4 Modelling Issues

What do you measure?
- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- ...

4 Modelling Issues

How do you measure?
- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $O(n^2)$".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

Input length
The theoretical bounds are usually given by a function $f : \mathbb{N} \rightarrow \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be
- the size of the input (number of bits)
- the number of arguments

Example 1
Suppose n numbers from the interval $\{1, \ldots, N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

Model of Computation

How to measure performance
1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.
Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.

⇒ Not a good model for developing efficient algorithms.

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
 - READ i
- output operations ($R[i] \rightarrow$ output tape)
 - WRITE i
- register-register transfers
 - $R[j] := R[i]$
 - $R[j] := 4$
- indirect addressing
 - $R[j] := R[R[i]]$
 loads the content of the $R[i]$-th register into the j-th register
 - $R[R[i]] := R[j]$
 loads the content of the j-th into the $R[i]$-th register
- branching (including loops) based on comparisons
 - jump x
 jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register $R[x]$
 - jumpz x $R[i]$
 jump to x if $R[i] = 0$
 if not the instruction counter is increased by 1;
 - jumpi i
 jump to $R[i]$ (indirect jump);
- arithmetic instructions: $+, -, \times, /$
 - $R[i] := R[j] + R[k]$
 - $R[i] := -R[k]$

The jump-directives are very close to the jump-instructions contained in the assembler language of real machines.
Model of Computation

- uniform cost model
 Every operation takes time 1.
- logarithmic cost model
 The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^w, where usually $w = \log_2 n$.

The latter model is quite realistic as the word-size of a standard computer that handles a problem of size n must be at least $\log_2 n$ as otherwise the computer could either not store the problem instance or not address all its memory.

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

1: $r \leftarrow 2$;
2: for $i = 1 \rightarrow n$ do
3: $r \leftarrow r^2$
4: return r

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} - 1 = \Theta(2^n)$
- space requirement:
 - uniform model: $\Theta(1)$
 - logarithmic model: $\Theta(2^n)$

There are different types of complexity bounds:

- best-case complexity:
 $$C_{bc}(n) := \min \{ C(x) \mid |x| = n \}$$
 Usually easy to analyze, but not very meaningful.

- worst-case complexity:
 $$C_{wc}(n) := \max \{ C(x) \mid |x| = n \}$$
 Usually moderately easy to analyze; sometimes too pessimistic.

- average case complexity:
 $$C_{avg}(n) := \frac{1}{|I_n|} \sum_{x \in I_n} C(x)$$
 more general: probability measure μ
 $$C_{avg}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

There are different types of complexity bounds:

- amortized complexity:
 The average cost of data structure operations over a worst case sequence of operations.

- randomized complexity:
 The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x. Then take the worst-case over all x with $|x| = n$.

There are different types of complexity bounds:
4 Modelling Issues

Bibliography

Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.