How to find an augmenting path?

Construct an alternating tree.

1. **even nodes**
2. **odd nodes**

Case 4:
- \(y \) is already contained in \(T \) as an even vertex
- can't ignore \(y \)

The cycle \(w \leftrightarrow y \leftrightarrow x \leftrightarrow w \) is called a blossom.
- \(w \) is called the base of the blossom (even node!!!).
- The path \(u \leftrightarrow w \) is called the stem of the blossom.

Flowers and Blossoms

Definition 1

A flower in a graph \(G = (V,E) \) w.r.t. a matching \(M \) and a (free) root node \(r \), is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node \(r \) and terminates at some node \(w \). We permit the possibility that \(r = w \) (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node \(w \) of a stem and has no other node in common with the stem. \(w \) is called the base of the blossom.

Properties:

1. A stem spans \(2\ell + 1 \) nodes and contains \(\ell \) matched edges for some integer \(\ell \geq 0 \).
2. A blossom spans \(2k + 1 \) nodes and contains \(k \) matched edges for some integer \(k \geq 1 \). The matched edges match all nodes of the blossom except the base.
3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at \(r \)).
Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.

5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G' = G/B$, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.
Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

Example: Blossom Algorithm

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and w the base. Let graph $G' = G/B$ with pseudonode b. Let M' be the matching in the contracted graph.

Lemma 2
If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Correctness

Proof.
If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem
- Next suppose that the stem is non-empty.
Correctness

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- If $k = w$ then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Proof.

Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w = r$.

The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Lemma 3

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom. P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

$(b, j) \circ P_2$ is an augmenting path in the contracted network.
Correctness

Illustration for Case 1:

![Graph Illustration]

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+, since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+.

For M'_+, the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+. It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

Algorithm 24

\begin{algorithm}
\caption{search(r, found)}
\begin{algorithmic}[1]
\STATE set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
\STATE found \leftarrow false
\STATE unlabel all nodes;
\STATE give an even label to r and initialize list $\leftarrow \{r\}$
\WHILE{list $\neq \emptyset$}
\STATE delete a node i from list
\STATE examine(i, found)
\IF{found $= \text{true}$} \textbf{return} \ENDIF
\ENDWHILE
\end{algorithmic}
\end{algorithm}

Search for an augmenting path starting at r.

Algorithm 25

\begin{algorithm}
\caption{examine(i, found)}
\begin{algorithmic}[1]
\FORALL{$j \in \bar{A}(i)$}
\IF{j is even} contract(i,j) and \textbf{return} \ENDIF
\IF{j is unmatched}$q \leftarrow j$;\newline\quad pred(q) $\leftarrow i$;\newline\quad found \leftarrow true;\newline\quad \textbf{return} \ENDIF
\IF{j is matched and unlabeled}\quad pred(j) $\leftarrow i$;\newline\quad\quad pred(mate(j)) $\leftarrow j$;\newline\quad\quad add mate(j) to list
\ENDFOR
\end{algorithmic}
\end{algorithm}

Examine the neighbours of a node i.
Algorithm 26 contract\((i, j)\)
1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
2: create new node \(b\) and set \(\bar{A}(b) = \bigcup_{x \in B} \bar{A}(x)\)
3: label \(b\) even and add to list
4: update \(\bar{A}(j) = \bar{A}(j) \cup \{b\}\) for each \(j \in \bar{A}(b)\)
5: form a circular double linked list of nodes in \(B\)
6: delete nodes in \(B\) from the graph

Identify all neighbours of \(b\).
Time: \(\mathcal{O}(m)\) (why?)

Contract blossom identified by nodes \(i\) and \(j\)

Get all nodes of the blossom.
Time: \(\mathcal{O}(m)\)
Algorithm 26 contract \((i, j)\)

1. trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
2. create new node \(b\) and set \(\bar{A}(b) = \bigcup_{x \in B} \bar{A}(x)\)
3. label \(b\) even and add to list
4. update \(\bar{A}(j) = \bar{A}(j) \cup \{b\}\) for each \(j \in \bar{A}(b)\)
5. form a circular double linked list of nodes in \(B\)
6. delete nodes in \(B\) from the graph

Every node that was adjacent to a node in \(B\) is now adjacent to \(b\).

Algorithm 26 contract \((i, j)\)

1. trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
2. create new node \(b\) and set \(\bar{A}(b) = \bigcup_{x \in B} \bar{A}(x)\)
3. label \(b\) even and add to list
4. update \(\bar{A}(j) = \bar{A}(j) \cup \{b\}\) for each \(j \in \bar{A}(b)\)
5. form a circular double linked list of nodes in \(B\)
6. delete nodes in \(B\) from the graph

Only for making a blossom expansion easier.

Analysis

- A contraction operation can be performed in time \(O(m)\). Note, that any graph created will have at most \(m\) edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time \(O(m)\).
- There are at most \(n\) contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time \(O(n)\). There are at most \(n\) of them.
- In total the running time is at most

\[
n \cdot (O(mn) + O(n)) = O(mn^2)
\]

Only delete links from nodes not in \(B\) to \(B\). When expanding the blossom again we can recreate these links in time \(O(m)\).
Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.