete Strukturen” (DS)
 - IN0018
 - “Discrete Probability Theory”
 - “Diskrete Wahrscheinlichkeitstheorie” (DWT)
Required knowledge:

- IN0001, IN0003
 “Introduction to Informatics 1/2”
 “Einführung in die Informatik 1/2”

- IN0007
 “Fundamentals of Algorithms and Data Structures”
 “Grundlagen: Algorithmen und Datenstrukturen” (GAD)

- IN0011
 “Basic Theoretic Informatics”
 “Einführung in die Theoretische Informatik” (THEO)

- IN0015
 “Discrete Structures”
 “Diskrete Strukturen” (DS)

- IN0018
 “Discrete Probability Theory”
 “Diskrete Wahrscheinlichkeitstheorie” (DWT)
Required knowledge:

- IN0001, IN0003
 “Introduction to Informatics 1/2”
 “Einführung in die Informatik 1/2”
- IN0007
 “Fundamentals of Algorithms and Data Structures”
 “Grundlagen: Algorithmen und Datenstrukturen” (GAD)
- IN0011
 “Basic Theoretic Informatics”
 “Einführung in die Theoretische Informatik” (THEO)
- IN0015
 “Discrete Structures”
 “Diskrete Strukturen” (DS)
- IN0018
 “Discrete Probability Theory”
 “Diskrete Wahrscheinlichkeitstheorie” (DWT)
Required knowledge:

- IN0001, IN0003
 “Introduction to Informatics 1/2”
 “Einführung in die Informatik 1/2”
- IN0007
 “Fundamentals of Algorithms and Data Structures”
 “Grundlagen: Algorithmen und Datenstrukturen” (GAD)
- IN0011
 “Basic Theoretic Informatics”
 “Einführung in die Theoretische Informatik” (THEO)
- IN0015
 “Discrete Structures”
 “Diskrete Strukturen” (DS)
- IN0018
 “Discrete Probability Theory”
 “Diskrete Wahrscheinlichkeitstheorie” (DWT)
Required knowledge:

- IN0001, IN0003
 “Introduction to Informatics 1/2”
 “Einführung in die Informatik 1/2”

- IN0007
 “Fundamentals of Algorithms and Data Structures”
 “Grundlagen: Algorithmen und Datenstrukturen” (GAD)

- IN0011
 “Basic Theoretic Informatics”
 “Einführung in die Theoretische Informatik” (THEO)

- IN0015
 “Discrete Structures”
 “Diskrete Strukturen” (DS)

- IN0018
 “Discrete Probability Theory”
 “Diskrete Wahrscheinlichkeitstheorie” (DWT)
The Lecturer

- Harald Räcke
- Email: raecke@in.tum.de
- Room: 03.09.044
- Office hours: (by appointment)
Tutorials

A01 Monday, 12:00–14:00, 00.08.038 (Schmid)
A02 Monday, 12:00–14:00, 00.09.038 (Stotz)
A03 Monday, 14:00–16:00, 02.09.023 (Liebl)
B04 Tuesday, 10:00–12:00, 00.08.053 (Schmid)
B05 Tuesday, 12:00–14:00, 03.11.018 (Kraft)
B06 Tuesday, 14:00–16:00, 00.08.038 (Somogyi)
D07 Thursday, 10:00–12:00, 03.11.018 (Liebl)
E08 Friday, 12:00–14:00, 00.13.009 (Stotz)
E09 Friday, 14:00–16:00, 00.13.009 (Kraft)
Assignment sheets

In order to pass the module you need to pass an exam.
Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e., sheet may not be corrected by this time.
- You can submit solutions in groups of up to 2 people.
Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e., sheet may not be corrected by this time.
- You can submit solutions in groups of up to 2 people.
Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e., sheet may not be corrected by this time.
- You can submit solutions in groups of up to 2 people.
Assessment

Assignment Sheets:

▶ An assignment sheet is usually made available on Monday on the module webpage.

▶ Solutions have to be handed in in the following week before the lecture on Monday.

▶ You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.

▶ Solutions have to be given in English.

▶ Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e., sheet may not be corrected by this time.

▶ You can submit solutions in groups of up to 2 people.
Assessment

Assignment Sheets:

▶ An assignment sheet is usually made available on Monday on the module webpage.

▶ Solutions have to be handed in in the following week before the lecture on Monday.

▶ You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.

▶ Solutions have to be given in English.

▶ Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e, sheet may not be corrected by this time.

▶ You can submit solutions in groups of up to 2 people.
Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e., sheet may not be corrected by this time.
- You can submit solutions in groups of up to 2 people.
Assignment Sheets:

- Submissions must be handwritten by a member of the group. Please indicate who wrote the submission.
- Don’t forget name and student id number for each group member.
Assessment

Assignment Sheets:

- Submissions must be handwritten by a member of the group. Please indicate who wrote the submission.
- Don’t forget name and student id number for each group member.
Assignment can be used to improve your grade. If you obtain a bonus your grade will improve according to the following function:

\[
 f(x) = \begin{cases}
 1, & 1 < x \leq 4 \\
 x, & \text{otherwise.}
 \end{cases}
\]

It will improve by 1.3 or 0.4, respectively.

Examples:

- 3.3 → 3.0
- 2.0 → 1.7
- 3.7 → 3.3
- 1.0 → 1.0
- > 4.0 no improvement

Assessment
Assessment

Assignment can be used to improve your grade

▶ If you obtain a bonus your grade will improve according to the following function

\[f(x) = \begin{cases}
\frac{1}{10} \text{round} \left(10 \left(\frac{\text{round}(3x)-1}{3} \right) \right) & 1 < x \leq 4 \\
\text{otw.} & \text{otherwise}
\end{cases} \]

▶ It will improve by 0.3 or 0.4, respectively.

Examples:

▶ 3.3 → 3.0
▶ 2.0 → 1.7
▶ 3.7 → 3.3
▶ 1.0 → 1.0
▶ > 4.0 no improvement
Assessment

Assignment can be used to improve your grade

▶ If you obtain a bonus your grade will improve according to the following function

\[f(x) = \begin{cases}
\frac{1}{10} \text{round} \left(10 \left(\frac{\text{round}(3x)-1}{3} \right) \right) & 1 < x \leq 4 \\
\text{otw.} & \text{others}
\end{cases} \]

▶ It will improve by 0.3 or 0.4, respectively.

Examples:

▶ 3.3 → 3.0
▶ 2.0 → 1.7
▶ 3.7 → 3.3
▶ 1.0 → 1.0
▶ > 4.0 no improvement
Assessment

Assignment can be used to improve your grade

▶ If you obtain a bonus your grade will improve according to the following function

\[
f(x) = \begin{cases}
\frac{1}{10} \text{round} \left(10 \left(\frac{\text{round}(3x) - 1}{3} \right) \right) & 1 < x \leq 4 \\
x & \text{otw.}
\end{cases}
\]

▶ It will improve by 0.3 or 0.4, respectively. Examples:

▶ 3.3 → 3.0
▶ 2.0 → 1.7
▶ 3.7 → 3.3
▶ 1.0 → 1.0
▶ > 4.0 no improvement
Assessment

Assignment can be used to improve your grade

▶ If you obtain a bonus your grade will improve according to the following function

\[f(x) = \begin{cases}
\frac{1}{10} \text{round} \left(10 \left(\frac{\text{round}(3x) - 1}{3} \right) \right) & 1 < x \leq 4 \\
x & \text{otw.}
\end{cases} \]

▶ It will improve by 0.3 or 0.4, respectively. Examples:

▶ 3.3 \rightarrow 3.0
▶ 2.0 \rightarrow 1.7
▶ 3.7 \rightarrow 3.3
▶ 1.0 \rightarrow 1.0
▶ \gt 4.0 \text{ no improvement}
Assessment

Assignment can be used to improve your grade

- If you obtain a bonus your grade will improve according to the following function

\[
f(x) = \begin{cases}
\frac{1}{10} \text{round} \left(10 \left(\frac{\text{round}(3x) - 1}{3} \right) \right) & 1 < x \leq 4 \\
x & \text{otw.}
\end{cases}
\]

- It will improve by 0.3 or 0.4, respectively.

Examples:
- 3.3 → 3.0
- 2.0 → 1.7
- 3.7 → 3.3
- 1.0 → 1.0
- > 4.0 no improvement
Assessment

Assignment can be used to improve your grade

▶ If you obtain a bonus your grade will improve according to the following function

\[
f(x) = \begin{cases}
\frac{1}{10} \text{round} \left(10 \left(\frac{\text{round}(3x) - 1}{3} \right) \right) & 1 < x \leq 4 \\
x & \text{otw.}
\end{cases}
\]

▶ It will improve by 0.3 or 0.4, respectively.

Examples:

▶ 3.3 → 3.0
▶ 2.0 → 1.7
▶ 3.7 → 3.3
▶ 1.0 → 1.0
▶ > 4.0 no improvement
Assessment

Assignment can be used to improve your grade

- If you obtain a bonus your grade will improve according to the following function

\[
f(x) = \begin{cases}
\frac{1}{10} \text{round} \left(10 \left(\frac{\text{round}(3x) - 1}{3} \right) \right) & 1 < x \leq 4 \\
x & \text{otw.}
\end{cases}
\]

- It will improve by 0.3 or 0.4, respectively. Examples:
 - 3.3 → 3.0
 - 2.0 → 1.7
 - 3.7 → 3.3
 - 1.0 → 1.0
 - > 4.0 no improvement
Assessment

Requirements for Bonus

▶ 50% of the points are achieved on submissions 2–8,
▶ 50% of the points are achieved on submissions 9–14,
▶ each group member has written at least 4 solutions.
1 Contents

▶ Foundations
 ▶ Machine models
 ▶ Efficiency measures
 ▶ Asymptotic notation
 ▶ Recursion

▶ Higher Data Structures
 ▶ Search trees
 ▶ Hashing
 ▶ Priority queues
 ▶ Union/Find data structures

▶ Cuts/Flows

▶ Matchings
1 Contents

- Foundations
 - Machine models
 - Efficiency measures
 - Asymptotic notation
 - Recursion

- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures

- Cuts/Flows
- Matchings
1 Contents

▶ Foundations
 ▶ Machine models
 ▶ Efficiency measures
 ▶ Asymptotic notation
 ▶ Recursion

▶ Higher Data Structures
 ▶ Search trees
 ▶ Hashing
 ▶ Priority queues
 ▶ Union/Find data structures

▶ Cuts/Flows

▶ Matchings
1 Contents

- Foundations
 - Machine models
 - Efficiency measures
 - Asymptotic notation
 - Recursion
- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures
- Cuts/Flows
- Matchings
2 Literatur

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:
The design and analysis of computer algorithms,
Addison-Wesley Publishing Company: Reading (MA), 1974

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest,
Clifford Stein:
Introduction to algorithms,
McGraw-Hill, 1990

Michael T. Goodrich, Roberto Tamassia:
Algorithm design: Foundations, analysis, and internet examples,
John Wiley & Sons, 2002
2 Literatur

- Ronald L. Graham, Donald E. Knuth, Oren Patashnik: *Concrete Mathematics*, 2. Auflage, Addison-Wesley, 1994
- Jon Kleinberg, Eva Tardos: *Algorithm Design*, Addison-Wesley, 2005
2 Literatur

- Uwe Schöning: *Algorithmik*, Spektrum Akademischer Verlag, 2001