Greedy-algorithm:

- start with $f(e) = 0$ everywhere
- find an s-t path with $f(e) < c(e)$ on every edge
- augment flow along the path
- repeat as long as possible
The Residual Graph

From the graph $G = (V, E, c)$ and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e_1' with capacity $\max\{0, c(e_1) - f(e_1) + f(e_2)\}$ and e_2' with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.
Augmenting Path Algorithm

Definition 1
An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 1 FordFulkerson($G = (V, E, c)$)

1: Initialize $f(e) \leftarrow 0$ for all edges.
2: while \exists augmenting path p in G_f do
3: augment as much flow along p as possible.
Augmenting Path Algorithm

Animation for augmenting path algorithms is only available in the lecture version of the slides.
Augmenting Path Algorithm

Theorem 2
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 3
The value of a maximum flow is equal to the value of a minimum cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that $\text{val}(f) = \text{cap}(A, V \setminus A)$.
2. Flow f is a maximum flow.
3. There is no augmenting path w.r.t. f.

□
Augmenting Path Algorithm

1. \(\Rightarrow\) 2.
 This we already showed.

2. \(\Rightarrow\) 3.
 If there were an augmenting path, we could improve the flow. Contradiction.

3. \(\Rightarrow\) 1.
 - Let \(f\) be a flow with no augmenting paths.
 - Let \(A\) be the set of vertices reachable from \(s\) in the residual graph along non-zero capacity edges.
 - Since there is no augmenting path we have \(s \in A\) and \(t \notin A\).
Augmenting Path Algorithm

\[\text{val}(f) = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{into}(A)} f(e) \]
\[= \sum_{e \in \text{out}(A)} c(e) \]
\[= \text{cap}(A, V \setminus A) \]

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving \(A \).
Analysis

Assumption:
All capacities are integers between 1 and C.

Invariant:
Every flow value $f(e)$ and every residual capacity $c_f(e)$ remains integral throughout the algorithm.
Lemma 4
The algorithm terminates in at most $\text{val}(f^*) \leq nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time $O(m)$. This gives a total running time of $O(nmc)$.

Theorem 5
If all capacities are integers, then there exists a maximum flow for which every flow value $f(e)$ is integral.
A Bad Input

Problem: The running time may not be polynomial.

Question:
Can we tweak the algorithm so that the running time is polynomial in the input length?
A Bad Input

Problem: The running time may not be polynomial.

Question:
Can we tweak the algorithm so that the running time is polynomial in the input length?

See the lecture-version of the slides for the animation.
A Pathological Input

Let \(r = \frac{1}{2} (\sqrt{5} - 1) \). Then \(r^{n+2} = r^n - r^{n+1} \).

Running time may be infinite!!!

See the lecture-version of the slides for the animation.
How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.
Overview: Shortest Augmenting Paths

Lemma 6
The length of the shortest augmenting path never decreases.

Lemma 7
After at most $O(m)$ augmentations, the length of the shortest augmenting path strictly increases.
These two lemmas give the following theorem:

Theorem 8

The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. This gives a running time of $O(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $O(m)$ via BFS.
- $O(m)$ augmentations for paths of exactly $k < n$ edges.
Shortest Augmenting Paths

Define the level \(\ell(v) \) of a node as the length of the shortest \(s-v \) path in \(G_f \).

Let \(L_G \) denote the subgraph of the residual graph \(G_f \) that contains only those edges \((u,v) \) with \(\ell(v) = \ell(u) + 1 \).

A path \(P \) is a shortest \(s-u \) path in \(G_f \) if it is an \(s-u \) path in \(L_G \).
In the following we assume that the residual graph G_f does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.
Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:
- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don’t have back edges so far.

These changes cannot decrease the distance between s and t.
Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that uses edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L.

![Graph diagram showing G_f and E_L]
Shortest Augmenting Paths

Theorem 9
The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. Each augmentation can be performed in time $O(m)$.

Theorem 10 (without proof)
There exist networks with $m = \Theta(n^2)$ that require $O(mn)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:
There always exists a set of m augmentations that gives a maximum flow (why?).
Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $O(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $O(m)$ per augmentation for this).
Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L.

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.
Suppose that the initial distance between \(s \) and \(t \) in \(G_f \) is \(k \).

\(E_L \) is initialized as the level graph \(L_G \).

Perform a \textbf{DFS search} to find a path from \(s \) to \(t \) using edges from \(E_L \).

Either you find \(t \) after at most \(n \) steps, or you end at a node \(v \) that does not have any outgoing edges.

You can delete incoming edges of \(v \) from \(E_L \).
Let a phase of the algorithm be defined by the time between two augmentations during which the distance between \(s \) and \(t \) strictly increases.

Initializing \(E_L \) for the phase takes time \(O(m) \).

The total cost for searching for augmenting paths during a phase is at most \(O(mn) \), since every search (successful (i.e., reaching \(t \)) or unsuccessful) decreases the number of edges in \(E_L \) and takes time \(O(n) \).

The total cost for performing an augmentation during a phase is only \(O(n) \). For every edge in the augmenting path one has to update the residual graph \(G_f \) and has to check whether the edge is still in \(E_L \) for the next search.

There are at most \(n \) phases. Hence, total cost is \(O(mn^2) \).
How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.
Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don’t worry about finding the exact bottleneck.
- Maintain scaling parameter Δ.
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.

\[
\begin{align*}
G_f & \\
\begin{array}{c}
s \\
1 \\
2 \\
t \\
\end{array} & \begin{array}{c}
115 \\
133 \\
87 \\
202 \\
\end{array} & \begin{array}{c}
s \\
1 \\
2 \\
t \\
\end{array} & \begin{array}{c}
115 \\
133 \\
202 \\
\end{array}
\end{align*}
\]
Algorithm 2 maxflow(G, s, t, c)

1: \textbf{foreach} $e \in E$ \textbf{do} $f_e \leftarrow 0$;
2: $\Delta \leftarrow 2^{\lceil \log_2 C \rceil}$
3: \textbf{while} $\Delta \geq 1$ \textbf{do}
4: \hspace{1em} $G_f(\Delta) \leftarrow \Delta$-residual graph
5: \hspace{1em} \textbf{while} there is augmenting path P in $G_f(\Delta)$ \textbf{do}
6: \hspace{2em} $f \leftarrow \text{augment}(f, c, P)$
7: \hspace{2em} update($G_f(\Delta)$)
8: \hspace{1em} $\Delta \leftarrow \Delta/2$
9: \hspace{1em} \textbf{return} f
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.
Lemma 11
There are $\lceil \log C \rceil + 1$ iterations over Δ.
Proof: obvious.

Lemma 12
Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + m\Delta$.
Proof: less obvious, but simple:
- There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- In G_f this cut can have capacity at most $m\Delta$.
- This gives me an upper bound on the flow that I can still add.
Lemma 13

There are at most $2m$ augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
- Each augmentation increases flow by Δ.

Theorem 14

We need $\Theta(m \log C)$ augmentations. The algorithm can be implemented in time $\Theta(m^2 \log C)$.