Flow Network

- directed graph $G = (V, E)$; edge capacities $c(e)$
- two special nodes: source s; target t
- no edges entering s or leaving t
- at least for now: no parallel edges;

Example 3

The capacity of the cut is $\text{cap}(A, V \setminus A) = 28$.

Cuts

Definition 1
An (s, t)-cut in the graph G is given by a set $A \subseteq V$ with $s \in A$ and $t \in V \setminus A$.

Definition 2
The capacity of a cut A is defined as

$$\text{cap}(A, V \setminus A) := \sum_{e \in \text{out}(A)} c(e),$$

where $\text{out}(A)$ denotes the set of edges of the form $A \times V \setminus A$ (i.e., edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

Flows

Definition 4
An (s, t)-flow is a function $f : E \rightarrow \mathbb{R}^+$ that satisfies

1. For each edge e
 $$0 \leq f(e) \leq c(e).$$
 (capacity constraints)
2. For each $v \in V \setminus \{s, t\}$
 $$\sum_{e \in \text{out}(v)} f(e) = \sum_{e \in \text{into}(v)} f(e).$$
 (flow conservation constraints)
Flows

Definition 5
The value of an \((s, t)\)-flow \(f\) is defined as

\[
\text{val}(f) = \sum_{e \in \text{out}(s)} f(e).
\]

Maximum Flow Problem: Find an \((s, t)\)-flow with maximum value.

Example 6

The value of the flow is \(\text{val}(f) = 24\).

Proof.

\[
\text{val}(f) = \sum_{e \in \text{out}(s)} f(e)
\]

\[
= \sum_{e \in \text{out}(s)} f(e) + \sum_{v \in A(s)} \left(\sum_{e \in \text{out}(v)} f(e) - \sum_{e \in \text{in}(v)} f(e) \right)
\]

\[
= \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{into}(A)} f(e).
\]

The last equality holds since every edge with both end-points in \(A\) contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn’t cancel out are edges leaving or entering \(A\).
Corollary 9

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$\text{val}(f) = \text{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

$$\text{cap}(A, V \setminus A) < \text{val}(f')$$

$$= \sum_{e \in \text{out}(A)} f'(e) - \sum_{e \in \text{into}(A)} f'(e)$$

$$\leq \sum_{e \in \text{out}(A)} f'(e)$$

$$\leq \text{cap}(A, V \setminus A)$$